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Quantum current magnification in a multi-channel mesoscopic ring
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We have studied the current magnification effect in a multi-channel open mesoscopic ring. We show

that the current magnification effect is robust even in the presence of several propagating modes

inspite of mode mixing and cancellation effects. The magnitude of circulating currents in the multi-

channel regime can be much larger than that in a single channel case. Impurities can enhance or

degrade the current magnification effect depending sensitively on the system parameters. Circulating

currents are mostly associated with Fano resonances in the total transport current. We further show

that system-lead coupling qualitatively changes the current magnification effect.
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I. INTRODUCTION

In the light of recent developments in fabrication tech-
niques it has become possible to make metallic or semi-
conductor structures having dimensions of a few atomic
spacings. The typical size of the systems can be made
smaller than the phase coherence length of the electron.
Such mesoscopic systems are important for their possi-
ble device applications as well as their counterintuitive

physical properties in the quantum domain H, E]

Quasi-particle current flows across an open mesoscopic
ring connected to electron reservoirs via leads maintained
at a constant chemical potential difference. The current
I injected by the reservoir into one of the leads splits into
Iy and Iy, in the upper and lower arms of the ring such
that current conservation (Kirchoff’s law : I = Iy + I1)
is satisfied. The size of the ring being smaller than the
phase coherence length, the electrons in two arms in gen-
eral will pick up different phases and their quantum me-
chanical superposition gives rise to two distinct possibili-
ties. The first being, for some values of Fermi energy the
currents in the two arms Iy and I, are individually less

than the total current I, i.e., the current in both arms
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flow along the direction of the applied field. The other
possibility is that for some values of Fermi energy, Iy (or
I1) can be greater than the total current I. In this case
current conservation dictates I, (or Iyy) to be negative
such that I = I 4+ Iy. The property that the current
in one of the arms is larger than the transport current is
referred to as ‘current magnification’ effect |3, 4, 1]
Magnitude of this negative current is taken to be that
of the ‘circulating current’. When negative current flows
in the upper arm the direction of the circulating current
is taken to be counter clockwise or negative and when it
flows in the lower arm its direction is taken to be clock-
wise or positive. It should be noted that these circulating
currents arise in the absence of magnetic flux, but in the
presence of transport current (i.e., in a nonequilibrium
system). When a parallel resonance circuit (capacitance
C connected in parallel with a combination of inductance
L and resistance R) is driven by an external e.m.f., circu-
lating current arises in the circuit at resonance frequency

]. However, the current magnification effect is absent in
a circuit with two parallel resistors in the presence of dc
current in the classical regime. In a mesoscopic ring the
intrinsic wave nature of electrons and their phase coher-
ence gives rise to this effect even in presence of dc driving
voltage. Studies on current magnification effect in meso-
scopic open rings have been extended to thermal currents

| and to spin currents in presence of Aharonov-Casher

flux E] This effect has been studied in the presence of
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a spin-flip scatterer which causes dephasing of electronic
motion |9, [10].

The predicted magnitude of the circulating current
densities can indeed be very large 4] and has been termed
as ‘glant persistent currents’ [L1, [12]. Recently the cur-
rent magnification effect has been shown to occur in
mesoscopic hybrid system at equilibrium in the presence
of a magnetic flux and in the absence of transport cur-
rent [13, [14]. So far all studies on current magnification
have been restricted to the case of one dimensional (sin-
gle channel) systems only. In this work we go beyond
the single channel regime to a multi-channel one. Multi-
channel systems are a closer realisation to the experi-
mental systems |15, [16] due to their finite width in the
transverse direction of propagation of currents. In the
present work we show that inspite of the contributions
from large number of different modes and mode-mixing,
current magnification sustains for various length ratios
of the two arms of the ring. The connection between
current magnification and Fano resonance in the total
current is shown. In very special cases current magni-
fication is shown to occur near Briet-Wigner type res-
onances. The strong qualitative dependence of current
magnification and system-reservoir coupling strength is
also established.

