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We have studied the current magnification effect in a multi-channel open mesoscopic ring. We show

that the current magnification effect is robust even in the presence of several propagating modes

inspite of mode mixing and cancellation effects. The magnitude of circulating currents in the multi-

channel regime can be much larger than that in a single channel case. Impurities can enhance or

degrade the current magnification effect depending sensitively on the system parameters. Circulating

currents are mostly associated with Fano resonances in the total transport current. We further show

that system-lead coupling qualitatively changes the current magnification effect.
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I. INTRODUCTION

In the light of recent developments in fabrication tech-

niques it has become possible to make metallic or semi-

conductor structures having dimensions of a few atomic

spacings. The typical size of the systems can be made

smaller than the phase coherence length of the electron.

Such mesoscopic systems are important for their possi-

ble device applications as well as their counterintuitive

physical properties in the quantum domain [1, 2].

Quasi-particle current flows across an open mesoscopic

ring connected to electron reservoirs via leads maintained

at a constant chemical potential difference. The current

I injected by the reservoir into one of the leads splits into

IU and IL in the upper and lower arms of the ring such

that current conservation (Kirchoff’s law : I = IU + IL)

is satisfied. The size of the ring being smaller than the

phase coherence length, the electrons in two arms in gen-

eral will pick up different phases and their quantum me-

chanical superposition gives rise to two distinct possibili-

ties. The first being, for some values of Fermi energy the

currents in the two arms IU and IL are individually less

than the total current I, i.e., the current in both arms
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flow along the direction of the applied field. The other

possibility is that for some values of Fermi energy, IU (or

IL) can be greater than the total current I. In this case

current conservation dictates IL (or IU ) to be negative

such that I = IL + IU . The property that the current

in one of the arms is larger than the transport current is

referred to as ‘current magnification’ effect [3, 4, 5].

Magnitude of this negative current is taken to be that

of the ‘circulating current’. When negative current flows

in the upper arm the direction of the circulating current

is taken to be counter clockwise or negative and when it

flows in the lower arm its direction is taken to be clock-

wise or positive. It should be noted that these circulating

currents arise in the absence of magnetic flux, but in the

presence of transport current (i.e., in a nonequilibrium

system). When a parallel resonance circuit (capacitance

C connected in parallel with a combination of inductance

L and resistance R) is driven by an external e.m.f., circu-

lating current arises in the circuit at resonance frequency

[6]. However, the current magnification effect is absent in

a circuit with two parallel resistors in the presence of dc

current in the classical regime. In a mesoscopic ring the

intrinsic wave nature of electrons and their phase coher-

ence gives rise to this effect even in presence of dc driving

voltage. Studies on current magnification effect in meso-

scopic open rings have been extended to thermal currents

[7] and to spin currents in presence of Aharonov-Casher

flux [8]. This effect has been studied in the presence of

http://arXiv.org/abs/cond-mat/0312324v1
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a spin-flip scatterer which causes dephasing of electronic

motion [9, 10].

The predicted magnitude of the circulating current

densities can indeed be very large [4] and has been termed

as ‘giant persistent currents’ [11, 12]. Recently the cur-

rent magnification effect has been shown to occur in

mesoscopic hybrid system at equilibrium in the presence

of a magnetic flux and in the absence of transport cur-

rent [13, 14]. So far all studies on current magnification

have been restricted to the case of one dimensional (sin-

gle channel) systems only. In this work we go beyond

the single channel regime to a multi-channel one. Multi-

channel systems are a closer realisation to the experi-

mental systems [15, 16] due to their finite width in the

transverse direction of propagation of currents. In the

present work we show that inspite of the contributions

from large number of different modes and mode-mixing,

current magnification sustains for various length ratios

of the two arms of the ring. The connection between

current magnification and Fano resonance in the total

current is shown. In very special cases current magni-

fication is shown to occur near Briet-Wigner type res-

onances. The strong qualitative dependence of current

magnification and system-reservoir coupling strength is

also established.

II. DESCRIPTION OF THE SYSTEM

In our present work we consider a quasi-one-

dimensional (Q1D) ring of perimeter L and widthW with

L >> W as shown in Fig. 1. The two leads that con-

nect this system to the electron reservoirs have the same

width as that of the ring. The length of the lower arm

of the ring is l3 while that of the upper arm is l1 + l2.

