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Abstract

We revisit four generations within the context of supersymmetry. We compute the per-
turbativity limits for the fourth generation Yukawa couplings and show that if the masses
of the fourth generation lie within reasonable limits of their present experimental lower
bounds, it is possible to have perturbativity only up to scales around 1000 TeV. Such low
scales are ideally suited to incorporate gauge mediated supersymmetry breaking, where the
mediation scale can be as low as 10-20 TeV. The minimal messenger model, however, is
highly constrained. While lack of electroweak symmetry breaking rules out a large part of
the parameter space, a small region exists, where the fourth generation stau is tachyonic.
General gauge mediation with its broader set of boundary conditions is better suited to
accommodate the fourth generation.
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1 Introduction

Interest in a sequential fourth generation of chiral fermions has waxed and waned over the
past decades with the changing status of constraints implied by various precision measure-
ments in the flavour and the gauge sector. The recent observation of single-top events at
the Tevatron [1, 2] allowed a direct and clean determination of the CKM matrix element
|Vtb| = 0.91 ± 0.11 (stat+syst) ± 0.07 (theory) [2]. This is in good agreement with the
Standard Model prediction of |Vtb| ≃ 1, but falls short of excluding extensions of the the-
ory by another chiral generation of quarks and leptons, as has been emphasised in recent
publications [3–8]. As a matter of fact, the mixing between the third and a hypothetical
fourth family1 can be as large as the mixing between the first two generations in the Stan-
dard Model and yet be compatible with all experimental data including direct searches for
new quarks and leptons, electroweak precision measurements, and flavour changing neutral
currents [4–6, 8, 9].

Currently, we do not have a theoretical understanding of the number of generations, and
a priori there is no reason why there should not be another one. A fourth generation
would have profound implications for particle physics phenomenology2. For one thing,
it can ease the tension between the LEP bound on the Higgs mass and the electroweak
precision measurements [4,6,8] as we will elaborate on in Section 2. Secondly, the Yukawa
couplings of the fourth generation fermions, heavier than those of the first three, will have
important implications for the perturbativity of the theory at the high scale. This can
have nontrivial effects, for example, on the Higgs mass bounds obtained in the SM by
demanding that the Landau pole lie above the Planck scale [11, 12]. As a result of this
possible effect of the fourth generation on the consistency of the theory up to high scale,
unified theories with four generations have also received special attention, both with su-
persymmetry (SUSY) [13–20] and without it [21]. The fourth generation can also account
for the extra CP violation needed for electroweak baryogenesis to work [22–24]. Other
ideas that have been explored in connection with four generations include: Extra dimen-
sions [25–27], technicolour [28–30] and electroweak symmetry breaking [31–33], radiative
mass generation [34,35], bounds from cosmology [36], neutrino physics [37–39], and finally
string theory [40].

Recent analyses of the fourth generation have mainly focused on the the non-supersymmetric
case. In this, we extend the minimal supersymmetric standard model (MSSM) by one chiral
generation and explore the implications for supersymmetry and supersymmetry breaking.
For clarity, we will call the MSSM with three and four generations MSSM3 and MSSM4,
respectively. In Section 2, we review the constraints on the masses of the fourth gener-
ation coming from experiment, precision electroweak data, and flavour changing neutral
currents. In Section 3, we introduce our notation and map out the parameter space of the
MSSM4 where the theory remains perturbative up to some assumed unification scale of

1We will denote the fourth generation quarks and leptons by t′, b′, τ ′, ν′

τ
. For enhanced readability, in

graphs we may use the alternate notation t4, b4, τ4, ντ4.
2For a review, see Ref. [10].
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the order 2 × 1016 GeV. We will find that this puts severe restrictions on mt′ , mb′ , mτ ′ ,
tan β, and show that the current experimental bounds and perturbative unification are
mutually exclusive. Depending on the masses and tan β, the theory becomes strongly-
coupled around 10-1000 TeV. To illustrate the qualitative differences, we will present a toy
mSUGRA model3 where we have chosen the quark and lepton masses to be equal to their
third generation counterparts. In Section 4, motivated by the low “perturbativity” scale,
we explore this issue in the context of gauge mediated supersymmetry breaking (GMSB).
Minimal GMSB, however, suffers from tachyons in the spectrum, and hence we are led
to generalise our GMSB set-up in the quest for realistic models. Finally, in Section 5 we
summarise our results and outline directions for future work.

2 Limits from Experiment, Electroweak Precision Data,

and FCNC

The current experimental limits quoted by the PDG [41] at 95% CL are :

mt′ & 256 GeV, mb′ & 128 GeV, mτ ′ & 100.8 GeV, mν′

τ
& 45 GeV. (1)

The bounds on mt′ and mb′ assume that the predominant decay mode is to a W boson
and another quark [42,43], which we expect to be true for a sequential fourth generation4.
Along the same lines, for the limit on mτ ′ one assumes that τ ′ decays to a W and a stable
ν ′

τ [46], and the limits for a stable heavy neutral particle give the lower bound on mν′

τ
[47].

Electroweak precision measurements further constrain the allowed mass ranges. For no
mixing between the third and fourth generation, χ2 is minimised for |mt′ −mb′ | ≃ 45− 75
GeV [4], and for mt′ = 300 GeV with mb′ subject to this constraint, the mixing can be
as large as sin θ34 = 0.35 [6]. The precision data excludes larger mixing between the third
and fourth families [6] that is otherwise allowed from FCNC constraints [5].

Fig. 10.4 of Ref. [41] by the PDG shows the constraints from electroweak precision mea-
surements. The values S = −0.04 ± 0.09 and T = 0.02 ± 0.09 obtained from the fit are
in best agreement with a Higgs mass of mH = 117 GeV. For higher Higgs masses, the
90% CL contours move towards smaller S and larger T values. From this it is clear that a
fourth generation may ease the tension between the LEP bound on the Higgs mass and the
electroweak precision data, since its contribution to T is typically positive [4, 6]. A fourth
generation can give a negative contribution to S, but the mass splitting of the quarks is
constrained by the T parameter and leads to a positive correction to S that has to be kept
small in order to stay in the 90% CL ellipse.