II. DESCRIPTION OF THE SYSTEM

In our present work we consider a quasi-one-
dimensional (Q1D) ring of perimeter L and width W with
L >> W as shown in Fig. I The two leads that con-
nect this system to the electron reservoirs have the same
width as that of the ring. The length of the lower arm
of the ring is I3 while that of the upper arm is Iy + ls.
An impurity ¢ function potential Vo(z — 11)d(y — y;) is
embedded in the upper arm. The electrons can prop-
agate freely along the length of the ring and leads but
their motion is confined along the transverse direction.
We consider hard wall confinement potential along the
transverse direction. Due to this confinement, infinite
number of transverse modes are generated in the sys-
tem. If the energy of the electrons is such that the cor-
responding wave number is real then the mode is termed

as propagating, on the other hand, if the wave number

FIG. 1: Schematic diagram of an open multi-channel meso-
scopic ring of perimeter L = [ 412+ 13 connected through the
leads 1 and 2 to electron reservoirs (not shown in figure). Both
the ring and the leads have the same width W. Several trans-
verse modes are shown by horizontal lines in the leads. A delta
function type static scatterer Vy(x,y) = Vo(x — 11)d(y — vs)
of strength V' is shown in the upper arm at x. e¢ denotes the

coupling strength between leads and the ring.

is imaginary it is termed as evanescent. The widths of
the ring and leads being equal the number of propagating

and evanescent modes are same in these two.

We consider the non-interacting electrons in the sys-
tem. The system size is taken to be smaller than the
phase coherence length [s, and the phase randomizing
inelastic scattering is considered only inside the reser-
voir. Scattering inside the system maintains the phase
coherence. This necessitates only static scatterers in the
system which in our case are a delta-function potential
and junction scatterers at J1 and J2. We neglect all
phase randomizing scattering like electron-phonon inter-
action inside the system. The left reservoir (Rr) and
the right reservoir (Rg) have chemical potentials pz, and
(i respectively. When py > ppr current flows from Ry,
to Rr and vice-versa. We are interested in the linear
response regime where currents are related to the trans-
mission across the system at the Fermi energy (Landauer-
Biittiker formula, [1]). We consider that the electrons en-
ter the system through the left lead and come out through

the right lead. Due to mirror symmetry, results remain



the same if the flow of electrons is reversed with the di-
rection of circulating current getting reversed. This en-
sures absence of circulating current in equilibrium at zero
magnetic field. Magnetic field breaks the time reversal
symmetry and hence one can obtain persistent currents
circulating across the ring in equilibrium [17]. These cur-
rents have been observed experimentally both in open
and closed systems |2, [18].

For no loss of generality we have considered the situ-
ation wherein no mode mixing between different trans-
verse modes occur at the junctions. The ring and the lead
are connected via junction scattering matrices at J1 and
J2. The junction scattering matrices are same for both
the junctions J1 and J2. The coupling between either
sides of the junction for the modes with same transverse

quantum number is given by [19]
—(a+b) VE VE
Sy = Ve a b (1)
Ve b
where a = %(\/1—26—1) and b = %(\/1—264—1). €

is a coupling parameter with values 0 < e < 0.5. When

IS

€ — 0 the system and the reservoir are decoupled while
for € — 0.5 these two are strongly coupled. This S-matrix
satisfies the conservation of current [2(]. The above S-
matrix is independent of the incident energy and the in-
dex of the transverse modes. The presence of the elastic
scatterer, namely, d function potential in the upper arm
mixes different propagating and evanescent modes along
with extra phase shift in the same mode.

When electrons are injected in the p-th propagating
mode, the total wave function in the left lead (region I)

is given by
Plp = VNeF " () + D e (y) . (2)

where k, is the longitudinal wavevector corresponding to
p-th mode along the direction of propagation. Here 1,
describes reflection amplitude from p-th mode to n-th
mode, ., (y) represents the nth transverse mode where y
is the coordinate along the transverse direction and )
denotes summation over n including p. The normalisa-
tion factor v/N is determined by noting that the current
density injected by the reservoir in a small energy interval
dE in the p-th propagating mode is

dn,,

L [(B)dE (3)

djpm = e'Up

where f(E) is the Fermi distribution function, dd"—Ep =
7 is the density of states (DOS) in the perfect wire

P
hky

and v, = 7F.

f(E) = 1 for occupied states. The wave function wph

For our zero temperature calculations

gives the incident current density djp,, = Q—hedE , which in
turn is independent of the propagating mode in which the
electron is incident if N = hQ—UGPdE. Here dE denotes an
energy interval around Fermi energy and hence change in
incident energy would mean a change in the Fermi energy

of electrons eminating from the reservoirs.

