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Abstract

We study soft gluon kt-resummation and the relevance of InfraRed (IR) glu-
ons for the energy dependence of total hadronic cross-sections. In our model,
consistency with the Froissart bound is directly related to the ansatz that
the IR behaviour of the QCD coupling constant follows an inverse power law.
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1. Introduction

In this paper, we discuss soft gluon kt-resummation in the InfraRed (IR)
region, with the aim to connect it to the energy dependence of the total
hadronic cross-section in the high energy region. We shall make use of a
model [1] for total cross-sections, which incorporates in an eikonal formu-
lation such QCD inputs as mini-jets and soft gluon kt-resummation. This
model has been successfully applied both to proton and photon processes:
our aim here is to describe its physical content, without explicit reference
to data fitting, and explain how the model incorporates a taming effect on
the rapidly rising QCD cross-sections, thus inducing a more temperate rise
of the total cross-section.
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The energy behaviour of the total hadronic cross-section has been the
focus of both theoretical and experimental enquiries for a long time. Fits
inspired by theoretical arguments have been the subject of many debates. A
traditional Regge-Pomeron type fit [2] such as

σtotal = Xs−η + Y sǫ, (1)

with η, ǫ > 0, presents the difficulty of not agreeing with the Froissart-
Lukaszuk-Martin bound [3, 4, 5]

σtotal ≤
π

m2
π

ln2(s/s0). (2)

However, with
√

s0 ≃ O(1 GeV ), the large constant factor at the r.h.s of
Eq. (2) makes possible for Eq. (1) to be valid only in the present region, and
the observed behaviour to be not yet asymptotic. Still, phenomenological
reasons run against the validity of the Regge-Pomeron type expression with
a universal value for ǫ, since LEP data on photon-photon indicate that the
power, with which σγγ

total rises, differs from that in pp/pp̄ [6].
Currently, many models focus on QCD perturbative processes to drive

the rise with energy, with QCD inspired models on the one hand [7, 8] and
approaches based on Reggeon calculus [9, 10] on the other. However, it
is still being debated how to implement this dynamics and simultaneouly
describe both the early rise, which starts for

√
s between 10 ÷ 20 GeV and

50 ÷ 60 GeV , and the subsequent levelling off at higher energies [11].
In this paper we shall show how both of the above features are present

in our model for the total cross-section [1] and relate the rate, at which the
cross-section asymptotically rises, to the IR limit of soft kt-resummation,
thus linking directly the rise of the total cross-section to the IR region of
QCD. We start by recalling in Sect. 2 some features of resummation and
present, in Sect. 3, our proposal for handling the ultra soft gluon emissions
which affect scattering at the very large impact parameter values, relevant
to total cross-section calculations. After a brief discussion of our model in
Sect. 4, we show in Sect. 5 the connection between the Froissart bound and
our proposed eikonalized mini-jet model with ultra soft gluons. Finally, in
Sect. 6 we discuss both the various energy scales and the constants involved
in the model. We find that resummation of soft gluons emitted with very
small transverse momentum kt introduces a new energy scale, which modifies
the constant in front of the asymptotic limit derived in our model for the total
cross-section.
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2. Resummation and the IR limit

The high energy behaviour of the total cross-section depends on the prop-
erties of the scattering amplitude at large values of the impact parameter b
in the plane perpendicular to the scattering. Recent attempts to study this
large-b behaviour have focused on relating Yang-Mills theories to string the-
ories through the AdS/CFT correspondance [12, 13, 14]. Our approach to
the large b-limit of the impact picture in the eikonal representation [15] is
of a more phenomenological nature: within such a picture, we exploit soft
gluon kt-resummation in the IR region to describe matter distribution inside
the hadrons as they engage in hard scattering and their parton constituents
“see” each other. We have already supplied phenomenological evidence for
the applicability of our model to high energy scattering [1]. Here we discuss
some features of soft gluon kt-resummation which bear on the asymptotic
form of the total cross-section.

We start by recalling some properties of soft photon resummation. In
QED, the general expression for soft photon resummation in the energy-
momentum variable Kµ can be obtained order by order in perturbation theory
[16, 17] as

d4P (K) = d4K

∫

d4x

(2π)4
eiK·x−h(x,E) (3)

where d4P (K) is the probability for an overall 4-momentum Kµ escaping
detection,

h(x, E) =

∫ E

0

d3n̄(k)[1 − e−ik·x] (4)

with d3n̄(k) being the single soft photon differential spectrum, and E the
maximum energy allowed for single photon emission.

