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Abstract

We present a Next-to-Leading Order calculation of the cross section for the
leptoproduction of large- | hadrons and we compare our predictions with H1
data on the forward production of 7. We find large higher order corrections
and an important sensitivity to the renormalization and factorization scales.
These large corrections are shown to arise in part from BFKL-like diagrams
at the lowest order.
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1 Introduction

The electroproduction of large-E, hadrons which is observed by the HERA
experiments H1 [I, 2, B] and ZEUS [] may provide important tests of QCD. In
addition to the study of the partonic subprocesses, of the parton distributions in the
proton and of the fragmentation functions, it also offers the possibility to observe the
virtual photon structure function. A contribution of the latter is indeed expected
when the hadron transverse energy squared E? is much larger than the photon
virtuality Q? = |¢?| ; in this case the virtual photon structure function contribution,
proportional to log g—%, can be important.

Another interest of this reaction is the study of the production mechanisms of
forward hadrons. Indeed, the forward region can be associated with BFKL dynam-
ics and provide tests of the latter [5]. Several papers have studied the production
of large-E| jets [6] and hadrons [] in the forward direction, and have concluded
that these reactions are relevant for the study of BFKL dynamics. However, results
from H1 [2] show that theoretical predictions based on the DGLAP dynamics, im-
plemented in RAPGAP [§] or based on BFKL dynamics [J] are both in agreement
with data. These theoretical results do not necessarily contradict each other, since
the same Feynman graphs may contribute to both of them. But it is clear that a
deeper understanding of the underlying forward dynamics requires quantitative pre-
dictions, which are not fully realized in the existing literature above. Ref. [§] which
implements the DGLAP dynamics rests on a Leading Order (LO) approximation
and suffers from scale dependence which forbids an absolute normalization. Ref. [9]
takes into account some Higher Order (HO) corrections to the LO BFKL equation,
but does not include non-BFKL contributions.

In this paper we calculate the HO corrections to the Born subprocesses associated
with the electroproduction of large-E | hadrons namely the QCD Compton process
v* 4+ q — g + q and the fusion process v* + g — ¢+ ¢. The Born subprocess cross



sections, of order O(aqy), and the HO subprocess cross sections, of order O(aa?),
are convoluted with parton distributions and fragmentation functions calculated at
the NLO approximation. The total NLO cross-section (Born + HO contributions)
is sensitive to the choice of the renormalization and factorization scales, but there
is a compensation between the variations of the Born and HO contributions in such
a way that the NLO cross section is more stable than the LO (containing only the
Born terms) cross sections.

The work presented here is a fixed order (for the subprocess cross section), NLO
calculation, the DGLAP dynamics being included by the scale dependent distri-
butions and fragmentation functions. However, among the HO contributions, one
of them corresponds to the lowest order BFKL cross section, namely, the reaction
v*+g — g+q+q. As this contribution is part of an HO calculation, we have a way
to establish a link between the normalization of our NLO cross section and that of
the (lowest order) BFKL cross section.

As mentioned in the beginning of this section, the HO calculation generates a
contribution proportional to the virtual photon structure function. At order O(aa?)
we obtain the Born expression of this structure function, proportional to log E? /(Q?
and we shall study how important this contribution to the large-F, forward hadron
cross section is in the H1 kinematical configuration. All order contributions to
the virtual photon structure function can be resummed using an inhomogeneous
DGLAP evolution equation. Here we shall briefly discuss this possibility, leaving for
another publication [I{)] a detailed analysis of the resummed virtual photon structure
function.

As a final point concerning the nature of this calculation, let us emphasize the fact
that it describes the production of large-E | hadrons in the virtual-photon proton
centre-of-mass system (CMS) and that it is also valid in the limit Q? = 0, the large
scale then being provided by E?. It must be compared with experimental results

which impose a lower bound on the final hadron F, in the v* — P CMS, as is done



by the H1 and ZEUS collaboration [2, B, @]. Therefore the present work does not
consider the target fragmentation mechanism, which requires the introduction of
fracture functions [I11, 02, T3, T4]. It is also different from the inclusive calculations
of ref. [I3, 4] in that it is an exclusive NLO partonic generator. This allows us to
calculate various types of correlations (for example between large-FE, hadron and
jets) and facilitates the implementation of experimental cuts.