Note that the limits quoted in Eq. (1) are at 95% CL. In the absence of direct availability
of these bounds at a higher level of confidence, we approximate them by subtracting 20%

3Here and in the following, we will use the word mSUGRA, where we should more correctly call it the
constrained minimal supersymmetric standard model (CMSSM).

4One can find a higher lower bound on mb′ by adding model-specific assumptions [44, 45].
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off the respective limits at 95% CL. Furthermore, the exclusion limits denote the pole
masses, whereas in our calculations, we need to use the running masses. We will account
for this difference by taking yet another 5% off the masses for QCD corrections. Note that
this is a conservative estimate as the SUSY threshold corrections can induce an additional
difference up to 20% between the pole and the running masses [48].

In our analysis, we will thus be working with two sets of mass limits, namely those at 95%
CL as well as the weaker lower bounds obtained with the above-mentioned prescription.
Both sets are subject to the constraint from electroweak precision measurements that the
mass splitting in the same SU(2) multiplet be not greater than ∼ 75 GeV. Thus we consider
in our analysis the following sets of fourth generation fermion masses:

mt′ = 256 GeV, mb′ = 181 GeV, mτ ′ = 100.8 GeV (2)

mt′ = 192 GeV, mb′ = 117 GeV, mτ ′ = 75 GeV (3)

We will comment on the mass of the fourth generation neutrino in Section 3.

3 Perturbativity and Four Generations

One of the main constraints in considering models with four generations is the perturba-
tivity of the Yukawa couplings. With the masses of the fourth generation expected to be
typically larger than the already known third generation masses, the scale up to which the
theory remains perturbative is a major concern. It is expected that supersymmetry would
soften the running of the Yukawa couplings and enable the theory to be valid up to much
higher energy scales. It is well known that the Yukawa couplings of the heavy fermions
flow under the renormalisation group to a infrared (quasi-)fixed point. The proximity of
the observed top mass to this limit (see e.g. Ref. [49]), in fact also indicates that a fourth
generation of fermions, heavier than the top quark, can have important implications for
the high scale perturbativity of the theory.

In the present section, we discuss this issue in detail and present the results of our com-
putations. As we will show, these high scales will extend only up to ∼ 1000 TeV. Let us
also note that in supersymmetric theories the scale up to which perturbativity is preserved
has implications for (a) gauge coupling unification and (b) the scale of supersymmetry
breaking, though a priori they are two independent sectors of the theory.

The generalisation of the MSSM to four generations is straight-forward. We will denote the
fourth generation as the primed generation: (t′, b′, τ ′, ν ′

τ ) and denote this model as MSSM4.
The standard MSSM picture with three generations will from now on be mentioned as
MSSM3. The MSSM4 superpotential takes the form :

W = uc YuQH2 + dc YdQH1 + ec YeLH1 + µH1H2, (4)
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where Y are 4 × 4 matrices in generation space. The Yukawa couplings of the fourth
generation, defined in terms of their masses, are given as

ht′ =
mt′

√
2

v sin β
, hb′ =

mb′
√

2

v cos β
, hτ ′ =

mτ ′

√
2

v cos β
, (5)

where v = 246 GeV stands for the Higgs vacuum expectation value.

In addition, the fourth generation neutrino ντ ′ should also attain a mass mν′

τ
> 45 GeV.

There are several ways of generating the fourth generation neutrino mass term , which may
either be of the Dirac type or a mixture of Dirac plus Majorana type, leading to a Majorana
mass for the ντ ′ and this can make the analysis highly model dependent. In the present
case, we have not considered the effects of a Dirac Yukawa coupling for the neutrino in the
renormalisation group equations (RGE). It should be noted that a large neutrino Dirac
Yukawa coupling can, in principle, affect strongly the evolution of the Yukawa coupling of
the τ ′ but, the effect would be minimal as long as the said neutrino Dirac Yukawa coupling
is small. A more detailed analysis of the various possible neutrino Yukawa couplings and
their impact on perturbativity will be presented elsewhere.

Firstly, let us note that the larger masses of the down type fourth generation fermions
mean that requiring that the Yukawa couplings be perturbative at the weak scale puts
upper bounds on tan β, stronger than the ones present in the MSSM3. The strongest
limit5 comes from hb′. Imposing that h2

b′ ∼ 4π, we have :

tanβ ≤
(
2π
(
v
/
mb′
)2 − 1

) 1

2

(6)

For the lower limit of mb′ quoted in Eq. (2) on the previous page this already sets a limit
tan β ≤ 4.7. The bound from mτ ′ is much weaker, tanβ ∼ 38. Even for the values of
tan β obeying this limit, the Yukawa couplings are not expected to be perturbative all the
way up to the GUT scale, where the gauge coupling unification happens.

It should be noted that in the presence of four generations, gauge coupling unification at
the 1-loop level still takes place at the scale MGUT ∼ 2 × 1016 GeV, though the value
of αgut itself changes. We refer to Appendix A.1 for the relevant renormalisation group
equations. At the 2-loop level, the renormalisation group running of gauge couplings will
involve Yukawa couplings and thus if the Yukawa couplings become non-perturbative at
scales much lower than Mgut they could render the same to the gauge couplings. In
the non-supersymmetric Standard Model with four generations, it has been known that
perturbative unification of the gauge couplings is possible [21]. However, the values for
the fourth generation masses used in the analysis of Ref. [21] are ruled by the recent
experimental results (see also Ref. [12]).

In the following, we will derive upper limits on the fourth generation fermion masses by
requiring that the Yukawa couplings of the fourth generation be perturbative all the way
up to the GUT scale.6

5Lower limits on mt′ on the other hand put lower limits on tanβ of limited consequence.
6Related analysis can be found in Refs. [19, 20].
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For this purpose, we use the two loop RGE equations listed in Appendix A.2 for nG number
of generations. Needless to say, nG = 3 for MSSM3 and nG = 4 for MSSM4. We solve
these equations numerically for a given set of masses at the weak scale and check whether
the corresponding Yukawa couplings remain perturbative at the high scale.