Eq. (3) leads to the well known, power-like, form of the energy distribution
[18]. This is not possible for the momentum distribution, but it is also not
necessary, since the first order expression in αQED is adequate. On the other
hand, for strong interactions we require the resummed, transverse momentum
distribution, namely

d2P (K⊥) = d2K⊥
1

(2π)2

∫

d2b e−iK⊥·b−h(b,E) (5)

with

h(b, E) =

∫

d3n̄(k)[1 − eik⊥·b] (6)
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For large transverse momentum values, by neglecting the second term and
using a constant cut-off as lower limit of integration, the above expression
coincides with the Sudakov form factor [19].

Eq. (5) has been applied in QCD [20, 21, 22, 23, 24] with

h(b, E) =
16

3

∫ E αs(k
2
t )

π

dkt

kt
ln

2E

kt
[1 − J0(ktb)] (7)

but its use is complicated by our ignorance of the IR behaviour of the theory.
To overcome the difficulty arising from the IR region, the function h(b, E),
which describes the relative transverse momentum distribution induced by
soft gluon emission from a pair of, initially collinear, colliding partons at LO,
is split into

h(b, E) = c0(µ, b, E) + ∆h(b, E), (8)

where

∆h(b, E) =
16

3

∫ E

µ

αs(k
2
t )

π
[1 − Jo(bkt)]

dkt

kt
ln

2E

kt
. (9)

Since the integral in ∆h(b, E) now extends down to a scale µ 6= 0, for
µ > ΛQCD one can use the asymptotic freedom expression for αs(k

2
t ). Fur-

thermore, having excluded the zero momentum region from the integration,
Jo(bkt) is assumed to oscillate to zero and neglected. The integrand in Eq. (9)
is now independent of b and the integral can be performed. In the range
1/E < b < 1/Λ, the effective heff(b, E) is obtained by setting µ = 1/b [21].
This choice of the scale introduces a cut-off in impact parameter space which
is stronger than any power, since the radiation function, for Nf = 4, is now
[21]

e−heff (b,E) = [
ln(1/b2Λ2)

ln(E2/Λ2)
](16/25) ln(E2/Λ2) (10)

The remaining b-dependent term, namely exp[−c0(µ, b, E)], is dropped, a rea-
sonable approximation if one assumes that there is no physical singularity in
the range of integration 0 ≤ kt ≤ 1/b. This contribution however reappears
as an energy independent smearing function which reproduces phenomeno-
logically the effects of an intrinsic transverse momentum of partons. For most
applications, this may be a good approximation. However, when the integra-
tion in impact parameter space extends to very large-b values, as is the case
for the calculation of total cross-sections, the IR region may be important
and the possibility of a physical singularity for αs in the IR region becomes
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relevant. It is this possibility, which we exploit in studying scattering in the
very large impact parameter region, b → ∞.

3. A proposal for the IR limit in the soft gluon integral

In this Section we discuss a phenomenological expression for the coupling
of ultra soft gluons to the emitting quarks, and compare the resulting large-b
behaviour with the one discussed in the previous section.

Our choice for the IR behaviour of αs(Q
2) used in obtaining a quantitative

description of the distribution in Eq. (6), is inspired by the Richardson
potential for quarkonium bound states [25], as we have proposed in a number
of related applications [26]. Assume a confining potential (in momentum
space) given by the one gluon exchange term

Ṽ (Q) = K(
αs(Q

2)

Q2
), (11)

where K is a constant, calculable from the asymptotic form of αs(Q
2). Let

us choose for Q2 << Λ2 the simple form

αs(Q
2) =

B

(Q2/Λ2)p
, (12)

(with B a constant), so that Ṽ (Q) for small Q goes as

Ṽ (Q) → Q−2(1+p). (13)

For the potential, in coordinate space, V (r) =
∫

d3Q/(2π)3eiQ.rṼ (Q), Eq.(13)
implies

V (r) → (1/r)3 · r(2+2p) ∼ C r(2p−1), (14)

for large r (C is another constant). A simple check is that for p equal to
zero, the usual Coulomb potential is regained. Notice that for a potential
rising with r, one needs p > 1/2. Thus, for 1/2 < p < 1, this corresponds
to a confining potential rising less than linearly with the interquark distance
r, while a value of p = 1 coincides with the IR limit of the Richardson’s
potential and is also found in a number of applications to potential estimates
of quarkonium properties [27].
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Then, again following Richardson’s argument, we connect our IR limit
for αs(Q