An impurity δ function potential V δ(x − l1)δ(y − yi) is

embedded in the upper arm. The electrons can prop-

agate freely along the length of the ring and leads but

their motion is confined along the transverse direction.

We consider hard wall confinement potential along the

transverse direction. Due to this confinement, infinite

number of transverse modes are generated in the sys-

tem. If the energy of the electrons is such that the cor-

responding wave number is real then the mode is termed

as propagating, on the other hand, if the wave number
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FIG. 1: Schematic diagram of an open multi-channel meso-

scopic ring of perimeter L = l1+ l2+ l3 connected through the

leads 1 and 2 to electron reservoirs (not shown in figure). Both

the ring and the leads have the same width W . Several trans-

verse modes are shown by horizontal lines in the leads. A delta

function type static scatterer Vd(x, y) = V δ(x − l1)δ(y − yi)

of strength V is shown in the upper arm at ×. ǫ denotes the

coupling strength between leads and the ring.

is imaginary it is termed as evanescent. The widths of

the ring and leads being equal the number of propagating

and evanescent modes are same in these two.

We consider the non-interacting electrons in the sys-

tem. The system size is taken to be smaller than the

phase coherence length lφ and the phase randomizing

inelastic scattering is considered only inside the reser-

voir. Scattering inside the system maintains the phase

coherence. This necessitates only static scatterers in the

system which in our case are a delta-function potential

and junction scatterers at J1 and J2. We neglect all

phase randomizing scattering like electron-phonon inter-

action inside the system. The left reservoir (RL) and

the right reservoir (RR) have chemical potentials µL and

µR respectively. When µL > µR current flows from RL

to RR and vice-versa. We are interested in the linear

response regime where currents are related to the trans-

mission across the system at the Fermi energy (Landauer-

Büttiker formula, [1]). We consider that the electrons en-

ter the system through the left lead and come out through

the right lead. Due to mirror symmetry, results remain
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the same if the flow of electrons is reversed with the di-

rection of circulating current getting reversed. This en-

sures absence of circulating current in equilibrium at zero

magnetic field. Magnetic field breaks the time reversal

symmetry and hence one can obtain persistent currents

circulating across the ring in equilibrium [17]. These cur-

rents have been observed experimentally both in open

and closed systems [2, 18].

For no loss of generality we have considered the situ-

ation wherein no mode mixing between different trans-

verse modes occur at the junctions. The ring and the lead

are connected via junction scattering matrices at J1 and

J2. The junction scattering matrices are same for both

the junctions J1 and J2. The coupling between either

sides of the junction for the modes with same transverse

quantum number is given by [19]

SJ =







−(a+ b)
√
ǫ
√
ǫ

√
ǫ a b

√
ǫ b a






(1)

where a = 1
2

(√
1 − 2ǫ− 1

)

and b = 1
2

(√
1 − 2ǫ+ 1

)

. ǫ

is a coupling parameter with values 0 ≤ ǫ ≤ 0.5. When

ǫ → 0 the system and the reservoir are decoupled while

for ǫ→ 0.5 these two are strongly coupled. This S-matrix

satisfies the conservation of current [20]. The above S-

matrix is independent of the incident energy and the in-

dex of the transverse modes. The presence of the elastic

scatterer, namely, δ function potential in the upper arm

mixes different propagating and evanescent modes along

with extra phase shift in the same mode.

When electrons are injected in the p-th propagating

mode, the total wave function in the left lead (region I)

is given by

ψ
∣

∣

I =
√

N eikpxχp(y) +
∑

n

rpne
−iknxχn(y) , (2)

where kp is the longitudinal wavevector corresponding to

p-th mode along the direction of propagation. Here rpn

describes reflection amplitude from p-th mode to n-th

mode, χn(y) represents the nth transverse mode where y

is the coordinate along the transverse direction and
∑

n

denotes summation over n including p. The normalisa-

tion factor
√

N is determined by noting that the current

density injected by the reservoir in a small energy interval

dE in the p-th propagating mode is

djpin
= evp

dnp

dE
f(E)dE (3)

where f(E) is the Fermi distribution function,
dnp

dE
=

2
hvp

is the density of states (DOS) in the perfect wire

and vp =
~kp

me
. For our zero temperature calculations

f(E) = 1 for occupied states. The wave function ψp

∣

∣

I
gives the incident current density djpin

= 2e
h
dE, which in

turn is independent of the propagating mode in which the

electron is incident if N = 2e
hvp

dE. Here dE denotes an

energy interval around Fermi energy and hence change in

incident energy would mean a change in the Fermi energy

of electrons eminating from the reservoirs.