In the next section we shall present an overview of the relevant DIS kinematics
and of the method used to calculate the HO corrections. Section 3 is devoted to a
discussion of the virtual photon structure function and, in section 4, we compare our
theoretical results with H1 data [2]. We shall discuss in detail the importance of the
virtual photon contribution and of the BFKL-like contribution in the H1 kinematical
region. Section 5 studies the production of large-E, hadrons in the central region

in rapidity. Section 6 is the conclusion.

2 The NLO calculation

The kinematics of the reaction e(¢) + p(P) — e(¢') + h(Fy) + X is fixed by the
observation, in the laboratory frame, of the outgoing lepton and hadron A momenta

[2]. We define the photon variables (axis Oz along the initial proton momentum)

Q2 — _q2 — _(e_ 6/)2
()" 0= Pl S5 zp

Y

where we have neglected the proton mass and used the notation S = (¢ + P)? and

rBj = %. The outgoing hadron is defined by its transverse energy EL%® and its

pseudo rapidity ne®.
The inclusive cross section is written in terms of the leptonic tensor (summed

and averaged over the spins of the leptons)



o =2 (00 0 — g (0 = m2)) (2)

and the hadronic tensor 7}, which describes the photon-proton collision

do a 1 1 T,
dgde%ly o 2m 25 2 ¢

dPSs, (3)

where

d'p;

dPS = (27)%6* <q+ P— Z pz> 11 ok 0(1)0(py)

is the final state hadron phase space element and ¢ the photon azimuthal angle. (A

sum over the number of final hadrons is understood in (B)).

The hadronic tensor can be calculated as a convolution between the partonic ten-
sor t,,, which describes the interaction between the virtual photon and the parton of
the proton, and the parton distribution in the proton G,(x, M). The fragmentation
of the final parton which produces a large-E |, hadron is described by the fragmen-
tation function Df(z, Mp). These distributions depend on the factorization scales

M and Mp,

/ T,,dPS =% / C;—xGa(:c, M) / dz D}z, Mp)teh - dps, (4)
a,b

where dps is the phase space element of the partons produced in the hard photon-

parton collision. From expressions (B) and (#), we obtain

do Bl « dz
_ by a M / Ephz M
dtde2dydELabdnLab o 271' / de ZIZ' ) b (Z F)

/d(pL“b 11 e
2 (4m)?2zS  ¢*

B dps', (5)

where the phase space dps’ no longer contains parton 4 which fragments into h(Fy).

Up to this point we have been writing EX% and 7% to emphasize the frame in



Figure 1: The QCD Compton subprocess (Fig. 1a) and real (virtual) HO corrections
to it (Fig. 1b (Fig. 1c)).
which the reaction is observed. Of course ([) is valid in any frame and from now on
we shall drop the index “Lab”.

The tensor product is a series in «a,. Taking into account the first and second

order contributions, we rewrite ({) as

do o dz
==Y [ daG, ,M/_Dh M
dpdQ?dydE | 4dny 2w az;‘/ 2Ga(z, M) 22 b (2, Mp)

ag(p) Aol 2) N as(0)\? dKHO (2, 2, 1, M, M) (6)
21 dpdQ%dydE | 4dn, 2 dpdQ?dydE | 4dn, ’

The cross sections 5™ are the subprocess Born cross sections which describe the

electroproduction of a large-E, parton b and K¢ are the associated Higher Order
corrections.

Figure la shows the Born term corresponding to the QCD Compton (QCDC)
process (here partons a and b are quarks). When a is a gluon, we have the so called
photon-gluon fusion Born term. Examples of a graph contributing to HO corrections
to the QCDC term are shown in Fig. 1b, c. (The numbers 1 to 5 label the initial
and final partons according to a convention used in the HO calculations described
below).

In expression () we have explicitly written the dependence of the cross section

5



on the strong coupling constant a () which depends on the renormalization scale p.

It is convenient to perform the calculation of 2" and KH© in the virtual
photon-proton center of mass system, and from now on we shall work in this frame.
In fact, the H1 collaboration explicitly uses this frame to place cuts on the outgoing
hadron transverse momentum. We take the positive Oz axis along the proton mo-
mentum (as per the H1 convention) and the leptons are contained in the Oz z-plane.

It is instructive to give a more explicit form to the tensor product in the v* — p

frame using expression () and defining the transverse polarization vectors ] =

(0,1,0,0), g5 = (0,0,1,0) and the scalar polarization vector e# = ——(¢?,0,0, ¢")

\/@

with ¢* = (¢°, 0,0, ¢*) being the virtual photon momentum

2 1—
(¥, = Q*(ty + tag) + 4 (% - mﬁ) tin
2 — I 4(1 —
+4Ty€m Q2 tsl + Qz%ts& (7)

where y = gﬁ:gj = % is identical to the variable defined in () in the Lab frame.