2) to the asymptotic freedom region using the phenomenological
expression:

αs(k
2
t ) =

12π

(33 − 2Nf)

p

ln[1 + p(
k2

t

Λ2 )p]
(15)

which coincides with the usual one-loop formula for values of kt >> Λ, while
going to a singular limit for small kt, and generalizes Richardson’s ansatz
to values of p ≤ 1. The range p < 1 has an important advantage, i.e., it
allows the integration in Eq.(6) to converge for all values of kt = |k⊥|. Using
Eq. (15), one can study the behaviour of h(b, E) for the very large-b values
which enter the total cross-section calculation and recover the perturbative
calculation as well. The behaviour of h(b, E) in various regions in b-space was
discussed in [28], both for a singular and a frozen αs, namely one whose IR
limit is a constant. There we saw that, for the singular αs case, the following
is a good analytical approximation in the very large-b region:

h(b, M, ) =
2cF

π

[

b̄
b2Λ2p

2

∫ 1
b

0

dk

k2p−1
ln

2M

k
+ 2b̄Λ2p

∫ NpΛ

1
b

dk

k2p+1
ln

M

k
+ b̄

∫ M

NpΛ

dk

k

ln M
k

ln k
Λ

]

=
2cF

π

[

b̄

8(1 − p)
(b2Λ2)p

[

2 ln(2Mb) +
1

1 − p

]

+
b̄

2p
(b2Λ2)p

[

2 ln(Mb) − 1

p

]

+

b̄

2pN2p
p

[

−2 ln
M

ΛNp

+
1

p

]

+ b̄ ln
M

Λ

[

ln
ln M

Λ

ln Np

− 1 +
ln Np

ln M
Λ

]

]

(16)

This approximation is valid in the region b > 1/(NpΛ) > 1/M , with Np =
(1/p)1/2p, cF = 4/3 for emission from quark legs and b̄ = 12π/(33 − 2Nf ).
The upper limit of integration, M , indicates the maximum allowed transverse
momentum, to be determined by the kinematics of single gluon emission as in
[29]. The above expression exhibits the sharp cut-off at large-b values which
we shall exploit to study the very large energy behaviour of our model. On
the other hand, the possibility that αs becomes constant in the IR [21, 22, 23]
in the same large b-limit leads to

h(b, M, Λ) = (constant) ln(2Mb) + double logs (17)

namely no sharp cut-off in impact parameter b, as expected.
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4. The Bloch-Nordsieck(BN) model for the total cross-section

Our model for the total cross-section [1] is a modified mini-jet model, in
which the rise with energy is driven by perturbative parton-parton scatter-
ing [30], tempered by an energy dependent acollinearity effect. This effect is
due to kt-resummation of soft gluon emission from the initial state, hereafter
referred to as soft gluon kt-emission. The emphasis on resummation, first in-
troduced for electron scattering by Bloch and Nordsieck [31], gives the model
its name. The model is built through the eikonal representation in impact
parameter space, so as to satisfy unitarity, and allows to implement multiple
parton scattering and to restore a finite size of the interaction through the
impact parameter distribution in the scattering hadrons. The details of the
model can be found in [1, 28, 32], here we shall recall some aspects relevant
to its asymptotic energy behaviour.

In hadron-hadron scattering at a c.m. energy
√

s, unitarity allows to
write a simple model for the total cross-section, namely

σtotal = 2

∫

d2b[1 − e−Imχ(b,s)cosℜeχ(b, s)] ≈ 2

∫

d2b[1 − e−n̄(b,s)/2] (18)

where the approximation on the r.h.s is obtained by neglecting the real part
of the eikonal function (at the hadronic level, an acceptable approximation
in the high energy limit) and 2Imχ(b, s) = n̄(b, s). The latter follows from
a semiclassical argument relating σinelastic to a sum of a Poisson distributed
independent, single and multiple collisions.