The wave functions in all other regions are

Gl = D (Apne™™ + Bpne ) xnly)  (4)

n

Yl = D (Cone™ ™ + Dpne ") xn(y)  (5)

n

Uy = D (Bpne™® + Fpne ™ ) xn(y)  (6)

Uy = D e xa(y) (7)

where n stands for all available propagating modes in-
cluding p.
Sy connects the incoming and outgoing amplitudes of

the p-th mode at J; via

fpp ~1
App =S5 J B pp (8)
pp pp

where any new amplitude flpn is connected to its earlier
definition A, by

~ h _

A = i\ 5 (VAE) 1 4
In further calculations all the tilded amplitudes carry the
same meaning as above. S; connects the incoming and
outgoing amplitudes of all the other propagating modes

m (m #p ) at Jy via

Fom 0
Apm = SJ -Bpm (9)
pm Fpm

Similarly, the incoming amplitudes (O,C~’pn7 Epn) and out-
going amplitudes (fpn,ﬁpn,ﬁpn) at the junction J, are

connected via the same scattering matrix S;.



The elastic scattering at the impurity is described by

Bpl e*iklll Apl eiklll

Bp2 e*ik2l1 Ap2 eikzll

B e kapll ~ A eik}Pll

pP _ P

. -3 ; (10)
Cpl Dpl
Cpg Dp2
CpP DpP

Ny B
5 M

)

and both R and T are matrices of order P x P, P be-

ing the maximum number of propagating modes in the

where S = <

system depending on a given Fermi energy. Here

P11 Pra v pip
P21 P2z vt p2p
R=1I| ... ... ... ..
pip pPap v - ppp
and
T Tiz oo T1P
To1 Tog v v Top
T ... ,
Tip Top v v PP
—i Ton
~ 2k k
where Py = mon

L Hi o

> represents sum over all the evanescent modes and
>°P represents sum over all the propagating modes and
the modes m and n are assumed as propagating. The
intermode (i.e. m # n) transmission amplitudes are
Tmn = Pmn and intramode transmission amplitudes are
Tan = 1+ pnn. For details see Ref.[21]. T,,, can be

calculated using

_ 2m.V

Lonn = —5— X (i) X (i) -

In Eq. [ while writing flpn, Epn the origin is taken to

be at the junction J; whereas in writing C’,m, ﬁpn the

For details of the S-
matrix elements for a multi-channel scattering problem
see Ref. [21]. Note that different elements of the S-matrix

contains information about the propagating modes as

origin is taken at the scatterer.

well as all the infinite number of evanescent modes arising
out of transverse confinement [21].

For any given incident electron in the p-th mode in the
lead with energy E the current in the n-th mode in region
IT is given by
= vn (|4pn|* = Bpnl*)

djmeU

- - 2e
([4pn|* = [Bpal®) "’ (11)

Currents in all other portions of the ring can be calcu-
lated similarly. The partial current densities dj, , , are
obtained after integrating the local currents along the
transverse y direction. If dj,, is the current density in
the n-th propagating mode in any segment of the system

then the total current in that segment is given by

P P
dip(s) =D Y dipm (12)
1 p=1 n=1

where ‘p’ denotes the propagating mode in which the

P
dj =

p=

electrons are injected from the reservoir.

We use scattering matrices at the two junctions and at
the scatterer site, X, to calculate all the amplitudes and
then find out the total current density (djr), the current
density in the upper arm (djy) as well as in the lower
arm (djr). Thus

. 22e
djT = ZZ}tpn 7
P P 9 2¢
=2 (1= lrml) 5 (13)

We study these currents as a function of the incident

electron energies.