In the limit Q% — 0 and after azimuthal averaging over ¢, we recover the unin-

tegrated Weizsacker-Williams expression

oo (UM o)) o

with 0| = % (tll + tgg).

Actually the limit () is correct only if Ql%rllo tss = O(Q?). This is not true if an
initial collinearity is present in the partonic tensor (light partons are massless) which
leads to the behavior QI%IEO tss = O(1). This point will be discussed in a forthcoming
publication [T0].

After these kinematical preliminaries, let us describe the calculation of the HO
corrections which uses the phase-space slicing method elaborated in ref. [I5]. We

outline the strategy only briefly; for more details we refer to [16].



For a generic reaction 142 — 3+4+5 (fig. 1), at least two particles of the final
state, say 3 and 4, have a high E'| and are well separated in phase space, while the
last one, say 5, can be soft, and/or collinear to any of the four others. Of course on
the photon side there is no collinear divergence as long as )? is different from zero.
This part of the calculation is related to the virtual photon structure function to be
discussed below. In order to extract the other singularities, the phase space is cut
into two regions :

(1) Part I where the norm E|5 of the transverse momentum of particle 5 is
required to be less than some arbitrary value £ |,, taken to be small compared to the
other transverse momenta. This cylinder contains the infrared and the initial state
collinear singularities. It also contains a small fraction of the final state collinear
singularities.

(2) Parts Ila(b) where the transverse momentum vector of particle 5 is required
to have a norm larger than £ ,,, and to belong to a cone C3(Cy) about the direction
of particle 3(4), defined by (15 —n;)*+(¢5—¢;)? < R% (i = 3,4), with Ry, some small
arbitrary number. C3(Cjy) contains the final state collinear singularities appearing
when 5 is collinear to 3(4).

(3) Part Ilc where E| 5 is required to have a norm larger than E ,,, and to belong
to neither of the two cones C3, Cy. This slice yields no divergence, and can thus be
treated directly in 4 dimensions. For this regular part of the calculations we use the
cross sections from [I7].

The contributions from regions I and Ila, b are calculated analytically in d =
4 — 2¢ dimensions and then combined with the corresponding virtual corrections
(borrowed from DISENT [I7]) such that the infrared singularities cancel each other,
leaving only the initial (final) state collinear singularities, which are factorized and
absorbed into the parton distribution (fragmentation) functions. The MS factor-
ization and renormalization schemes are used in this calculation.

After the cancellation, the finite remainders of the soft and collinear contributions



in parts I and Ila, b, ¢ separately depend on large logarithms In E | ,,, In®> E,, and
In R;,. When combining the different parts, the cancellations of the E,,, and
Ry, dependent terms occur. Actually, in part I, the finite terms are approximated
by collecting all the terms depending logarithmically on F,,, and neglecting the
terms proportional to powers of F,,,. Similarly in parts Ila and ITb we keep only
the logarithmic terms In Ry,. Therefore the parameter E|,, must be chosen small
enough with respect to E 4 so that the neglected terms can be safely dropped. On
the other hand, it cannot be chosen too small for then numerical instabilities may
occur. Similar remarks are also valid for the Ry, cut-off.

This approach allows us to build a partonic event generation which is very flexi-
ble ; various sorts of observables and experimental cuts being easily handled. More
references to this method, which has been used to calculate NLO correction to sev-

eral photoproduction and hadroproduction reactions can be found in ref. [I8].

3 The resolved contribution

As mentioned in the Introduction, the calculation of the HO corrections leads to
2

a contribution proportional to log % (when E?, > %), the so-called resolved pho-
ton contribution. Indeed, let us consider the contribution associated with Fig. 1b in
which we interchange the label 5 and 4. The integration over E| 5 (the unobserved
final quark momentum) produces, among other contributions, a logarithm contri-
E3,
Q7
to the virtual photon. More explicitly, we obtain the following expression (for a

bution log associated with a configuration in which the final quark is collinear

transversely polarized photon)

o, = %/dz [z2+(1—z)2} {/OEi‘* ]gi_j?]jl_z)
+2(1 — 2)¢? /OEizl o qflj(il 5 } 7(0)dps, (9)




in which we have defined k = ¢ — p5 and z = %. The cross section of the 2 — 2

subprocess is calculated with k on-shell (k* = 0) and dps is the final partonic phase
space of parton 3 and 4. This expression, as well as a similar one for the scalar
cross section, will be derived in ref.[T0]. A discussion of the second term of ({) (the
non-logarithmic piece) is also postponed to this paper. Here we are interested in
the term proportional to log £2,/Q? and in a discussion of the upper limit of the
integral in ().