We use perturbative QCD to calculate the cross-section in order to obtain
the average number of inelastic collisions. While implementing the QCD
calculation, albeit approximate, we distinguish between the average number
of collisions receiving contributions from hard physics processes and those
from non perturbative ones, and write n̄(b, s) in the form

n̄(b, s) = nNP (b, s) + nhard(b, s) (19)

where the non perturbative (NP) term parametrizes the contribution of all
those processes for which initial partons scatter with pt < ptmin, with ptmin

a suitable low energy cut-off for the QCD parton-parton cross-section. We
parametrize nNP (b, s), which establishes the overall normalization, and focus
our attention on the hard term, which is responsible for the high-energy rise
and which we expect to dominate in the extremely high energy limit. We
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approximate this term as

nhard(b, s) = A(b, s)σjet(s). (20)

The QCD jet cross section drives the rise due to the increase with energy of
the number of partonic collisions. It is calculated from the usual perturbative
QCD expression, with DGLAP evoluted parton densities and perturbative
partonic differential cross-sections. In Eq. (20), A(b, s) is the overlap func-
tion which depends on the (energy dependent) spatial distribution of partons
inside the colliding hadrons, averaged over the densities [1, 32]. Before dis-
cussing this function we shall examine the energy behaviour of the mini-jet
cross-sections.

In the
√

s >> ptmin limit, the major contribution to the mini-jet cross-
sections comes from collisions of gluons carrying small momentum fractions
x1,2 << 1, a region where the relevant PDFs behave approximately like
powers of the momentum fraction x−J with J ∼ 1.3 [33]. This leads to the
asymptotic high-energy expression for σjet

σjet ∝
1

p2
t min

[

s

4p2
t min

]J−1

(21)

where the dominant term is a power of s. Fits to the mini-jet cross-sections,
obtained with different PDF sets [34] confirm the value ε ≡ J − 1 ∼ 0.3.

Such energy behaviour as in Eq. (21) is at odds with the gentle rise
of the total pp and pp̄ cross-sections at very high energy, described rather
as ln s, ln2 s [11] or s0.08 power [2]. However, we shall see that a proper
implementation of other QCD processes can modify this strong rise. To do
so we now examine the energy behaviour of the next component of our BN
model, the impact parameter distribution.

We have identified soft gluon kt-emission from the colliding partons as
the physical effect responsible for the attenuation of the rise of the total
cross section. These soft emissions break collinearity between the colliding
partons, diminishing the efficiency of the scattering process. Their number
increases with energy and thus their contribution remains important, even at
very high energy, influencing matter distribution inside the hadrons, hence
changing the overlap function, which is proposed to be the Fourier transform
of the previous expression for the soft gluon transverse momentum resummed
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distribution, i.e,. we put

ABN (b, s) = N

∫

d2K⊥ e−iK⊥·bd2P (K⊥)

d2K⊥
=

e−h(b,qmax)

∫

d2b e−h(b,qmax)
= A0(s)e

−h(b,qmax)

(22)
The integral in h(b, qmax) is performed up to a value qmax, which is linked to
the maximum transverse momentum allowed by kinematics of single gluon
emission [29]. In principle, this parameter and the overlap function should
be calculated for each partonic sub-process, but in the partial factorization of
Eq.(20) we use an average value of qmax obtained by considering all the sub-
processes that can happen for a given energy of the main hadronic process[28].
The energy parameter qmax is of the order of magnitude of ptmin. For present
low−x behaviour of the PDFs, in the high energy limit, qmax is a slowly vary-
ing function of s, starting as ln s, with a limiting behaviour which depends
on the densities [35]. From Eqs. (16) and (21) one can estimate the very
large s-limit

nhard(b, s) = ABN (b, s)σjet(s, ptmin) ∼ A0(s)e
−h(b,qmax)σ1(

s

s0
)ε (23)

and, from this, using the very large b-limit,

nhard(b, s) ∼ A0(s)σ1e
−(bΛ̄)2p

(
s

s0
)ε (24)

with A0(s) ∝ Λ2 and with a logarithmic dependence on qmax, i.e. a very
slowly varying function of s. We also have

Λ̄ ≡ Λ̄(b, s) = Λ{ cF b̄

4π(1 − p)
[ln(2qmax(s)b) +

1

1 − p
]}1/2p (25)

In the next section, we shall see how the two critical exponents of our model,
namely the power ε with which the mini-jet cross-section increases with en-
ergy and the parameter p dictating the IR behaviour of the QCD coupling
constant, combine to obtain a rise of the total cross-section in agreement
with the ln2 s limitation imposed by the Froissart bound.

