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Current magnification effect in mesoscopic systems at equilibrium
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We study the current magnification effect and associated circulating currents in mesoscopic sys-
tems at equilibrium. Earlier studies have revealed that in the presence of transport current (non-
equilibrium situation), circulating currents can flow in a ring even in the absence of magnetic field.
This was attributed to current magnification which is quantum mechanical in origin. We have shown
that the same effect can be obtained in equilibrium systems, however, in the presence of magnetic
flux. For this we have considered an one-dimensional open mesoscopic ring connected to a bubble,
and the system is in contact with a single reservoir. We have considered a special case where bubble
does not enclose magnetic flux, yet circulating currents can flow in it due to current magnification.
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Mesoscopic physics deals with the realm which is in
between the microscopic (atomic or molecular) scale and
macroscopic one. In these systems quantum phase co-
herence length Lφ exceeds the sample size L. These
systems have provided several, often counter-intuitive
new results exploring truly quantum effects beyond the
atomic realm1,2. These systems are expected to reveal
the crossover between quantum and the macroscopic clas-
sical regimes, which is of fundamental interest. The no-
tion of intrinsic decoherence and dephasing of a particle
interacting with its environment are being actively pur-
sued and experimentally being analysed1,3. The deco-
herence mechanism signals the limit beyond which the
system dynamics approaches the classical behavior. One
of the prominent mesoscopic effect is that of observation
of persistent currents in metallic rings enclosing magnetic
flux. Büttiker, Imry and Landauer predicted4 the exis-
tence of equilibrium persistent current in an ideal one-
dimensional metallic ring in presence of magnetic flux,
with a period of φ0, φ0 being the elementary flux quanta
hc/e. The existence of persistent currents have been ver-
ified experimentally5. Persistent currents occur in both
open and isolated closed systems6,7,8,9,10,11. Since then
circulating currents have been predicted in open systems
in presence of a transport current. This phenomenon
is associated with current magnification effect in meso-
scopic rings10,11,12. For this we consider a metallic loop
connected to two reservoirs by two ideal leads. Transport
current I flows through the system when the two reser-
voirs are kept at different chemical potentials, say µ1 and
µ2 respectively. The upper and lower arms of the ring are
of different lengths and currents I1 and I2 flow in these
such that I1 6= I2. The basic law of current conservation
namely, Kirchoff’s law demands that I = I1 + I2. In the
classical case both I1 and I2 are positive and flow along
the direction of the applied chemical potential. However,
when quantum mechanically currents are calculated de-
pending upon the length parameters it is found that for
particular values of Fermi energy I1 (or I2) can be much
larger than I. Current conservation thus dictates I2 (or
I1) to be negative such that I = I1 + I2. The prop-
erty that current in one of the arms is larger than the

transport current is referred to as current magnification

effect. This quantum effect has no classical analog in
equilibrium. In such a situation one can interpret that
the negative current flowing in one arm continues to flow
as a circulating current in the loop10,11,12. Our procedure
of assigning a circulating current is exactly the same as
the procedure well known in classical LCR ac network
analysis. When a parallel resonant circuit(capacitance C
connected in parallel with a combination of inductance
L and resistance R) is driven by external electromotive
force(generator), circulating currents arise in the circuit
at resonant frequency13. The magnitude of the negative
current in one of the arms flowing against the direction
of the applied current is taken to be that of the circu-
lating current. When the negative current flows in the
upper arm the circulating current direction is taken to
be anticlockwise (or negative) and when it flows in the
lower arm the circulating current direction is taken to be
clockwise(or positive)10,11,12,13.

It should be noted that these circulating currents arise
in the absence of magnetic flux and in presence of trans-
port currents (i.e., in a non-equilibrium system). It has
also been shown that impurities affect current magni-
fication in a non-trivial way. In fact, impurities can
enhance current magnification as opposed to the con-
ventional wisdom that impurities would degrade cur-
rent magnification10,12. Studies on circulating currents
in mesoscopic open rings have been extended to ther-
mal currents14 and to spin currents in the presence of
Aharonov-Casher flux15. Recently this effect has been
studied in presence of spin-flip scattering which causes
dephasing of electronic motion12,16.