III. RESULTS AND DISCUSSIONS

The circulating current density dj. is the magnitude
of the negative part of djy or dj; as mentioned earlier.
When djy is negative the direction of circulating electron
current is anticlockwise (negative) and when djy, is nega-

tive then it is clockwise (positive). A circulating current
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FIG. 2: Plot of circulating current density dj./djin in the ring as a function of E/Ey of the electron. In the whole energy range,

we have 1 to 10 propagating modes (corresponding energy-range are indicated by vertical dashed lines). The different system
parameters are 1 = 3.5, lo =2.5,l13 =40, W =1,V =1, y; = 0.21W, e = 0.2.

in a loop gives rise to an orbital magnetic moment (Am-
pere’s law). By our convention, positive dj. indicates
an ‘up’ magnetic moment whereas negative dj. indicates
a ‘down’ one. We plot all current densities in units of
incident current density dj;, = Q—de and all energies
in units of ground state energy of the lowest transverse

w2h?
2m.W?2"

sidered 500 evanescent modes. Increasing the strength

mode, Fy = In all our calculations we have con-
of the impurity potential causes the coupling of higher
number of evanescent modes and hence for large impu-
rity potential strengths one need to incorporate larger

number of evanescent modes.

We first study the case for which the system is weakly
coupled with the leads (Fig. B). This coupling can be
controlled by appropriately changing the values of €. All
the physical parameters are indicated in the figure cap-
tion. The upper and lower arms of the ring have different
lengths. From the plot of circulating current density vs.
energy (Fig. ) we observe that there is current magnifi-

cation of almost same magnitude with similar frequency

The total

number of propagating modes in the lead incident on the

of occurrence over the entire energy range.

ring vary throughout this energy scale from one to ten
as indicated in Fig. Number of propagating modes
in the lead and the ring are same. Between different
propagating modes there are several resonances around
These

. 2
resonances approximately occur around E, = h2(2TT’T)

which current magnification takes place |3, 4|.

, where E, is the energy eigenvalues of the isolated ring
of length L. The small deviations of resonances from
these values is due to multi-channel nature of our prob-
lem along with impurity potential which causes mode
mixing. When there are say ten propagating modes, to
obtain total current in the upper arm we have to add
hundred values of partial currents [Eq. [2 due to dif-
ferent modes. Though individual partial current density
show oscillatory behaviour the magnitude of the total
circulating current remains of the same order when there
is only one propagating mode in the system. This can
be explicitly seen in Fig. Bl throughout the energy range
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FIG. 3: Plots of different partial current densities and the total current in the upper arm of the ring as a function of E/FEy. The

dotted curve gives dj1(s), /djin, the dashed curve gives dj2(s), /djin, the dash-dotted curve gives dj3(s), /djin, the long-dashed

one is for dj4(s), /djin and the solid one is for dju /djin. In the above energy range we have 4 propagating modes. The different
system parameters are [1 = 3.5, lo =25, [3 =40, W =1,V =1, y; =0.21W, e =0.2.

with one to ten propagating modes. This clearly indi-
cates that current magnification effect is robust even in
multi-channel systems inspite of contributions from sev-
eral propagating modes and mode mixing. To see the
mode mixing and the cancellation effects we have con-
sidered the case where there are four propagating modes
in Fig. Hence to obtain total current in the upper
arm we have to calculate sixteen partial currents [EqIZ.
In Fig. B for simplicity instead of considering sixteen
partial currents we have plotted four values of current
densities dji1(s),,dj2(s),,dj3(s),, dja(s), and total cur-
rent dji;. Here dj;(s)y, = Yoo djin i =1,2,3,4. djin is
sum over partial current densities in the four propagating
modes in the upper arm when electron is incident in the
i-th propagating mode. Total current in the upper arm
is given by dju = dji(s), + dj2(s), + djs(s), + dja(s),-
Negative currents in this graph represents the existence
of circulating current in partial current densities. Each

dj;(s), show oscillatory and complex pattern. The total

current djy still exhibits negative part (current magnifi-
cation) inspite of cancellation effects arising due to mode
mixing.