5. Ultra soft gluons in the IR limit and the asymptotic limit of
the total cross-section: the Froissart bound

In this section we consider the very large s-limit of the total cross-section,
in the approximation that all constant (or decreasing ) terms in the eikonal
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function can be neglected, thus studying only the QCD effects from mini-jets
and soft kt-resummation. We find a link between the infrared behaviour of
the ultra soft gluons and the asymptotic Froissart-like behaviour of the total
cross-section and discuss it.

Let us consider the total cross-section in the eikonal representation at
very large asymptotic energies. At such large energies that nNP << nhard,
the total cross-section in our model [1] reads

σT (s) ≈ 2π

∫ ∞

0

db2[1 − e−nhard(b,s)/2] (26)

We consider the asymptotic expression for σjet at high energies, which grows
like a power of s, and ABN (b, s), which was obtained through soft gluon
resummation, and which decreases in b-space at least like an exponential
(1 < 2p < 2). In such large-b, large-s limit, we can write

nhard = 2C(s)e−(bΛ̄)2p

(27)

where 2C(s) = A0(s)σ1(s/s0)
ε. The resulting expression for σT is

σT (s) ≈ 2π

∫ ∞

0

db2[1 − e−C(s)e−(bΛ̄)2p

] (28)

With the variable transformation u = (Λ̄b)2p, and neglecting the logarithmic
b-dependence in Λ̄ by putting b = 1/Λ, Eq. (28) becomes

σT (s) ≈ 2π

p

1

Λ̄2

∫ ∞

0

duu1/p−1[1 − e−C(s)e−u

] (29)

Notice that, as s → ∞, C(s) also grows indefinitely as a power law. This
means that the quantity between square brackets I(u, s) = 1− e−C(s)e−u

has
the limits I(u, s) → 1 at u = 0 and I(u, s) → 0 as u = ∞. Calling u0 the
value at which I(u0, s) = 1/2 we then put I(u, s) ≈ 1 and integrate only up
to u0. Thus

Λ̄2σT (s) ≈ (
2π

p
)

∫ u0

0

duu
1−p

p = 2πu
1/p
0 (30)

and since, by construction

u0 = ln[
C(s)

ln 2
] ≈ ε ln s (31)
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we finally obtain

σT ≈ 2π

Λ̄2
[ε ln

s

s0

]1/p (32)

to leading terms in ln s. We therefore derive the asymptotic energy depen-
dence

σT → [ε ln(s)](1/p) (33)

apart from a possible very slow s-dependence from Λ̄2. The same result is
also obtained using the saddle point method.

This indicates that the Froissart bound is saturated if p = 1/2. We shall
now show that, in our model, analyticity demands p > 1/2 and thus that,
no matter how fast the mini-jet cross-section may grow with energy, the
Froissart bound is always satisfied.

The requirement that p > 1/2 follows from analyticity arguments in the
complex zs-plane, where zs = cos θs = 1 + 2t/(s − 4m2) → 1 + 2t/s is the
cosine of the s-channel scattering angle for the equal mass case. Basically, this
limitation comes from asking that for large values of the impact parameter
space b, the eikonal be such to decrease at least like an exponential, i.e. to
have at least

Imχ(b, s) → e−b
√

t0 (34)

where t0 > 0 is the boundary of the Lehmann ellipse on the real axis in the
zs plane. To see the argument, consider the elastic scattering amplitude for
a process a + b → a + b, normalized in such a way that

σtot = 2πImF (s, t = 0) (35)

with

F (s, t) = i

∫

d2b[1 − eiχ(b,s)]J0(b
√
−t) (36)

While in the s-channel physical region, and for equal mass particles, s ≥
4m2 and t ≤ 0, for the Lehmann ellipse F (s, t) is analytic for t ≤ t0 ≤ µ2

where µ is some hadronic mass (e.g. twice the pion mass, as the smallest
mass exchanged in the t-channel). The actual value is unimportant, what is
needed is t0 > 0. Then, for 0 < t ≤ t0 the argument of J0 becomes imaginary
so that

F (s, t > 0) = i

∫

d2b[1 − eiχ(b,s)]I0(b
√

t) (37)

where I0 is the Bessel function of the second kind. The asymptotic behaviour
of the Bessel functions is such that I0(y) for y real, grows exponentially as y
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becomes large. The integral at the r.h.s. of the above equation has to exist
up to values of t = t0 and for fixed (0 ≤ t ≤ t0). Since, for large b-values,

I0(b
√

t) ≃ eb
√

t, (38)

for the integrand to be finite the imaginary part of the eikonal function,
Imχ(b, s) must go to zero at least like an exponential, i.e. at least

Imχ(b, s) ⇒ e−b
√

t0 (39)

Now, let us return to the expression for Imχ(b, s) from the BN model, where
Imχ(b, s) ≃ e−h(b,s) up to exponential accuracy. Using the large-b behaviour
of the function h(b, s), derived in previous papers and reproduced in the
previous section, we see that

Imχ(b, s) ≃ e−h(b,s) ≃ e
−( b

b0
)2p

(40)

whence follows that p > 1/2.