We have developed a variant of the popular supersymmetric spectrum calculator, SOFTSUSY
[50], called INDISOFT. It contains significant modifications including the ability to handle
three or four generations. Some technical aspects are presented in the Appendix B.

We first vary mt′ and mb′ while keeping mτ ′ fixed and later vary mb′ and mτ ′ while keeping
mt′ fixed. From the RGE in Appendix A.2 we see that the evolution of t′ is independent of
the τ ′ mass at 1-loop order. With this in mind, for the first analysis we take the τ ′ mass to
be negligible. For numerical purposes we set it equal to the τ mass, i.e. mτ ′ = mτ . Before
presenting the numerical results one final comment is in order. The Yukawa couplings of
the heavy fields (e.g. t′, t) flow towards an infrared fixed point at the weak scale. Using
this one can derive an upper bound on these masses of the heavy fermions analytically.
The analytical results for the t′ are presented in Appendix A.3.

In the left column of Fig. 1 on the following page, we plot the regions in the mb′ − mt′

plane where the Yukawa couplings remain perturbative all the way up to the GUT scale
using 2-loop MSSM4 RGE. We have chosen tanβ = 3. In the first row, the condition
that only the top-prime Yukawa coupling remains perturbative all the way is plotted. The
perturbativity limit is taken to be

√
4π ≃ 3.54. All the regions are colour-coded with the

values that the Yukawa couplings take at the high scale. The legend for the colour-coding
is shown on the right side of each plot. If the Yukawa coupling attains a value beyond the
upper limit of 3.54, the point is flagged as non-perturbative and is denoted in black. Thus,
in each of these plots regions in black are ruled out by the perturbativity limit. From this
first plot of the left column, we see that a large region in mt′ opens up as the b′ mass
increases. For mb′ > 70 GeV, mt′ > 150 also can be made valid. However, although the
t′ Yukawa coupling is perturbative in these regions, the other two Yukawa couplings are
not, as is evident from the plots in the next two rows. In the second row, left column, we
exhibit the same plots, however requiring that only hb′ remains perturbative, and in the
third row, left column, requiring that only hτ ′ remains perturbative. As we see from the
plots, although the t′ Yukawa coupling is perturbative, the b′ and τ ′ Yukawa couplings are
no longer perturbative in these regions. The last row shows plots where all the constraints
are put together. Here we see that for a negligible τ ′ mass (∼ 1.75 GeV), t′ and b′ masses
are constrained to be:

0 . mb′ . 70 GeV, 0 . mt′ . 160 GeV, mτ ′ = 1.78 GeV, tanβ = 3. (7)

It is instructive to compare the above results with those of the MSSM3. In MSSM3, as we
know, the Yukawa couplings do remain perturbative all the way up to the GUT scale for
the known masses of the top and bottom quarks and the tau lepton, the only exception
being in regions where tanβ is very small or very large. In the right panel of Fig. 1, we
present the analogous analysis for the case of the MSSM3. We have fixed the τ mass at
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Figure 1: The first three rows of the left and right panels show ht′ , hb′ , hτ ′ in MSSM4, and ht, hb,
hτ in MSSM3, respectively, at 2-loop and MX = 2.3 × 1016 GeV, plotted in the mt′–mb′ and mt–mb

plane for tanβ = 3 and mτ ′ = mτ = 1.78 GeV. For the MSSM4 case this experimentally excluded value
is chosen for illustrative purposes only. The black regions indicate where the Yukawa couplings become
non-perturbative. The last row shows the regions where all Yukawa couplings are perturbative.7



its experimental value but varied mt and mb. We have further fixed tan β to be 3 as in
the case of four generations. The results in the case of MSSM3 are strikingly similar to
those obtained for the four generational MSSM4. In fact we can read off from the plot the
regions in mt − mb plane where all the three Yukawa couplings remain perturbative:

0 . mb . 60 GeV, 0 . mt . 180 GeV, tan β = 3. (8)

The reason for these similar results is the way Landau poles appear in the Yukawa couplings.
The evolution of the Yukawa couplings depends only on themselves and the gauge couplings.
As it is clear from the RGEs (see Appendix A.3), the evolution of the gauge couplings is
very similar to that of the three generation case, except for the β-functions bi which change
the slope of the h(t). The change in the bi for the three vs. four generations is not very
large to induce large changes in the upper limits. The difference is within a few tens of
GeV.
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Figure 2: MSSM with 4 generations at 2-loop. The black region is where the respective Yukawa couplings
become non-perturbative below the unification scale MX = 2.3 × 1016 GeV.

The results of Eq. (7) on page 6 are valid only when mτ ′ = mτ . Increasing the value of mτ ′

to the lower limit of Eq. (2) on page 4 significantly modifies these results. We find that as
expected mt′ which is less dependent on the τ ′ mass remains perturbative for a similarly
large region of the parameter space as shown in Fig. 2(a). However, for the values,

0 . mb′ . 0 GeV, 0 . mt′ . 160 GeV, mτ ′ = 100.8 GeV, tanβ = 3, (9)

hb′ is not perturbative for any mb′ . In fact, hτ ′ itself is no longer perturbative.

We now proceed to keeping mt′ fixed while varying mb′ and mτ ′ . We have chosen two
values of mt′ , the one given by the approximate perturbative upper limit ∼ 150 GeV
( Eq. (7) on page 6) and the other the experimental lower limit of 256 GeV. In Fig. 2(b),
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we have plotted the regions in the mb′−mτ ′ plane in which the theory remains perturbative
all the way up to the GUT scale. From the figure we can read off the valid mass ranges as:

0 . mb′ . 60 GeV, 0 . mτ ′ . 50 GeV, tan β = 3, mt′ = 150 GeV (10)

0 . mb′ . 56 GeV, 0 . mτ ′ . 53 GeV, tanβ = 3, mt′ = 256 GeV (11)

Clearly these mass ranges are excluded by the constraints of Eq. (1) on page 3 or even by
the weaker constraints in Eq. (2) and Eq. (3) on page 4.