To see in detail the nature of current magnification vis-
a-vis total transport current in lead we consider a case
where there is only one propagating mode (Fig. B(a)) and
separately another case wherein number of propagating
modes are ten (Fig. B(b)). In these figures we have plot-
ted the total transport current and circulating currents
as a function of Fermi energy with the other parameters
are mentioned in figure caption. We see a current magni-
fication whenever there is a partial minimum in the total
current that flows through the system which in turn is
measured at the leads. This is consistent with earlier

observations seen in the case of one dimensional system
13-
When only one channel is propagating the total cur-

rent is proportional to the transmission coefficient [1]. A

closer look at these minima shows that we obtain cur-



-
N

I \ I I R
107 108 109 110

l . l . ) R Loy
111 112 113 114 115 116
E/EO

FIG. 4: Plot of the circulating current dj./djin (dotted lines) and the total current djr/djin (solid lines). Both the functions
are plotted versus E/Ey. The different system parameters are [1 = 3.5, lo = 2.5, 13 =4.0, W =1,V =1, y; = 0.21W, e = 0.2.
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FIG. 5:
cident energy E/Eo in the range of single mode propa-

Plots of circulating current dj./djin versus in-
gation. Curves 1,2,3,4,---,10 are for potential strengths
V =0.5,1.0,1.5,2.0,---,5.0 respectively. The other system
parameters are Iy = 3.125, lo = 3.125, I3 = 3.75, W = 1,
yi = 0.21W, e = 4/9.
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FIG. 6: Plots of circulating current dj./djin versus in-
cident energy E/Ep in the range of two mode propaga-
tion. Curves 1,2,3,4,---,10 represent potential strengths
V = 0.5,1.0,1.5,2.0,--- ,5.0 respectively. The other sys-
tem parameters are [y = 3.125, [ = 3.125, [3 = 3.75,

W =1y, =021W, e = 4/9.
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FIG. 7: The circulating current dj./djin versus E/Eq is plotted for repulsive potential V' = 1 in strong coupling regime € = 0.48.
The different system parameters are Iy = 3.5, l2 = 2.5, I3 = 4.0, W =1, y; = 0.21W.
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FIG. 8: In (a) the partial current dji(s),/djin and in (b) the partial current dj2(s), /djin in the lower arm of the ring are
plotted as a function of E/Ey. In both (a) and (b) dashed curves are for e = 0.2 and the solid curves are for ¢ = 0.48. The
other system parameters are [; = 3.5, lo = 2.5, I3 =40, W =1,V =1, y; =0.21W.

rent magnification of either sign around every maxima-
In Ref. |3, [L1, 12] the

current magnification of a pure 1D quantum ring hav-

minima pair in total current.

ing no impurity has been related to Fano resonance

(asymmetric zero-pole structure) in the transmission co-

efficient. In multi-channel transmission Fano zero-pole
line shape gets replaced by an asymmetric maximum-
minimum lineshape [22]. We found this Fano type asym-
metric maxima-minima lineshape at each energy point

of current magnification shown in Fig. Bl From a first



look in the range 1.8Ey < E < 2.2Ej in Fig. Hla) it
appears that we have current magnification near a total-
current maximum. But a closer scan reveals that there
is indeed a very sharp Fano-type asymmetric maxima-
minima lineshape at this point, though it is not visible
in the graph. At current magnification the presence of a
quasi-bound state of circulating current in the ring gives
rise to this Fano-type lineshape to the total current. The
circulating current changes sign more sharply and shows
stronger current magnification where Fano lineshape is
sharper and narrower. This feature is somewhat equiv-
alent to the classical parallel LCR resonance circuit in
which the higher @-values indicate higher current mag-
nification and sharper minimum at resonant frequencies.
These features remain intact for whole energy scale even
if there are more than one propagating modes contribut-
ing (see Fig. H(b)).