The wave functions in all other regions are

ψ
∣

∣

II =
∑

n

(

Apne
iknx +Bpne

−iknx
)

χn(y) (4)

ψ
∣

∣

III =
∑

n

(

Cpne
iknx +Dpne

−iknx
)

χn(y) (5)

ψ
∣

∣

IV =
∑

n

(

Epne
iknx + Fpne

−iknx
)

χn(y) (6)

ψ
∣

∣

V =
∑

n

tpne
iknxχn(y) (7)

where n stands for all available propagating modes in-

cluding p.

SJ connects the incoming and outgoing amplitudes of

the p-th mode at J1 via







r̃pp

Ãpp

Ẽpp






= SJ







1

B̃pp

F̃pp






(8)

where any new amplitude Ãpn is connected to its earlier

definition Apn by

Ãpn =
√
vp

√

h

2e
(
√
dE)−1Apn

In further calculations all the tilded amplitudes carry the

same meaning as above. SJ connects the incoming and

outgoing amplitudes of all the other propagating modes

m (m 6= p ) at J1 via







r̃pm

Ãpm

Ẽpm






= SJ







0

B̃pm

F̃pm






(9)

Similarly, the incoming amplitudes (0,C̃pn, Ẽpn) and out-

going amplitudes (t̃pn, D̃pn, F̃pn) at the junction J2 are

connected via the same scattering matrix SJ .
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The elastic scattering at the impurity is described by










































B̃p1 e
−ik1l1

B̃p2 e
−ik2l1

· · ·
· · ·

B̃pP e
−ikpP

l1

C̃p1

C̃p2

· · ·
· · ·
C̃pP











































= S̃











































Ãp1 e
ik1l1

Ãp2 e
ik2l1

· · ·
· · ·

ÃpP e
ikP l1

D̃p1

D̃p2

· · ·
· · ·
D̃pP











































(10)

where S̃ =

(

R̃ T̃

T̃ R̃

)

and both R̃ and T̃ are matrices of order P × P , P be-

ing the maximum number of propagating modes in the

system depending on a given Fermi energy. Here

R̃ =

















ρ̃11 ρ̃12 · · · · · · ρ̃1P

ρ̃21 ρ̃22 · · · · · · ρ̃2P

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
ρ̃1P ρ̃2P · · · · · · ρ̃PP

















and

T̃ =

















τ̃11 τ̃12 · · · · · · τ̃1P

τ̃21 τ̃22 · · · · · · τ̃2P

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
τ̃1P τ̃2P · · · · · · τ̃PP

















,

where ρ̃mn =
−i Γmn

2
√

kmkn

1 +
∑e

j

Γjj

2κj
+ i
∑p

j

Γjj

2kj

.

∑e
represents sum over all the evanescent modes and

∑p represents sum over all the propagating modes and

the modes m and n are assumed as propagating. The

intermode (i.e. m 6= n) transmission amplitudes are

τ̃mn = ρ̃mn and intramode transmission amplitudes are

τ̃nn = 1 + ρ̃nn. For details see Ref.[21]. Γmn can be

calculated using

Γmn =
2meV

~2
χ∗

n(yi)χm(yi).

In Eq. 10, while writing Ãpn, B̃pn the origin is taken to

be at the junction J1 whereas in writing C̃pn, D̃pn the

origin is taken at the scatterer. For details of the S-

matrix elements for a multi-channel scattering problem

see Ref. [21]. Note that different elements of the S-matrix

contains information about the propagating modes as

well as all the infinite number of evanescent modes arising

out of transverse confinement [21].