To restore the perturbativity in the theory we can take either of the two approaches (i)
add new particles with new Yukawa contributions so as the keep the Yukawa couplings
perturbative all the way up to the GUT scale (ii) take the view point that the theory is
valid only up to a scale which is allowed by perturbative constraints and then some new
non-perturbative physics takes over. We will study the second option in the present work
and note that the first option has already been considered by others. To this end, we do
a complete scan of the allowed regions of the high scale, MX , and tan β for a given set of
values of mt′ , mb′ , mτ ′ . In Fig. 3 on the next page, we present the results using the lower
limits on the fourth generation masses given in Eq. (2) and Eq. (3) on page on page 4. We
have demanded that all the Yukawa couplings remain perturbative up to the scale MX . We
have presented the results using both 1-loop as well as 2-loop RGE to show the importance
of using 2-loop RGE. From the 1-loop plot we see that for tanβ ∼ 2, the Yukawa couplings
barely remain perturbative up to 8 TeV or so. At the two loop level this scale increases to
about 16 TeV.

We have also compared our analysis with that of Ref. [20]. We have chosen the same
masses mt′ = 220 GeV, mb′ = 190 GeV and mτ ′ = 100 GeV. The allowed regions in MX

vs. tanβ plane are presented in Fig. 3(b) on page on the next page. We find that while
qualitatively we agree with them, quantitatively we differ in the maximal value of MX by
a couple of orders in magnitude.

Fig. 3(c) on page on the following page shows that if we choose the fourth generation
fermion masses to be at the weaker lower limits (see Eq. (3) on page 4), we can have
perturbativity all the way up to ∼ 1000 TeV. Note that these weaker lower limits are
obtained under very reasonable assumptions. Finally, the relevant MX and tanβ ranges
can be read out from the plots as follows :

1 . tan β . 3.6, 1 TeV . MX . 16 TeV for Eq. (2) on page 4

1 . tan β . 2.4, 1 TeV . MX . 920 TeV for Eq. (3) on page 4 (12)

3.1 Implications for mSUGRA

Before closing this section, let us comment on the possibility of realising minimal super-
gravity with four generations. From a phenomenological point of view such a possibility
would be interesting with supersymmetric partners of the fourth generations leading to
new experimental signatures at the weak scale. Further, due to the presence of additional
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Figure 3: Regions in the MX–tanβ plane where all the Yukawa couplings of the charged fourth generation
fermions are perturbative at 1-loop and 2-loops respectively. The different rows correspond to different
values of the fermions indicated on the panels and explained in the subcaption of the figure in each row.
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Yukawa couplings, the weak scale supersymmetric mass spectrum would most likely be
quite different from that of mSUGRA3 [18]. If the fourth family Yukawa couplings are
large, they could contribute significantly to the lightest Higgs mass at the 1-loop level,
thus alleviating the little hierarchy problem [23], [51]. However, in the standard picture
of mSUGRA with universal or non-universal soft masses at the GUT scale, radiative elec-
troweak symmetry breaking induced by the large t′ (and possibly b′, τ ′) Yukawa coupling
and the neutralino as the lightest supersymmetric particle, would require the theory to
remain perturbative all the way up to the GUT scale. From the analysis above, we see
that theory would remain perturbative with four generations only if the fourth generation
masses are much lower than their experimental lower limits, in fact, closer to the third
generation masses. In the following we will consider a toy model of mSUGRA4, where the
masses of the fourth generation are set equal to the their third generation counterparts:

mt′ = mt, mb′ = mb, mτ ′ = mτ .

We then compute the mass spectrum at the weak scale for a sample point and compare it
with that of mSUGRA3. We use our new tool INDISOFT to compute the spectrum at the
weak scale.
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Figure 4: The running of the various soft masses in the MSSM3 and MSSM4 is shown in the left and
right panel, respectively. The legend is indicated in the panel. The Higgses are the black lines starting at√

µ2 + m2
0
.

The very presence of four generations, irrespective of whether their Yukawa couplings are
large or not, can lead to interesting differences between the three and four generation RG
evolution of the soft masses. In Fig. 4 we show the running patterns of the soft terms
for three as well as four generations. As expected, the Higgs mass terms (black line)
run to more negative regions as compared to three generation case, and in fact, they can
both become negative even for small tan β in the four generation case. Perhaps the most
interesting aspect is the running of the gluino mass, which now due to a smaller β-function7,
almost does not evolve (up to 1-loop level) in the four generation case (thick red line). The

7Note that b3 = 3 for MSSM3 and b3 = 1 for MSSM4.
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sleptons (dashed-blue) are not significantly affected, however the squarks (undashed-blue)
run to lighter values due to reduced gluino running effects. All these differences in the
running of the soft terms would make themselves evident in the mass spectrum at the
weak scale.

Higgses [GeV] Gauginos [GeV] Squarks & Sleptons [GeV]

h0 106.7 χ̃0
1 96.6 ũL 568.2 t̃1 587.4

A0 382.2 χ̃0
2 178.3 ũR 547.5 t̃2 411.0

H0 382.6 χ̃0
3 343.0 d̃L 573.6 b̃1 519.9

H± 390.9 χ̃0
4 362.8 d̃R 546.6 b̃2 547.2

χ̃±
1 178.0 ẽL 205.7 τ̃1 209.1

χ̃±
2 364.5 ẽR 146.7 τ̃2 138.9

g̃ 607.0 ν̃e 189.8 ν̃τ 189.1

Table 1: MSSM spectrum with 3 generations and mSUGRA boundary conditions: m0 =
100 GeV, m1/2 = 250 GeV, A0 = 0 GeV, tanβ = 10, sgn µ=+. The unification scale is
Mgut = 2.40 × 1016 GeV.