From ([) we obtain the term

E2
oy~ / dzP, (2) {log o }5—(0) dps, (10)
(with the definition Py, (2) = 5=(2* + (1 — 2)?) which defines the quark distribution

in the virtual photon

Q’Y(ZaEJ_4aQ2) = P‘]’Y(z) lOg —= . (11)

In expression ([[Il), the quark distribution is calculated with no QCD correction.
However when E?, > % it becomes important to calculate these corrections and to
replace () by the LO or NLO expressions of the quark distribution 10} 19, 20, 21].

In this paper we are only interested in the study of the importance of the resolved
contribution obtained in the kinematical configuration of the H1 experiment and we
content ourselves with the lowest order expression ([[Il). However this expression,
obtained in the limit £?, > Q* must be elaborated in order to cover other kinemat-
ical configurations as well. When Q? > FE?,, we cannot neglect the k2 dependence
of (k?)dps which suppresses the logarithmic integration in expression ({). The
resolved contribution coming from the collinear configuration can be approximated

by the form

o /dz Q2 52 L1 5(0) dps, (12)



which has the correct limit for F2, > Q? and E?, < @Q?. In this work we define
the resolved contribution by the expression (), and in Section 4, we shall calculate
its numerical importance.

When the lowest order expression ([[2) is resummed, it must first be removed
from the HO corrections. We shall call HO, the remaining corrections, and we shall

say that the subtraction has been performed at the scale M2 = Q* + E?,.

4 Results

In this section we present the results obtained with the NLO code described in
sections 2 and 3. We shall compare our predictions with a selected set of H1 data
[2] and we shall concentrate on a detailed discussion of the various contributions to
the cross section, namely the HO corrections, the virtual photon structure function
contribution and the BFKL-like contribution. Here we do not intend to perform
a complete phenomenological study of the H1 data [2, B] that we shall present in
a forthcoming publication. We use the MRST99 (higher gluon) [22] distribution
functions corresponding to Aj;g = 300 MeV and the KKP fragmentation functions
of quarks and gluons in 7° [23]. The renormalisation and factorization scales are
taken equal to /Q? + E?,.

First we study the cross section do/drp; measured by H1 [2] in the range
4.5 GeV? < Q* < 15 GeV? with a lower bound on the transverse energy, in the
v* — p frame, of the forward 7¥ given by E 4 > 2.5 GeV. The HERA proton and
electron beams have laboratory energies 820 GeV and 27.5 GeV respectively, and
the inelasticity defined in ([Il) is restricted to the range .1 < y < .6. The for-
ward domain in which the meson is observed is given by 5° < #Le® < 25° and
Tr = EF/ELE > .01, Then we shall consider other kinematical ranges for Q2.

The H1 data are compared to our predictions in Fig. 2. The HO contributions

from which the resolved contribution has been subtracted (see the discussion in
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Figure 2: Comparison with H1 data in the range 4.5 GeV? < Q% < 15 GeV?2.
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Figure 3: Comparisons with H1 data for two Q%-ranges : 2 < Q? < 4.5 GeV? (left)
and 15 < Q% < 70 GeV? (right).

section 3) are indicated by HO,. In Fig. 2 the importance of the HO corrections,
especially at small values of zp; is dramatically visible. As discussed below, it is
associated with the opening of new channels.

The resolved component is non-negligible in this range of £%, and Q*. Of course
its amplitude depends on the factorization scale, which we discussed in Section 3.
We recall that the factorization scale used here is M,f = Q%+ F?%,. Tt is interesting
to look at < E?, > and compare it with the value of < Q? >. According to
our calculation < FE?, >~ 15.3 GeV?, which does not depend on the value of
rpj; < Q* >= 6.15 GeV? and 10.36 GeV? for the ranges 1.107* < zp; < 2.107*
and 5.5.107* < xp; < 11.0 10™* respectively. These values lead to a virtual photon
structure function proportional to log (%) ~ 1.25, and 0.91. The dependence
of < Q?* > on xp; also explains the relative decrease of the resolved component at
large xp;. For two other Q? ranges we compare H1 data with theory in Fig. 3.