We observe that for a symmetric ring (I1 +12 = l3) fre-
quency of the occurence of current magnification reduces
throughout this energy scale considered earlier. This is
understandable as in the absence of any impurity and
magnetic field an asymmetric 1D ring shows current mag-

nification [3], meaning that asymmetry in length ratios of

@ _= 151
= ]
=" ir 7
) [ ]
< 05 =
© [ 12
N o o
Tt 1&
T 050 43
2 af ]
s 1
=]
l'?.75 8
(b)
-.O—'E 0.751 \ \ \ \ 1
@ 05r -
= r 1
T 0251 -1
E q 0.
E 0 =
) [ 17
@ 05 — 7
._o:' 0 | | | |
'?75 7.8 7.85 7.9 7.95 8
E/ E,
FIG. 9: Both in (a) and (b), the dashed curve gives the

partial current dji(s), /djin, the dotted curve gives the partial
current djz2(s), /djin in the lower arm of the ring and the solid
curve gives the circulating current dj./djin in the ring. All
three functions are plotted as a function of incident energy
E/Ey of the electron. (a) is for weak coupling ¢ = 0.2 while
(b) is for strong coupling € = 0.48. Other system parameters
are I} =3.5,l0=25,13=40 W =1,V =1, y; =021W.

aring favours this effect. Pareek et al. [4] have shown that
for a 1D ring one can have regions of incident energies
where current magnification gets enhanced with the in-
crease in the impurity potential strength. We investigate
this effect for the case of our multi-channel ring. In order
to compare with Ref. [4] we have calculated the effects of
potential using Griffiths boundary condition or coupling
parameter € = 4/9 at the junctions. In Fig. B and Fig. B
we have shown the variation of the current magnification
for two different peaks in the appropriate energy ranges.
The Fig. B is for single channel case while Fig. [l is for
two channel. From Fig.[El(a) and Fig. B(a) we notice that
the current magnification effect get enhanced with the
increase in strength of the impurity potential while the
opposite is true for the case considered in Fig. B(b). A
closer look at Fig. B(b) reveals that peak in the negative
part of the circulating current density first increases and
then decreases as we vary continuously the strength of
the impurity potential. Thus impurities in the system
can either enhance or decrease the current magnification
effect. The enhancement of the circulating current den-
sities is a counter-intuitive effect, in the light of the fact
that impurity generally degrades the transport current

in the system.

Biittiker [19] has shown that when the ring is threaded
by a magnetic flux ®, as the coupling goes towards the
strong coupling regime (¢ — 0.5) the amplitude of persis-
tent current reduces due to increased dephasing. This is a
quantitative change in persistent current due to broaden-
ing of energy levels with increasing coupling strength. To
examine the effect of system-reservoir coupling strength
on current magnification in multi-channel ring in absence
of ®, we have calculated circulating current for e = 0.48.
We observe that the frequency of current magnification
as well as the magnitude of circulating currents reduce
significantly in the whole energy range (Fig. [) com-
pared to that observed in Fig. Bl This indicates that
in Q1D coupling strength alters the nature of current
magnification effect in a non-trivial manner. The total
current magnification in the ring is due to a summation
over current magnifications corresponding to each inci-
dent mode allowed for a given incident energy. As we
increase the coupling strength €, we observe that the con-
tribution to current magnification from electrons injected

in each incident mode goes from a narrower and stronger
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FIG. 10: The circulating current djc/djin vs. E/Eo is plotted for strong coupling ¢ = 0.48 and attractive potential
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yi = 0.21W.

to a broader and weaker shape with respect to the cor-
responding energies (Fig B). The more broader they get,
the more cancellation of current magnification occurs due
to overlap of different incident modes. In Fig. @ we have

shown contributions from first and second incident modes
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FIG. 11: djr/djin (solid curve) and dj./djin (dotted curve)
are plotted as a function of E/Ey for coupling strengths(e)
0.05 ((a)) and 0.2 ((b)) in presence of two propagating modes.
Other system parameters are V = —2.4, |1 = 2.5, Il = 1.5,
ls = 3.0, W =1, y; = 0.21W. The quasi-bound-state is at
5.1025E).