Higgses [GeV] Gauginos [GeV] Squarks & Sleptons [GeV]

h0 119.5 χ̃0
1 44.1 ũL 480.4 t̃1 499.7 t̃′1 498.8

A0 486.5 χ̃0
2 83.4 ũR 462.6 t̃2 357.8 t̃′2 356.4

H0 486.2 χ̃0
3 474.2 d̃L 486.7 b̃1 432.4 b̃′1 428.7

H± 492.8 χ̃0
4 478.1 d̃R 462.0 b̃2 465.9 b̃′2 466.2

χ̃±
1 83.4 ẽL 187.7 τ̃1 196.4 τ̃ ′

1 196.2

χ̃±
2 481.4 ẽR 142.0 τ̃2 126.5 τ̃ ′

2 127.1

g̃ 352.1 ν̃e 170.4 ν̃τ 169.6 ν̃ ′
τ 169.6

Table 2: MSSM spectrum with 4 generations and mSUGRA boundary conditions: m0 =
100 GeV, m1/2 = 250 GeV, A0 = 0 GeV, tan β = 10, sgn µ=+. For the theory to be
perturbative, we have chosen all 4th generation masses to be equal to their 3rd generation
counterparts (toy model). The unification scale is Mgut = 8.82 × 1016 GeV.

In Tab. 1 and Tab. 2, we present the weak scale spectrum for some sample point. Com-
paring the spectrum in the two tables, we find the following: (a) the Higgs mass is heavier
in mSUGRA4, in fact above the LEP limit (b) the lighter neutralinos in mSUGRA4 are
lighter compared to mSUGRA3, with one close to 60 GeV (c) the squark and the gluino
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masses are also significantly lighter compared to mSUGRA3 (d) slepton masses do not
have much of an impact and they seem to be close to those in mSUGRA3.

Thus the addition of a fourth chiral generation to MSSM3 seems to give rise to a lighter
supersymmetric spectrum at the weak scale with a less fine tuned Higgs mass. These re-
sults, though valid only in this particular toy model, seem to indicate the possible features
the supersymmetric spectrum would have if one could make theory perturbative. As dis-
cussed earlier, one possible way would be to add additional vector-like matter [20]. An
alternative approach, which we follow, is to lower the scale of supersymmetry breaking and
ask whether the above features are replicated. We thus look for a low scale supersymme-
try mediation mechanism which is preferably close to the non-perturbative regime in the
Yukawa couplings.

4 GMSB with Four generations

4.1 Minimal Messenger Model

Given that the four generational MSSM is barely perturbative up to few hundreds of TeV,
supersymmetry breaking should be communicated within this energy scale to the visible
sector. Gauge mediated supersymmetry breaking (for a review, see Refs. [52] and [53]) is
one such possibility where mediation scales can be as low as 10-20 TeV. In the present
section, we explore the possibility of reconciling the minimal messenger model (MMM) of
GMSB with the four generational MSSM.

The minimal messenger model has a set of chiral superfields (messengers) which transform
as fundamentals under SU(5). They are coupled to a singlet field S which parametrises
the hidden sector supersymmetry breaking and whose F-component and scalar component
attain vevs. As a consequence, messengers attain both supersymmetry conserving and
supersymmetry breaking masses. This breaking information is then passed on to the
MSSM sector through gauge interactions. The gauginos attain masses at the 1-loop level,
given by

Mi(X) = α̃i(X) Λ g(x) (13)

where X ∼ 〈S〉 is the messenger mass scale (up to a coupling constant), Λ = 〈FS〉/〈S〉 and
i = 1, 2, 3 for the three gauge groups of the MSSM. The tilde on the gauge couplings αi

denotes a division by 4π. g(x) is the loop function with x = 〈S〉2/〈FS〉. This function rises
monotonically between g(0) = 1 and g(1) = 1.386. We chose x = 1/2 where g(x) ≈ 1.
The scalars attain their masses at the two loop level and they are given by :

m2
f̃
(X) = Λ2

3∑

i=1

Ci α̃i
2(X) h(x) (14)

where X is the messenger scale, C3 = 4/3 for SU(3) triplets and C2 = 3/4 for SU(2)
doublets and C1 = Y 2 represents the hypercharge of the particles. The function h(x)
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which is almost flat for most x values is also equal to 1 at x = 1/2. f runs over all the
scalars in the theory, f = {Q, U, D, L, E, H1, H2}. Going from three generations to four
would not change any of these boundary conditions at the messenger scale X. However, the
weak scale spectrum is expected to be completely different from that of the three generation
case due to the presence of large fourth generation Yukawa couplings. It is interesting to
study the soft spectrum in the presence of large Yukawa couplings, but a small running
scale ∼ log (MX/Msusy) ≈ 4−5. To calculate the low energy spectrum we need to compute
the RG effects on the soft terms and evaluate the soft mass matrices at the weak scale. To
that end, we use INDISOFT which is described in more detail in Appendix B.
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Figure 5: Regions in MMM parameter space Λ–Mmess. The lower-diagonal part is ruled out as Λ > Mmess.
In the upper-diagonal part, from left to right, the first region (red) tachyonic τ ′, and the second (orange),
third (cyan), fourth (green) do not have consistent radiative electroweak symmetry breaking as indicated
by the tachyonic Higgses.

Choosing the masses for the fourth generation to be given by Eq. (3) on page 4 and tan β =
1.75, we have computed the supersymmetric spectrum at the weak scale. We vary 10 TeV ≤
Λ, Mmess ≤ 500 TeV. The results are characterised by various regions in the parameter
space as shown in Fig. 5. The blue region in the lower diagonal part is ruled out, because
the messenger scale Mmess is smaller than Λ. The greater part of the parameter space does
not have radiative electroweak symmetry breaking as indicated by the tachyonic Higgs
scalars (orange, cyan, and green regions) and is thus ruled out. There is, however, a small
red region where electroweak symmetry breaking is possible, but the τ̃ ′ is a tachyon.