We clearly notice the decrease of the resolved component when Q? increases and

becomes larger than E? .
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Figure 4: Examples of HO diagrams which contribute to the “BFKL Born” term
when the detected hadron is a fragment of the gluon or of the quark q.

Let us end this general discussion of our results by noting that theory under-
estimates data by a small amount. Nevertheless we must keep in mind that two
points are still missing for a more complete comparison. First we have not yet
studied the scale dependence of our results which have been obtained for the choice
pw=M= M=M= (Q*+ E2 )2, and second, we have not considered HO
corrections to the resolved contribution which are known to be large. Indeed we
can estimate these corrections by using the Weizsdcker-Williams approximation (&)
which is implemented in the photoproduction EPHOX code[I8]. From this code we
obtain a ratio HO/Born ~ 1 in the kinematical domain corresponding to Fig. 2.

Now we turn to a detailed study of the HO contributions. As expected the two
contributions corresponding to the Feynman graphs shown in Fig. 4 are the largest
in the forward direction, because of the exchange of a gluon in the ¢t-channel. They
also correspond to new subprocesses that are not present at the Born level, as soon
as the observed partons are the final gluon or quark ¢ ; therefore they do not possess
singular collinear configurations of partons which contribute to the dressing of the
distribution and fragmentation functions already present in the Born terms. These
graphs, with a trigger on the gluon or quark ¢, also correspond to the Born terms of

the BFKL ladder in which extra gluons are emitted by the t-channel gluon. This is
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Figure 5: Comparison of BFKL Born contributions with the total NLO cross section
and H1 data for 4.5 GeV? < Q? < 15.0 GeV?.

precisely the contribution to the forward cross section [Bl, 6] that HERA experiments
H1 and ZEUS should reveal.

Figure 5 compares our BFKL Born term contributions and the associated re-
solved contribution with the total NLO cross section do/dxp;. These contributions
represent more than two thirds of the total NLO corrections in the small z; region.
Actually the BFKL Born result of Fig. 5 also contains contributions of graphs in
which, for instance, the outgoing gluon is attached to the quark line. However these
contributions are expected to be small as they do not possess the t-singularities (in
a physical gauge) associated with the exchange of a gluon. To check this point, we
calculated the contributions of the graph shown in Fig. 4b. For a forward trigger on
the quark ¢, we obtain a cross section seven times larger than the one corresponding

to a trigger on the quark ¢ (for zp; ~ 2.107%). Therefore we estimate that the part
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Figure 6: The BFKL Born term contribution and the total NLO cross section with
the scales u?> = M? = M2 = p%,. Also shown the total NLO cross section with
scales (Q* + E?,)/2 (dotted line) and the H1 data (4.5 < Q* < 15.0 GeV?).

of the curve of Fig. 5 corresponding to the BFKL Born term of Fig. 4 is dominant.

From these results we conclude that the main part of the forward cross section is
due to the BFKL Born terms. Although obtained in the course of a NLO calculation,
these terms of order O(a?) represent the Born terms of new channels, namely the
v*q — ¢'q q and v*g — qgg channels. As for any Born terms, we do expect the
contributions of those channels to be strongly dependent on the renormalization
and factorization scales. Therefore, contrary to our expectations, we are not able
to obtain, through our NLO calculations, a total cross section displaying a weak
dependence on the renormalization and factorization scales.

Let us be more explicit by studying the effect of the BFKL resummation of the

small log % terms which appears when extra gluons are emitted by the ¢-channel
J
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gluon of Fig. 4 (the BFKL ladder). These contributions have been estimated in ref.
[6, [7]; they lead to an enhancement of the BFKL Born cross section by a factor
5 to 10, in obvious contradiction with the data. However the calculations of ref.
[6, 7] depend on various cuts and do not include the effect of HO corrections to
the leading BFKL results. These corrections are known to be large; this makes the
leading results not reliable. A more recent approach [9] includes a part of these
HO corrections in its predictions and finds an agreement with H1 data [2]. This
last result, obtained with the scales y = M = Mp = p14 (p4 is the momentum of
the parton which fragments into the %), allows us to make a connection with their
approach. Using the same scales we obtain the result of Fig. 6 for the BFKL Born
term and for the total cross section. It is obvious that there is room for a BFKL-
ladder contribution [9] between the data and the present theoretical prediction.