In the present work we are interested in the basic ques-
tion, whether current magnification can occur in equi-
librium systems. For this we consider the system as de-
picted in Figure (1). The static localised flux piercing the
loop is necessary to break the time reversal symmetry and
induce a persistent current in the system. The geometry
we consider is a one-dimensional ring coupled to a bub-
ble. The system is connected to a reservoir at chemical
potential µ. The reservoir acts as an inelastic scatterer
and as a source of energy dissipation7. We would like
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FIG. 1: One dimensional mesoscopic ring coupled to a bubble
with a lead connected to a reservoir at chemical potential µ.
The localised flux φ penetrates the ring.

to emphasize that the magnetic flux is localised in a fi-
nite region. The loops J1J2aJ3J1 and J1J2bJ3J1 enclose
the localised flux φ. However, the bubble J2aJ3bJ2 does
not enclose the flux φ. The special situation we have
considered, is to answer the question of existence of cir-
culating currents in equilibrium systems. We show that
circulating currents(due to current magnification) arise
in a bubble which does not enclose a magnetic flux. We
would like to mention here that the current magnification
effect and the associated circulating currents arise even
when the magnetic field extends over the entire sample.
However, for this the treatment is involved as one has to
study separately persistent as well as circulating currents
in the bubble as they have different symmetry properties.
This has been studied in a simple loop in the presence of
both transport currents and magnetic flux11.

In the local coordinate system the wavefunctions in the
various regions of the ring in absence of magnetic flux are
given as follows

ψ0 = eikx0 + re−ikx0 ,

ψ1 = aeikx1 + be−ikx1 ,

ψ2 = ceikx2 + de−ikx2 ,

ψ3 = eeikx3 + fe−ikx3 ,

ψ4 = geikx4 + he−ikx4 . (1)

Here xi, i = 0, ..4 are coordinates along the connect-
ing lead to the reservoir, and the segments J1J2 , J2bJ3,
J2aJ3, and J3J1 respectively. The Fermi wavevector is

defined as k =
√

2mE/h̄2. To solve for the unknown

coefficients in eqn.(1) we use Griffith17 boundary condi-
tion at the junctions J1, J2 and J3. These boundary
conditions are due to the single-valuedness of wavefunc-
tion and current conservation (Kirchoff’s law). In the
presence of magnetic flux in the system we can choose
a gauge for the vector potential in which the field does
not appear explicitly in the Hamiltonian. The boundary
conditions do not change, however the electron propagat-
ing from one junction to another picks up an additional
phase, which is positive for clockwise motion and nega-
tive for anti-clockwise motion, but of same magnitude.
For further details see Refs.[10,18]. Naturally different

segments pick up different phases. Using the above men-
tioned boundary conditions we get

1 + r = a+ be−iα1 = geikl4+iα4 + he−ikl4 ,

1 − r − a+ be−iα1 + geikl4+iα4 − he−ikl4 = 0,

aeikl1+iα1 + beikl1 = c+ deiα2 = e+ feiα3,

aeikl1+iα1 − be−ikl1 − c+ de−iα2 − e+ fe−iα3 = 0,

ceikl2+iα2 + de−ikl2 = eeikl3+iα3 + fe−ikl3 = g + he−iα4 ,

ceikl2+iα2 − de−ikl2 + eeikl3+iα3 − fe−ikl3 − g + he−iα4 = 0.(2)

Here α1, α2, α3 and α4 are phases picked up by the
wavefunctions in the segments J1J2, J2bJ3, J2aJ3 and
J3J1 respectively and we have α1 + α2 + α4 = 2πφ/φ0,
and α1+α3+α4 = 2πφ/φ0, such that α2 = α3 as required
by definition. Using eqn.(2) we have solved for all the
unknown coefficients in eqn.(1).