It is interesting to study in detail the region of the tachyonic τ̃ ′ , with

10 TeV . Λ . 70 TeV, 30 TeV . MX . 300 TeV.

A sample spectrum of this region is given in Tab. 3 on the next page where we have chosen
Λ = 50 TeV and Mmess = 100 TeV. Notice that the light Higgs mass does not satisfy the
LEP-II constraints for this point in the parameter space.
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Higgses [GeV] Gauginos [GeV] Squarks & Sleptons [GeV]

h0 46.2 χ̃0
1 64.3 ũL 758.1 t̃1 766.1 t̃′1 722.6

A0 507.6 χ̃0
2 127.0 ũR 735.5 t̃2 639.3 t̃′2 583.8

H0 532.2 χ̃0
3 640.6 d̃L 761.1 b̃1 725.1 b̃′1 733.4

H± 516.1 χ̃0
4 655.1 d̃R 733.8 b̃2 734.3 b̃′2 525.5

χ̃±
1 126.9 ẽL 208.3 τ̃1 208.4 τ̃ ′

1 320.3

χ̃±
2 652.0 ẽR 88.1 τ̃2 87.8 τ̃ ′

2 193.4

g̃ 438.4 ν̃e 197.2 ν̃τ 197.2 ν̃ ′
τ 202.7

Table 3: Minimal GMSB spectrum with 4 generations: n5 = 1 GeV, Mmess = 100 TeV,
Λ = 50 TeV, tanβ = 1.75, sgn µ=+. τ̃ ′ is tachyonic, mh = 46.2 GeV, m eG = 1.2 × 10−9

GeV (gravitino), NLSP is neutralino.

To trace the reasons for a tachyonic τ̃ ′, let us consider its mass matrix which is given by

m2
eτ ′ =

(
m2

LL m2
LR

m2 ∗
LR m2

RR

)
= OT

(
m2

eτ ′

1

0

0 m2
eτ ′

2

)
O, (15)

where

m2
LL ≡ m2

eτ ′

L

+ m2
τ ′ − m2

Z cos 2β

(
1

2
− sin2 θW

)
≈ m2

eτ ′

L

m2
RR ≡ m2

eτ ′

R

+ m2
τ ′ − m2

Z cos 2β sin2 θW ≈ m2
eτ ′

R

m2
LR ≡ vd (A∗

τ ′ − µ yτ ′ tanβ) ≈ −mτ ′µ tanβ (16)

where O is some mixing matrix which diagonalises the τ̃ ′ mass matrix. Unless both τ̃ ′ are
tachyonic, the condition that there is no tachyon in the spectrum is given by:

m2
eτ ′

L

m2
eτ ′

R

− (mτ ′ µ tanβ)2 > 0 (17)

In the MMM model, it is typical that µ is very large, between one TeV to tens of TeV. In our
analysis, µ is determined at the weak scale by electroweak symmetry breaking conditions.
With mτ ′ = 75 GeV, the second term of Eq. (17) is quite large. After the RG evolution,
the soft terms for τ̃L,R take the form [54]:

m2
eτ ′

L

(qZ) ≈ m2
eL
(X) − α̃τ ′(2m2

eL
(X) + m2

eE
(X)) log(X/qZ)

m2
eτ ′

R

(qZ) ≈ m2
eE
(X) − 2α̃τ ′(2m2

eL
(X) + m2

eE
(X)) log(X/qZ) (18)

where α̃τ ′ = y2
τ ′

/
(16π2) ≈ 1.1× 10−3 × (1 + tan2 β), qZ ≈ 1 TeV is the typical supersym-

metric mass scale close to the weak scale, and X represents the messenger scale as before.
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Note that the log-factor is extremely small, ∼ 4.6. Thus, the effective difference between
the high scale and the weak scale sleptons is very small, ∼ (5 − 10)%. For this reason,
it becomes difficult to maintain Eq. (17) on the previous page positive. Thus, the MMM
model is perhaps too restrictive for the case of four generations. With modified boundary
conditions at the messenger scale, it might be possible that gauge mediated supersymmetry
breaking could lead to a phenomenologically viable spectrum. This brings us to the new
ideas of general gauge mediation (GGM).

4.2 General Gauge Mediation

In the last couple of years, there has been a paradigm shift in the way we understand gauge
mediated supersymmetry breaking. Ref. [55] has introduced the framework of general gauge
mediation where the starting point is that the hidden sector and the visible MSSM sector
should completely decouple in the limit where the gauge couplings are set to zero. The
generalisation lies in the set of formulae for the soft terms which span from models with
a weakly coupled messenger sector as well as to the strongly coupled ones. The general
gauge mediation can allow for different scales for the scalars and the gaugino masses, with
ΛS for scalar masses and ΛG for gaugino masses. In fact, the authors of Ref. [56] argue
that with this kind of parametrisation, the GMSB analysis is closer to mSUGRA where
the role of ΛG is played by m1/2 and that of ΛS is played by m0. Such freedom in the
choice of scales could lead to a relaxation of the parameter space. Finally, let us note that
this framework of general gauge mediation does not have any solution to the µ-problem
as it is not generated through the above interactions. Typical solutions of the µ-problem
could decouple the Higgs sector from the sleptonic sector which might pave way for the
solution to the tachyonic τ̃ problem. A more detailed exploration regarding these issues
will be addressed in a forthcoming publication.

5 Summary and Outlook

In the present work, we have revisited in detail the perturbativity constraints on the
fourth generation Yukawa couplings in the minimal supersymmetric standard model. We
have shown that if the fourth generation masses lie close to their present upper limits
(or within 25% of these limits), it is possible to have perturbativity only up to ∼ 1000
TeV; tanβ is confined to be very low in these models, ∼ 3. This makes it hard to reconcile
gravity mediated supersymmetry breaking models with four generations unless one assumes
additional vector-like matter. However, as demonstrated in the spectrum of the toy model
of mSUGRA with four generations, the presence of a fourth generation can lead to new
features like lighter gluino and squark masses which could be accessible at LHC.

With this motivation, we have studied gauge mediated supersymmetry breaking with four
generations. We have explored the already highly constrained minimal messenger model
with the ranges allowed and found that in most of the parameter space, radiative elec-
troweak symmetry breaking is not possible. There is a small region where electroweak
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symmetry breaking is viable but τ̃ ′ is tachyonic. It is difficult to accommodate a fourth
generation in the highly constrained minimal messenger model. We speculate that the more
general framework of general gauge mediation would be suited to get phenomenologically
viable mass spectra with four generations.