For any given incident electron in the p-th mode in the

lead with energy E the current in the n-th mode in region

II is given by

djp,n
LU

= vn ( |Apn|2 − |Bpn|2 )

= ( |Ãpn|2 − |B̃pn|2 )
2e

h
(11)

Currents in all other portions of the ring can be calcu-

lated similarly. The partial current densities djp,nLU
are

obtained after integrating the local currents along the

transverse y direction. If djp,n is the current density in

the n-th propagating mode in any segment of the system

then the total current in that segment is given by

dj =

P
∑

p=1

djp(s) =

P
∑

p=1

P
∑

n=1

djp,n (12)

where ‘p’ denotes the propagating mode in which the

electrons are injected from the reservoir.

We use scattering matrices at the two junctions and at

the scatterer site, ×, to calculate all the amplitudes and

then find out the total current density (djT ), the current

density in the upper arm (djU ) as well as in the lower

arm (djL). Thus

djT =

P
∑

p=1

P
∑

n=1

∣

∣t̃pn

∣

∣

2 2e

h

=

P
∑

p=1

(

1 −
P
∑

n=1

∣

∣r̃pn

∣

∣

2)2e

h
(13)

We study these currents as a function of the incident

electron energies.

III. RESULTS AND DISCUSSIONS

The circulating current density djc is the magnitude

of the negative part of djU or djL as mentioned earlier.

When djU is negative the direction of circulating electron

current is anticlockwise (negative) and when djL is nega-

tive then it is clockwise (positive). A circulating current
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FIG. 2: Plot of circulating current density djc/djin in the ring as a function of E/E0 of the electron. In the whole energy range,

we have 1 to 10 propagating modes (corresponding energy-range are indicated by vertical dashed lines). The different system

parameters are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1, V = 1, yi = 0.21W , ǫ = 0.2.

in a loop gives rise to an orbital magnetic moment (Am-

pere’s law). By our convention, positive djc indicates

an ‘up’ magnetic moment whereas negative djc indicates

a ‘down’ one. We plot all current densities in units of

incident current density djin = 2e
h
dE and all energies

in units of ground state energy of the lowest transverse

mode, E0 = π2
~
2

2meW 2 . In all our calculations we have con-

sidered 500 evanescent modes. Increasing the strength

of the impurity potential causes the coupling of higher

number of evanescent modes and hence for large impu-

rity potential strengths one need to incorporate larger

number of evanescent modes.

We first study the case for which the system is weakly

coupled with the leads (Fig. 2). This coupling can be

controlled by appropriately changing the values of ǫ. All

the physical parameters are indicated in the figure cap-

tion. The upper and lower arms of the ring have different

lengths. From the plot of circulating current density vs.

energy (Fig. 2) we observe that there is current magnifi-

cation of almost same magnitude with similar frequency

of occurrence over the entire energy range. The total

number of propagating modes in the lead incident on the

ring vary throughout this energy scale from one to ten

as indicated in Fig. 2. Number of propagating modes

in the lead and the ring are same. Between different

propagating modes there are several resonances around

which current magnification takes place [3, 4]. These

resonances approximately occur around Er = ~
2
(

2rπ
L

)2

, where Er is the energy eigenvalues of the isolated ring

of length L. The small deviations of resonances from

these values is due to multi-channel nature of our prob-

lem along with impurity potential which causes mode

mixing. When there are say ten propagating modes, to

obtain total current in the upper arm we have to add

hundred values of partial currents [Eq. 12] due to dif-

ferent modes. Though individual partial current density

show oscillatory behaviour the magnitude of the total

circulating current remains of the same order when there

is only one propagating mode in the system. This can

be explicitly seen in Fig. 2 throughout the energy range
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FIG. 3: Plots of different partial current densities and the total current in the upper arm of the ring as a function of E/E0. The

dotted curve gives dj1(s)U
/djin, the dashed curve gives dj2(s)U

/djin, the dash-dotted curve gives dj3(s)U
/djin, the long-dashed

one is for dj4(s)U
/djin and the solid one is for djU/djin. In the above energy range we have 4 propagating modes. The different

system parameters are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1, V = 1, yi = 0.21W , ǫ = 0.2.

with one to ten propagating modes. This clearly indi-

cates that current magnification effect is robust even in

multi-channel systems inspite of contributions from sev-

eral propagating modes and mode mixing. To see the

mode mixing and the cancellation effects we have con-

sidered the case where there are four propagating modes

in Fig. 3. Hence to obtain total current in the upper

arm we have to calculate sixteen partial currents [Eq.12].