in the upper arm of the ring when only two modes are
propagating. In this energy range we observe current
magnification for ¢ = 0.2 (upper graph) and no current
magnification for e = 0.48 (lower graph). From lower
graph (e = 0.48) it is evident that though the contribu-
tion of current due to incident mode-1 (dashed line) is
negative and thus should give rise to current magnifica-
tion, the contribution from incident mode-2 (dotted line)
cancels it off and we observe no net current magnification
in this energy range. From the upper graph (e = 0.2) it
is clear that in the energy range where contribution of
current due to incident mode-1 (dashed line) is negative,
the contribution from incident mode-2 (dotted line) is
almost zero as the contribution to current magnification
from each incident mode is very sharp for low e-values.
Hence we obtain a net current magnification in this en-
ergy range for ¢ = 0.2 though current magnification is
Thus

system-reservoir coupling strength alters current mag-

absent for € = 0.48 in the same energy range.

nification effect in a multi-channel mesoscopic ring not
only quantitatively, but it also has a strong qualitative
effect. The stronger the coupling the weaker and lesser
is the current magnification in any energy scale. As for

energies where higher number of modes are propagating



and number of cancellations of current magnification is
also high we obtained even less current magnifications
and their occurence frequency in the energy axis are also
reduced (Fig. [). This effect is entirely due to the super-
position of currents from all the different channels which
is absent in purely 1D system. The non-trivial effect of
system-reservoir coupling on the equilibrium currents in
1D quantum double ring system has been discussed re-
cently in Ref.[23].

We now consider the case of an attractive impurity ¢
function potential ( V' < 0). We see in Fig. [ that
the amplitude of current magnification is lesser in the
stronger coupling regime (e = 0.48) in comparison to Fig.
[@ The magnitude and positions of the current peaks
are very sensitive to the details of the system parame-
ters and they can not be predicted apriori. Moreover,
the current magnification effect is always absent at the
quasi-bound state of the negative potential (Fig.[[). The
energies of the quasi-bound states are marked by arrows
in Fig. M0 Quasi-bound states are characterised by peak
in the density of states (DOS) and for further discussion
on quasi-bound state see Ref. |21, 22, 24]. The presence
of negative delta-function potential enhances DOS near
this potential. This enhanced local DOS at the impu-
rity site reduces the DOS of the propagating electrons
thereby reducing the current magnification.

In Fig. [T we have considered a special case and plotted
the total transport current density djr and circulating
current density dj. in the energy range 4.6F) < E <
5.4Fy. In this energy range at the Fermi energy there
are two propagating modes. The corresponding bound-
state is at 5.1025F,. Around the bound-state there is
an enhancement in scattering. The structure of the total
transport current exhibits a symmetric line shapes (like
Briet-Wigner type symmetric resonances). Around these
This

special case shows that Fano type resonance structure in

resonances we do observe current magnification.

the total transport current is not a necessary criteria for

the observation of current magnification effect.

IV. CONCLUSION

In conclusion, we have shown that for a system weakly

coupled with reservoirs current magnification is a robust
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effect even in multi-channel case in the presence of trans-
port current. The magnitude of the circulating current
can be very large even in presence of several propagating
modes despite mode mixing and cancellation effects as
discussed in the text. The circulating current are mostly
associated with Fano resonance in total transport cur-
rent. However, there are sometimes exception to this
rule, namely, current magnification may occur around
Briet-Wigner type symmetric resonances in the total cur-
rent. Unlike purely one dimensional system Fano reso-
nance does not exhibit the zero in the total transmission,
however, it is characterised by a sharp minimum along
with asymmetric line shapes in the total current. Impu-
rity strength can enhance or suppress current magnifica-
tion and is sensitively dependent on system parameters.
We have established that the system-reservoir coupling
strength controls the current magnification qualitatively.
As the coupling becomes stronger the current magnifi-
cation becomes weaker and its occurence in the given
energy range reduces. Thus system reservoir coupling
parameter controls the transport properties in a very in-
teresting manner. It is interesting to note that persis-
tent currents in a ballistic mesoscopic ring in the pres-
ence of magnetic flux increases with the Fermi energy
(or the number of channels) [25]. In contrast the magni-
tude of the current magnification is independent of the
total number of propagating channels. It may be empha-
sized that persistent currents and the circulating currents
due to current magnification are two independent distinct

phenomena [26].
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