The combination of supersymmetry and four generations seems to lead to interesting su-
persymmetric spectroscopy at the weak scale. In the present work, we have just explored
possible supersymmetry breaking scenarios which can work within this framework. How-
ever, four generational MSSM would have strong implications in various other sectors like
flavour physics, neutrino physics and most interestingly the Higgs physics in MSSM. These
aspects as well as concrete models within gauge mediation need to be studied. Experi-
mental consequences of the presence of the fourth generation with SUSY, in B-physics,
D-physics as well as direct detection at LHC needs to be investigated.
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A The Renormalisation Group Equations

For completeness, we list the 2-loop renormalisation group equations for the gauge and
Yukawa couplings that we have used to generalise SOFTSUSY to the case of the MSSM with
nG chiral generations. These RGEs can be derived from the general case [57–59] and are
well-known in the literature [16, 18, 60–64]. Here we are following Ref. [64].

A.1 The Gauge Couplings

The running of the gauge couplings is given by

dgi

dt
= − 1

16π2
big

3
i +

g3
i

(16π2)2

[
∑

k

bikg
2
k − Tr

{
CiuY

†
uYu + CidY

†
dYd + CieY

†
eYe

}]
, (19)

where t = log(µ/µ0), µ is the renormalisation scale, µ0 some reference scale, and i, k =
1, 2, 3 refer to the gauge groups U(1)Y , SU(2)L and SU(3)c. At 1-loop, the bi are given by

b1 = −3

5
− 2nG, b2 = 5 − 2nG, b3 = 9 − 2nG. (20)

The fourth generation comes in complete GUT multiplets, and thus most predictions from
grand unification are unchanged. In fact, the only modification at 1-loop is that αgut

increases. At 2-loop, the Yukawa couplings enter the RGEs, and the coefficients are given
by

(b)ik = nG




38
15

6
5

88
15

2
5

14 8
11
15

3 68
3


+




9
25

9
5

0
3
5

-17 0
0 0 -54


 , (C)if =




26
5

14
5

18
5

6 6 2
4 4 0


 (21)

where i, k = 1, 2, 3 as before, and f = u, d, e.

A.2 The Yukawa Couplings

The running of the Yukawa couplings is given by

d

dt
Yu,d,e = Yu,d,e

(
1

16π2
β

(1)
u,d,e +

1

(16π2)2
β

(2)
u,d,e

)
. (22)

At 1-loop, the β-function coefficients are:

β(1)
u = 3Y†

uYu + Y
†
dYd + 3Tr

{
Y†

uYu

}
−
(

13

15
g2
1 + 3g2

2 +
16

3
g2
3

)
(23)

β
(1)
d = 3Y†

dYd + Y†
uYu + Tr

{
3Y†

dYd + Y†
eYe

}
−
(

7

15
g2
1 + 3g2

2 +
16

3
g2
3

)
(24)

β(1)
e = 3Y†

eYe + Tr
{

3Y†
dYd + Y†

eYe

}
−
(

9

5
g2
1 + 3g2

2

)
(25)
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Note that the number of generations enters only through the dimensionality of the Yukawa
matrices. At 2-loop, nG is explicitly present, and the β-function coefficients are:

β(2)
u = −4(Y†

uYu)
2 − 2(Y†

dYd)
2 − 2Y†

dYdY
†
uYu − 9Tr

{
Y†

uYu

}
Y†

uYu

− Tr
{

3Y†
dYd + Y†

eYe

}
Y†

dYd − 3Tr
{

3(Y†
uYu)

2 + Y†
dYdY

†
uYu

}

+ (
2

5
g2
1 + 6g2

2)Y
†
uYu + (

2

5
g2
1)Y

†
dYd + (

4

5
g2
1 + 16g2

3)Tr
{
Y†

uYu

}

+ (
26

15
nG +

403

450
)g4

1 + (6nG − 21

2
)g4

2 + (
32

3
nG − 304

9
)g4

3

+ g2
1g

2
2 +

136

15
g2
1g

2
3 + 8g2

2g
2
3 (26)

β
(2)
d = −4(Y†

dYd)
2 − 2(Y†

uYu)
2 − 2Y†

uYuY
†
dYd − 3Tr

{
Y†

uYu

}
Y†

uYu

− 3Tr
{

3Y†
dYd + Y†

eYe

}
Y†

dYd − 3Tr
{

3(Y†
dYd)

2 + (Y†
eYe)

2 + Y†
dYdY

†
uYu

}

+ (
4

5
g2
1)Y

†
uYu + (

4

5
g2
1 + 6g2

2)Y
†
dYd + (−2

5
g2
1 + 16g2

3)Tr
{
Y†

dYd

}
+ (

6

5
g2
1)Tr

{
Y†

eYe

}

+ (
14

15
nG +

7

18
)g4

1 + (6nG − 21

2
)g4

2 + (
32

3
nG − 304

9
)g4

3 + g2
1g

2
2 +

8

9
g2
1g

2
3 + 8g2

2g
2
3 (27)

β(2)
e = −4(Y†

eYe)
2 − 3Tr

{
3Y†

dYd + Y†
eYe

}
Y†

eYe − 3Tr
{

3(Y†
dYd)

2 + (Y†
eYe)

2

+Y†
dYdY

†
uYu

}
+ (6g2

2)Y
†
eYe + (

6

5
g2
1)Tr

{
Y†

eYe

}
+ (−2

5
g2
1 + 16g2

3)Tr
{
Y†

dYd

}

+ (
18

5
nG +

27

10
)g4

1 + (6nG − 21

2
)g4

2 +
9

5
g2
1g

2
2 (28)

A.3 Approximate Upper Bounds

An approximate upper bound on the fourth generation t′ can be obtained in the limit where
mt′ dominates over all the other masses, mt′ ≫ {mt, mb′ , mτ ′} purely from perturbative
requirements. To see this, let us rewrite Eq. (22) on the preceding page in terms of the
dominant Yukawa couplings:

βh
t′

= ht′

(
6h2

t′ + h2
b′ + 3h2

t −
16

3
g2
3 − 3g2

2 −
13

15
g2
1

)

βh
b′

= hb′

(
6h2

b′ + h2
t′ + h2

τ ′ − 16

3
g2
3 − 3g2

2 −
7

15
g2
1

)

βh
τ ′

= hτ ′

(
3h2

b′ + 4h2
τ ′ − 3g2

2 −
9

5
g2
1

)