In Fig. 3, for simplicity instead of considering sixteen

partial currents we have plotted four values of current

densities dj1(s)U
, dj2(s)U

, dj3(s)U
, dj4(s)U

and total cur-

rent djU . Here dji(s)U
=
∑4

n=1 dji,n , i = 1, 2, 3, 4. dji,n is

sum over partial current densities in the four propagating

modes in the upper arm when electron is incident in the

i-th propagating mode. Total current in the upper arm

is given by djU = dj1(s)U
+ dj2(s)U

+ dj3(s)U
+ dj4(s)U

.

Negative currents in this graph represents the existence

of circulating current in partial current densities. Each

dji(s)U
show oscillatory and complex pattern. The total

current djU still exhibits negative part (current magnifi-

cation) inspite of cancellation effects arising due to mode

mixing.

To see in detail the nature of current magnification vis-

a-vis total transport current in lead we consider a case

where there is only one propagating mode (Fig. 4(a)) and

separately another case wherein number of propagating

modes are ten (Fig. 4(b)). In these figures we have plot-

ted the total transport current and circulating currents

as a function of Fermi energy with the other parameters

are mentioned in figure caption. We see a current magni-

fication whenever there is a partial minimum in the total

current that flows through the system which in turn is

measured at the leads. This is consistent with earlier

observations seen in the case of one dimensional system

[3].

When only one channel is propagating the total cur-

rent is proportional to the transmission coefficient [1]. A

closer look at these minima shows that we obtain cur-
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are plotted versus E/E0. The different system parameters are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1, V = 1, yi = 0.21W , ǫ = 0.2.
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parameters are l1 = 3.125, l2 = 3.125, l3 = 3.75, W = 1,

yi = 0.21W , ǫ = 4/9.
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FIG. 6: Plots of circulating current djc/djin versus in-

cident energy E/E0 in the range of two mode propaga-

tion. Curves 1, 2, 3, 4, · · · , 10 represent potential strengths

V = 0.5, 1.0, 1.5, 2.0, · · · , 5.0 respectively. The other sys-

tem parameters are l1 = 3.125, l2 = 3.125, l3 = 3.75,

W = 1,yi = 0.21W , ǫ = 4/9.
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The different system parameters are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1, yi = 0.21W .
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FIG. 8: In (a) the partial current dj1(s)L
/djin and in (b) the partial current dj2(s)L

/djin in the lower arm of the ring are

plotted as a function of E/E0. In both (a) and (b) dashed curves are for ǫ = 0.2 and the solid curves are for ǫ = 0.48. The

other system parameters are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1, V = 1, yi = 0.21W .

rent magnification of either sign around every maxima-

minima pair in total current. In Ref. [3, 11, 12] the

current magnification of a pure 1D quantum ring hav-

ing no impurity has been related to Fano resonance

(asymmetric zero-pole structure) in the transmission co-

efficient. In multi-channel transmission Fano zero-pole

line shape gets replaced by an asymmetric maximum-

minimum lineshape [22]. We found this Fano type asym-

metric maxima-minima lineshape at each energy point

of current magnification shown in Fig. 2. From a first
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look in the range 1.8E0 < E < 2.2E0 in Fig. 4(a) it

appears that we have current magnification near a total-

current maximum. But a closer scan reveals that there

is indeed a very sharp Fano-type asymmetric maxima-

minima lineshape at this point, though it is not visible

in the graph. At current magnification the presence of a

quasi-bound state of circulating current in the ring gives

rise to this Fano-type lineshape to the total current. The

circulating current changes sign more sharply and shows

stronger current magnification where Fano lineshape is

sharper and narrower. This feature is somewhat equiv-

alent to the classical parallel LCR resonance circuit in

which the higher Q-values indicate higher current mag-

nification and sharper minimum at resonant frequencies.

These features remain intact for whole energy scale even

if there are more than one propagating modes contribut-

ing (see Fig. 4(b)).