In the lead connecting the reservoir to our circuit there
is no current flow as |r|2 = 1. Throughout the discussion
the lengths are scaled with respect to the total length of
the bubble l = l2 + l3. The wavevector k is identified
in a dimensionless form k ≡ kl. The probability current
density is defined as J = eh̄

2mi
(ψ∗∇ψ − ψ∇ψ∗). For the

circuit segment J1J2 of the figure (1), when we derive
the probability current density we get- J = eh̄k

m
(|a|2 −

|b|2). Now the current densities (I) in their dimensionless
form are given by dividing J by eh̄k

m
. This approach is

widely used in literature to define the current densities,
see Refs.[7,11]. The current densities in the small interval
dk around the Fermi energy k in the various segments of
the circuit are given by -

I1 = |a|2 − |b|2,

I2 = |c|2 − |d|2,

I3 = |e|2 − |f |2,

I4 = |g|2 − |h|2. (3)

Just to mention again that I1, I2, I3 and I4 are
the persistent current densities in the segments
J1J2, J2bJ3, J2aJ3 and J3J1 respectively. The persis-
tent current densities in various parts of the circuit show
cyclic variation with flux and φ0 periodicity, and oscillate
between positive and negative values as a function of en-
ergy or the wavevector k as expected. Since the analytical
expressions for these currents are too lengthy we confine
ourselves to a graphical interpretation of the results. It
should be noted that in all these currents flux enters only
through the combinations α1 +α2 +α4 and α1 +α3 +α4

the magnitude of these combinations is given by 2πφ/φ0

as expected. For us the current densities in the bub-
ble(J2bJ3aJ2) are of special importance as in this region
there is a possibility of current magnification which will
be analysed below. The currents induced in segment J3J1
and J1J2 are equal, i.e I1 = I4. These currents may have
positive(clockwise) or negative(anticlockwise) values de-
pending on the flux φ and value of Fermi wavevector
k. For a fixed k this current oscillates between positive
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FIG. 2: Persistent current densities are shown as function of
kl. The lengths are l1/l = l4/l = 0.25, l2/l = 0.45, l3/l = 0.55
and flux φ = 0.1. In the inset we have shown the current
densities around the value wherein I1 goes to zero.

and negative values as a function of φ with a period φ0

and are asymmetric in φ. Similarly for fixed value of
φ currents oscillate as one varies k. The magnitude of
current shows a maximum or minimum near the corre-
sponding eigen-states of the system. We have calculated
these eigen states for two different cases. For open sys-
tem as depicted in figure (1) one can calculate the en-
ergies(or wavevector) of these states by looking at the
poles of the S-Matrix. These states correspond directly
to resonances. In our case S-Matrix is simply a com-
plex reflection amplitude r. We have also analysed the
eigen states of a closed system(without coupling lead to
reservoir) by wavefunction matching in various segments
using waveguide theory. The eigenvalues are obtained by
solving the following equation, resulting from waveguide
theory,

cos(α) =
1

cos(kl−)
(cos k(l1 + l+) −

1

4

sin(kl1) sin(kl2) sin(kl3)

sin(kl+)
), (4)

where, α = 2πφ/φ0, l+ = (l2 + l3)/2 and l− = (l2 −
l3)/2.

We analyse the case of a bubble with unequal lengths,
of its two arms, i.e., the length of J2bJ3 6= J2aJ3. This
asymmetry implies that current densities in the two arms
of the bubble I2 6= I3. In figure (2), we plot the per-
sistent current densities in various parts of the circuit.
It should be noted that absolute value of the persistent
current densities I2 and I3 are individually much larger
than the input current density I1 into the bubble and
thus the current magnification effect is evident(without
violating the basic Kirchoff’s law). The input current
arises due to the presence of flux φ as it breaks the time
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FIG. 3: Persistent current density I1 and circulating current
density Ic is plotted as function of kl. The parameters are
same as used in fig. 2. The inset shows the behavior of Ic and
I1 around their zero values.