βht
= ht

(
3h2

t′ + 6h2
t −

16

3
g2
3 − 3g2

2 −
13

15
g2
1

)
(29)

These equations are non-linear and coupled and obviously, should be solved numerically.
However an analytical estimate can be obtained in the above mentioned limit mt′ ≫
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{mt, mb′ , mτ ′}. In this limit the solution for ht′ can be written as [65] :

kt′(z) =
E(z)kt′(0)

(1 + 6kt′(0)F (z))
, (30)

where z = 2 log(MX/MZ) with MX denoting the high scale and MZ , the weak scale.
kt′ = h2

t′/(4π) and

E(z) =

(
1 + b̃1

α1(0)

4π
z

) 13

9b̃1

(
1 + b̃2

α2(0)

4π
z

) 3

b̃2

(
1 + b̃3

α3(0)

4π
z

) 16

3b̃3

F (z) =

∫ z

0

E(z′)dz′ (31)

kt′(0) is the value of the t′ Yukawa (squared) at the high scale, MX . These are the same
expressions one obtains for the top quark Yukawa coupling within three generations. In
four generations, the only difference is the β-functions of the gauge couplings. In Eq. (31),
b̃i = −bi, and from Eq. (20) on page 18, b̃3 = −1, b̃2 = 3, b̃1 = 43/3. If the Yukawa
coupling becomes very large, from Eq. (30), we can derive an upper bound on the (square)
of the Yukawa of the top-prime in the limit kt′(0) → ∞:

kt′(z) ∼ E(z)

6 F (z)
(32)

In Tab. 4 we present the upper limits on the mt′ in this approximate limit using Eq. (32).
We see that the present limit on the mt′ readily rules out perturbativity up to the Planck
scale or even the GUT scale. If we demand perturbativity beyond 1-100 TeV, mt′ is forced
to be close to its experimental present lower bound or below. Beyond 106 GeV the present
limit already rules out perturbative a Yukawa coupling for the t′. As we have seen in the
main text, demanding perturbativity of the b′ and τ ′ Yukawa couplings would put further
stringent constraints on the scale MX .

MX (GeV) 1018 1016 1011 106 103

mt′ (GeV) 211.3 212.8 222.2 264.2 437.7

Table 4: The approximate upper limits on mt′ in the limit where mt′ dominates over all
the masses, for various high scales, MX .

B INDISOFT

In this appendix, we summarise the most important features of the software tool that we
have developed to calculate soft spectra in the MSSM with four generations. More details
will be presented in a separate publication.
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INDISOFT is based on SOFTSUSY 3.0.9. [50]. We have preserved the original C++ class struc-
ture and extended the functionality of the individual classes that handle the calculations.
It is beyond the scope of the present appendix to describe SOFTSUSY in detail, and we refer
for that to its manual [50].

The fermion masses and gauge coupling constants are stored in the class QedQcd which we
have extended to comprise also the fourth generation fermion masses. The light fermion
masses and the couplings that are entered at different scales (depending on where they are
experimentally known) are then run to MZ using the class RGE that implements the renor-
malisation group running for every class that derives from it, in this case for QedQcd. For
the heavy fermions, we have generalised the functions that calculate the pole mass from the
running one and vice versa. From now on we will assume that we are working in a frame-
work (like mSUGRA or gauge mediation) where the soft masses are obtained from boundary
conditions set at a higher scale. The class MssmSusy is derived from RGE and contains the
supersymmetric parameters of the theory; the Yukawa matrices have been promoted to
4 × 4 matrices to include the fourth generation. The β-functions of MssmSusy have been
generalised to the case of four generations (see Appendix A). The class SoftParsMssm is
derived from MssmSusy and contains the soft supersymmetry-breaking terms of the MSSM;
the soft mass matrices and the trilinear couplings have been generalised; the supersym-
metric parameters and their RGE evolution are inherited from MssmSusy; the β-functions
of SoftParsMssm for the soft terms have been generalised. The class MssmSoftsusy derives
from SoftParsMssm and organises the actual calculation of the spectrum. QedQcd is used to
initialise/guess the susy parameters at the scale mt which are then run by RGE to the high
scale MX where the boundary conditions on the soft terms are imposed. Note that for the
gauge and Yukawa couplings, we use 2-loop RGEs (see Appendix A), and 1-loop RGEs
for the rest. MssmSoftsusy is then run back to Msusy (= MZ for the first iteration), where
the electroweak symmetry breaking conditions are checked and the physical spectrum is
calculated (at tree-level for the first iteration, and later at 1-loop). The class sPhysical

that calculates the physical masses and stores the results has been generalised to handle
four generations. The class drBarPars that derives from sPhysical and manages the DR
parameters for the calculation has been generalised. The tadpoles, 1-loop radiative correc-
tions to the Higgses, squarks, sleptons, and the threshold corrections to the gauge couplings
have been generalised to include contributions from the fourth generation fermions. The
aforementioned steps are iterated until satisfactory convergence is achieved.

As a result of our work, we found some minor typos and bugs8 in SOFTSUSY that have been
fixed in subsequent versions. We have rewritten the linear algebra classes from scratch9,
replacing the pointer constructions used to represent vectors/matrices and the algorithms
operating on them by the Standard Template Library (STL) containers and algorithms. In

8SOFTSUSY 3.0 to 3.0.9 did not correctly indicate the regions where no electroweak symmetry breaking
is possible, and in release 3.0.9, there were some typos in the formulae for the radiative corrections that
affected the calculation of the physical masses at the subpercentage level.

9During the final stages of this publication, we became aware of the SOFTSUSY 3.1 release in which the
linear algebra classes have been rewritten by D. Grellscheid. We have not compared our changes to his.
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addition to the presently available mSUGRA and minimal GMSB boundary conditions,
we have implemented a model of general gauge mediation along the lines of Ref. [56]. We
have linked ROOT [66] to our programs to generate plots both interactively and in batch
mode. In future, we plan to extend INDISOFT by right-handed neutrinos. Due to space
limitations, we must refrain from discussing all the changes we have made.
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