We observe that for a symmetric ring (l1 + l2 = l3) fre-

quency of the occurence of current magnification reduces

throughout this energy scale considered earlier. This is

understandable as in the absence of any impurity and

magnetic field an asymmetric 1D ring shows current mag-

nification [3], meaning that asymmetry in length ratios of
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FIG. 9: Both in (a) and (b), the dashed curve gives the

partial current dj1(s)L
/djin, the dotted curve gives the partial

current dj2(s)L
/djin in the lower arm of the ring and the solid

curve gives the circulating current djc/djin in the ring. All

three functions are plotted as a function of incident energy

E/E0 of the electron. (a) is for weak coupling ǫ = 0.2 while

(b) is for strong coupling ǫ = 0.48. Other system parameters

are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1, V = 1, yi = 0.21W .

a ring favours this effect. Pareek et al. [4] have shown that

for a 1D ring one can have regions of incident energies

where current magnification gets enhanced with the in-

crease in the impurity potential strength. We investigate

this effect for the case of our multi-channel ring. In order

to compare with Ref. [4] we have calculated the effects of

potential using Griffiths boundary condition or coupling

parameter ǫ = 4/9 at the junctions. In Fig. 5 and Fig. 6

we have shown the variation of the current magnification

for two different peaks in the appropriate energy ranges.

The Fig. 5 is for single channel case while Fig. 6 is for

two channel. From Fig. 5(a) and Fig. 6(a) we notice that

the current magnification effect get enhanced with the

increase in strength of the impurity potential while the

opposite is true for the case considered in Fig. 6(b). A

closer look at Fig. 5(b) reveals that peak in the negative

part of the circulating current density first increases and

then decreases as we vary continuously the strength of

the impurity potential. Thus impurities in the system

can either enhance or decrease the current magnification

effect. The enhancement of the circulating current den-

sities is a counter-intuitive effect, in the light of the fact

that impurity generally degrades the transport current

in the system.

Büttiker [19] has shown that when the ring is threaded

by a magnetic flux Φ, as the coupling goes towards the

strong coupling regime (ǫ→ 0.5) the amplitude of persis-

tent current reduces due to increased dephasing. This is a

quantitative change in persistent current due to broaden-

ing of energy levels with increasing coupling strength. To

examine the effect of system-reservoir coupling strength

on current magnification in multi-channel ring in absence

of Φ, we have calculated circulating current for ǫ = 0.48.

We observe that the frequency of current magnification

as well as the magnitude of circulating currents reduce

significantly in the whole energy range (Fig. 7) com-

pared to that observed in Fig. 2. This indicates that

in Q1D coupling strength alters the nature of current

magnification effect in a non-trivial manner. The total

current magnification in the ring is due to a summation

over current magnifications corresponding to each inci-

dent mode allowed for a given incident energy. As we

increase the coupling strength ǫ, we observe that the con-

tribution to current magnification from electrons injected

in each incident mode goes from a narrower and stronger
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FIG. 10: The circulating current djc/djin vs. E/E0 is plotted for strong coupling ǫ = 0.48 and attractive potential

V = −2.5. The arrows on the graph denotes the positions of different quasi-bound-states in the available energy range,

31.87 E0, 49 E0, 57.7 E0, 76.53 E0, 100 E0, 120.12 E0. The other system parameters are l1 = 3.5, l2 = 2.5, l3 = 4.0, W = 1,

yi = 0.21W .

to a broader and weaker shape with respect to the cor-

responding energies (Fig 8). The more broader they get,

the more cancellation of current magnification occurs due

to overlap of different incident modes. In Fig. 9 we have

shown contributions from first and second incident modes
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FIG. 11: djT /djin (solid curve) and djc/djin (dotted curve)

are plotted as a function of E/E0 for coupling strengths(ǫ)

0.05 ((a)) and 0.2 ((b)) in presence of two propagating modes.