reversal symmetry. The physical parameters used for this
figure are mentioned in the figure caption. In the inter-
val 5.5 < kl < 6.9 the current I1 changes from posi-
tive to negative and exhibits extremum around the real
part of the poles of the S-Matrix(6.278 and 6.328). For
the closed system the eigen values are at 5.93 and 6.68.
The difference between eigenvalues for closed and open
systems(quasi bound states) arise from the additional
scattering from the junction J1 coupled to the reservoir.
Moreover, eigenvalues for open systems are complex, as
electron has a finite lifetime in the ring system before
entering into the reservoir. When I1 is positive, negative
current density of magnitude I2 flows in the arm J2bJ3
of the bubble. Thus, when I1 is positive circulating cur-
rent flows in the anti-clockwise direction in the bubble.
In the range where I1 is negative, i.e, input current into
the bubble is in anticlockwise direction, then positive cur-
rent flows in arm J2aJ3. According, to our convention as
mentioned earlier, circulating current flows in the anti-
clockwise direction. The magnitude of this circulating
current density Ic, is taken to be the value of current
in one of the arms of the bubble moving against the in-
put current into the bubble as explained in detail in the
introduction.

In figure (3) we have plotted the persistent current
density I1 = I4 and the circulating current density Ic in
the bubble for the same parameters used in figure 2. It
should be noted that if we interchange the values of l2
and l3 keeping other parameters unchanged circulating
current will flow in a clockwise direction. This is obvious
from the geometry of the problem.

We generally observe current magnification at those
Fermi energy wavevector intervals around the eigen en-
ergies of the system10,11. However, there are some ex-
ceptions. In figure (4), we plot one of those exceptions.
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FIG. 4: Persistent current densities are platted as function of
kl. The lengths are l1/l = l4/l = 0.25, l2/l = 0.15, l3/l = 0.85.
Flux φ = 0.1.

The new physical parameters are mentioned in the figure
caption. In figure(4) we show that current magnifica-
tion does not occur at places which are eigen values of
the aforesaid system. Here the real part of the eigen
wavevector kl corresponds to 10.184 (for closed system
it is at 10.171). One can readily notice that the mag-
nitude of persistent current (i.e, input current I1) shows
extrema around this value. Around this region both the
currents in the bubble I2 and I3 are individually smaller
than I1 and they flow in the same direction as the input
current. Hence we do not observe current magnification
effect around this quasi bound state of the open system.
We also observe that current magnification does occur at
some places which are not near the eigen values of the

system.

All these figures establish the fact that the current
magnification effect (and associated circulating currents)
which are quantum mechanical in origin are extremely
sensitive to the system parameters. The exact condi-
tions for current magnification cannot be readily pre-
dicted a priori. The orbital magnetic moment of the
system is given by the line integral of the total current
taken across the entire system. The total current is given
by integrating the current densities upto the Fermi en-
ergy (at temperature T = 0). If the system exhibits
current magnification effect one should be able to detect
it experimentally by observing the enhanced response of
the magnetic moment by appropriate tuning of Fermi
energies. We expect systems comprising several metal-
lic loops interwoven together to exhibit a new feature in
the magnetic response due to current magnification. It
should be noted if the whole system is embedded in a
magnetic field then we have both persistent currents as
well as circulating currents that can be separated by their
symmetry properties under flux reversal11. Just for the
sake of simplicity and to show the existence of current
magnification in equilibrium we have taken a system in
which bubble does not enclose a magnetic flux, which
may not be an ideal system. However, it clarifies our
contention.

In conclusion we have shown that current magnifica-
tion effect can occur in equilibrium mesoscopic systems
in presence of magnetic flux. Earlier, it was shown to
occur in a non-equilibrium state10. This quantum ef-
fect is extremely sensitive to system parameters. Our
system also exhibits breakdown of parity effects (using
eqn. (4))6. This, along with analysis of current magni-
fication in presence of magnetic flux, encompassing the
entire sample will be reported elsewhere.
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