6. About scales and parameters in the BN model

The model we have described contains different scales. As mentioned
earlier, in this paper we only study the rising part of the cross-section, whose
behaviour is proposed to come from processes for which the outgoing partons
have transverse momentum pt ≥ ptmin ≃ O(1 GeV ). In our model, ptmin is
the scale which separates perturbative scattering processes from everything
else. Soft gluon emission introduces two more scales, namely Λ and qmax.
The latter is the maximum transverse momentum in the integral for soft
gluon emission, it is of order ptmin and plays the role of the energy scale E
which appeared in QED radiative correction factors. Thus soft gluons satisfy
the condition

kt ≤ qmax ≃ O(ptmin), (41)

since most of the parton-parton cross-section is peaked at pt = ptmin. The
next scale Λ ≃ O(ΛQCD) separates the region of ultra soft gluons from the
rest. This region was originally neglected, on the basis that gluons with
|k⊥| ≪ Λ would see the hadron as a point-like object [36] and such emissions
would have a small probability, because of colour screening. This argument
is appealing, and similar to the one mentioned in Sect. 2, but in our opin-
ion, there is no compelling theoretical reason to assume that ultrasoft gluon
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emission in high energy reactions has low probability. This argument could
be applied to an isolated hadron, but not to high energy hadronic scatter-
ing described through the scattering of partons, where soft gluon emission is
stimulated by QCD interactions. It is through this interaction that we can
expect the transition between hadrons and quarks to arise. A singularity in
the infrared region would indeed provide a cut-off to separate quarks from
hadrons and lead to such transition. This is the rationale behind going into
the zero momentum region, and enter it with a singular confining coupling
between ultra-soft gluons and the quark current. In our model, these ultra
soft gluons are important for the extremely large impact parameter values,
which enter eikonal formulations of the total cross-section at very large en-
ergy. For processes where such large-b values do not play a role, this region
may be irrelevant, though.

The ultra soft gluon distribution which we have introduced depends on the
parameter p which regulates the infrared region of the soft gluon integral of
Eq. (7). In [1], we have used the value p = 3/4 but this is a phenomenological
value which was obtained after performing various averages over the PDFs.
A determination of the actual value of p is beyond the scope of this paper,
except for the fact that p < 1 for the soft gluon integral to converge and
p > 1/2 for analyticity of the scattering amplitude.

One can evaluate the coefficient of the (ln s)1/p term in Eq. (33) as given
by

C =
2π

m2
π

(
mπ

Λ
)2(

27(1 − p)2ε

4[1 + (1 − p) ln(2qmax/Λ)]
)1/p (42)

for Nf = 3, as appropriate for the total cross-section limit. In the approxi-
mation in which the qmax term is neglected, Eq. (42) gives σT ≈ π/m2

π ln2 s
for p = 1/2, Λ = 100 MeV and ε = 0.3. However, qmax, which provides
an extra dynamical scale, cannot, in general, be neglected: using Eq. (42)
with qmax ≃ 1 GeV , the above equation gives C ≃ O(0.1)π/m2

π, namely a
constant which is one order of magnitude smaller than in the case of the
actual Froissart bound [4].

We note that in the eikonal model as used here, one can derive the limit
for the inelastic cross-section [37] following the same steps as above obtaining
a constant reduced by a factor 2, as in a black disk model.
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Conclusions

Using an eikonal mini-jet model for the total cross-section we have shown
how soft gluon kt-resummation in the IR region can reduce the strong power-
like rise due to the minijet cross-section. We have found that this model will
always satisfy the bound σtotal ≤ ln2 s provided that the infrared behaviour
of αs reflect a rising one gluon exchange potential: for a potential rising
like r2p−1 the total cross-section is limited by an asymptotic behaviour ≃
(ln s)1/p, with 1/2 < p < 1. This establishes the connection, in our BN
model, between confinement and the satisfaction of limitations imposed by
the Froissart bound.
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