Other system parameters are V = −2.4, l1 = 2.5, l2 = 1.5,

l3 = 3.0, W = 1, yi = 0.21W . The quasi-bound-state is at

5.1025E0.

in the upper arm of the ring when only two modes are

propagating. In this energy range we observe current

magnification for ǫ = 0.2 (upper graph) and no current

magnification for ǫ = 0.48 (lower graph). From lower

graph (ǫ = 0.48) it is evident that though the contribu-

tion of current due to incident mode-1 (dashed line) is

negative and thus should give rise to current magnifica-

tion, the contribution from incident mode-2 (dotted line)

cancels it off and we observe no net current magnification

in this energy range. From the upper graph (ǫ = 0.2) it

is clear that in the energy range where contribution of

current due to incident mode-1 (dashed line) is negative,

the contribution from incident mode-2 (dotted line) is

almost zero as the contribution to current magnification

from each incident mode is very sharp for low ǫ-values.

Hence we obtain a net current magnification in this en-

ergy range for ǫ = 0.2 though current magnification is

absent for ǫ = 0.48 in the same energy range. Thus

system-reservoir coupling strength alters current mag-

nification effect in a multi-channel mesoscopic ring not

only quantitatively, but it also has a strong qualitative

effect. The stronger the coupling the weaker and lesser

is the current magnification in any energy scale. As for

energies where higher number of modes are propagating
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and number of cancellations of current magnification is

also high we obtained even less current magnifications

and their occurence frequency in the energy axis are also

reduced (Fig. 7). This effect is entirely due to the super-

position of currents from all the different channels which

is absent in purely 1D system. The non-trivial effect of

system-reservoir coupling on the equilibrium currents in

1D quantum double ring system has been discussed re-

cently in Ref.[23].

We now consider the case of an attractive impurity δ

function potential ( V < 0). We see in Fig. 10 that

the amplitude of current magnification is lesser in the

stronger coupling regime (ǫ = 0.48) in comparison to Fig.

7. The magnitude and positions of the current peaks

are very sensitive to the details of the system parame-

ters and they can not be predicted apriori. Moreover,

the current magnification effect is always absent at the

quasi-bound state of the negative potential (Fig. 10). The

energies of the quasi-bound states are marked by arrows

in Fig. 10. Quasi-bound states are characterised by peak

in the density of states (DOS) and for further discussion

on quasi-bound state see Ref. [21, 22, 24]. The presence

of negative delta-function potential enhances DOS near

this potential. This enhanced local DOS at the impu-

rity site reduces the DOS of the propagating electrons

thereby reducing the current magnification.

In Fig. 11 we have considered a special case and plotted

the total transport current density djT and circulating

current density djc in the energy range 4.6E0 < E <

5.4E0. In this energy range at the Fermi energy there

are two propagating modes. The corresponding bound-

state is at 5.1025E0. Around the bound-state there is

an enhancement in scattering. The structure of the total

transport current exhibits a symmetric line shapes (like

Briet-Wigner type symmetric resonances). Around these

resonances we do observe current magnification. This

special case shows that Fano type resonance structure in

the total transport current is not a necessary criteria for

the observation of current magnification effect.

IV. CONCLUSION

In conclusion, we have shown that for a system weakly

coupled with reservoirs current magnification is a robust

effect even in multi-channel case in the presence of trans-

port current. The magnitude of the circulating current

can be very large even in presence of several propagating

modes despite mode mixing and cancellation effects as

discussed in the text. The circulating current are mostly

associated with Fano resonance in total transport cur-

rent. However, there are sometimes exception to this

rule, namely, current magnification may occur around

Briet-Wigner type symmetric resonances in the total cur-

rent. Unlike purely one dimensional system Fano reso-

nance does not exhibit the zero in the total transmission,

however, it is characterised by a sharp minimum along

with asymmetric line shapes in the total current. Impu-

rity strength can enhance or suppress current magnifica-

tion and is sensitively dependent on system parameters.

We have established that the system-reservoir coupling

strength controls the current magnification qualitatively.

As the coupling becomes stronger the current magnifi-

cation becomes weaker and its occurence in the given

energy range reduces. Thus system reservoir coupling

parameter controls the transport properties in a very in-

teresting manner. It is interesting to note that persis-

tent currents in a ballistic mesoscopic ring in the pres-

ence of magnetic flux increases with the Fermi energy

(or the number of channels) [25]. In contrast the magni-

tude of the current magnification is independent of the

total number of propagating channels. It may be empha-

sized that persistent currents and the circulating currents

due to current magnification are two independent distinct

phenomena [26].
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