However the scale p,4 is quite large (< pi4 >~ 11 GeV in the H1 kinemat-
ics) compared to what is usually used in large-FE, reactions. For instance, in
the case of 7° hadroproduction in fixed target experiments, a scale M ~ FE /2
(< E 4 >~ 3.6 GeV in the H1 kinematics) is used in ref. [24] to get an agreement
between data and theory. If a similar scale were used here, we would obtain better
agreement between data and NLO calculations without any other contributions, as
is demonstrated in Fig. 6 for the choice p? = M? = M7 = 3(Q*+ E3,). It is
clear from this discussion that we cannot accurately determine the importance of
a BFKL-ladder component in H1 data without calculating NLO correction to the
BFKL Born terms considered here or, in other words, without calculating NNLO
correction to the electroproduction cross section.

Conclusions similar to the ones of this section have been obtained by Kramer

and Potter in their study of the forward leptoproduction of jets [25].
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Figure 7: The large-E, 7° cross section integrated over £, with the cuts £, >
3 GeV/c (left) and E; > 7 GeV/c (right).

5 Cross section at central rapidity

In this section we study the leptoproduction of large-E| 7 in the central region
in rapidity (in the laboratory frame) with the aim to reduce the BFKL Born term
contributions and, consequently, to have a better control of the HO corrections.
Therefore the experimental results obtained in this kinematical domain should pro-
vide good tests of QCD and the possibility of measuring the virtual photon structure
function.

Let us consider the following kinematical range which has been explored by the
H1 collaboration in its measurement of the photoproduction of large-E, hadrons
[26], namely \/STP =300 GeV, 3 <y < .7and —1 < Mpagron < 1. We study two
lower limits for the hadron transverse energy, 3 GeV < E, and 7 GeV < E|, in
order, as in ref. [27], to estimate the importance of these cuts on the control of the
HO corrections. For Q?, we choose 5 GeV? < Q% < 10 GeV? which belongs to the
range studied by H1 in the measurement of the dijet cross section at low Q* [25].

In Fig. 7 we display the cross section do/dnpaaren integrated over F| with £, >
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Figure 8: The cross section do/dE, for three different choices of scales C\/Q? + E2.

3 GeV (left) and E; > 7 GeV (right). All the scales are set equal to /Q? + E3.

HOs

We clearly see the decrease of the ratio r = £>=

when the cut on F,| increases,
with a value r ~ .65 obtained for £/, > 7 GeV. On the other hand the ratio of
the resolved contribution to the Born contributions increases because of the larger
value of (Q* + E?)/Q? and reaches a value close to 0.5. One must notice that this
ratio is much smaller than in photoproduction [27], since the virtuality of the photon
suppresses the resolved contribution.

We study the scale variation of the cross-section do/dFE; in Fig. 8. Three pre-

dictions, obtained with the scales y = M = Mp = C\/Q? + E? and C = £,1,2, are

1
2
displayed. A change of the scales by a factor 4 results in a change of the cross section
by a factor 2. Therefore, even at large value of |, the cross section is very sensitive

to the scale variation. A similar behavior has been observed in the photoproduction
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cross section of large-F | hadrons [27].

6 Conclusion

In this work we have carried out the calculation of HO corrections to the lep-
toproduction cross section of large-E | hadrons. These corrections are implemented
in a parton event-generator offering greater flexibility for the estimation of various
observables. Concerning the numerical importance of these corrections, we have
focussed on two different kinematical domains, namely the central region in rapidity
(in the HERA laboratory frame), and the forward region where we compare our
results with H1 data.

In the central region we have found important HO corrections at low £, . How-
ever these corrections decrease as E| increases with a K-factor (HO/(HO + Born))
of about .5 obtained for F; > 7 GeV/c. In the same range the HO corrections
contain a non-negligible resolved contribution which should allow experiment to
constrain the virtual photon structure function.

In the forward region, we find very large HO corrections due to the opening
of new channels related to the BFKL Born terms ; two thirds of the NLO cross
section is due to these contributions. These Born terms, and consequently the
total NLO cross section, are quite sensitive to scale variations and this forbids any
absolute normalization of the cross section. However one must keep in mind that a
good agreement between the H1 data and the NLO cross section is obtained with
renormalization and factorization scales taken equal to /(Q? + E?)/2.

Because of the scale sensitivity, no firm conclusion can be drawn on the impor-
tance of the BFKL resummation in the forward cross section as measured by the H1
collaboration. Clearly such a study requires the calculation of NNLO corrections to

the leptoproduction cross section.
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