arXiv:hep-ph/9403368v1 25 Mar 1994

MAD/PH/824
PRL-TH-94/10
BU-TH-94/3
March 1994

vy PROCESSES AT HIGH ENERGY pp COLLIDERS

Manuel Drees*

Physics Department, University of Wisconsin, Madison, WI 53706, USA

Rohini M. Godbole

Physics Department, University of Bombay, Vidyanagari, Bombay 400098, India

Marek Nowakowskil and Saurabh D. Rindani

Theory Group, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009,India

Abstract

In this note we investigate the production of charged heavy particles
via 7y fusion at high energy pp colliders. We revise previous claims that the
~vy cross section is comparable to or larger than that for the corresponding
Drell-Yan process at high energies. Indeed we find that the v+ contribution
to the total production cross section at pp is far below the Drell-Yan cross
section. As far as the individual elastic, semi-elastic and inelastic contributions
to the v process are concerned we find that they are all of the same order of

magnitude.
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The detection of a fundamental charged scalar particle would certainly lead beyond
the realm of the Standard Model (SM). These particles can arise either in the context of
supersymmetric models, as superpartners of quarks and leptons [fl], or in extended Higgs
sectors, e.g. in two-Higgs-doublet models [B] (with or without supersymmetry) or in models
with triplet Higgses [[]. In general, the different charged scalars will have different interac-
tions at tree level. For instance, sleptons do not couple to quarks in contrast to H* in the
two Higgs doublet model, while one charged Higgs boson in triplet models does not couple
to matter at all but has an unconventional H™W~Z° vertex. Hence a model independent

production mechanism is welcome. Such a model independent interaction is clearly given by

the scalar QED part of the underlying theory. For example the v fusion processes:
vy — HYH™, I, .. (1)

are uniquely calculable for given mass of the produced particles. At pp colliders we also

have, however, the possibility of the ¢gg annihilation Drell-Yan processes
gg— H*H-, It ... (2)

There has been a claim in the literature that the v fusion exceeds the Drell-Yan (DY)
cross sections at pp by orders of magnitude []. This would be an interesting possibility of
producing charged heavy scalars at hadronic colliders or for that matter any charged particle
which does not have strong interactions.

Apart from the charged scalars mentioned above there exist various candidates for
charged fermions. These fermions can be either fourth generation leptons, charginos or exotic
leptons in extended gauge theories like Eg [f]. Current limits on the masses of all exotic
charged particles which couple to the Z with full strength are ~ Mz/2. In the case of H*
there exist additional constraints (clearly model dependent) from the experimental studies
of the b — sv decay. In one variation of the model my+ < 110 GeV is ruled out for large
values of tan f and for m; = 150 GeV [[i]. However, in the two-Higgs-doublet models with

SUSY these constraints are much weaker [[]. (The same analysis also shows that there are
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no limits on the chargino masses from the b — sv rate.) The calculation for vy — LTL~
at pp colliders has been done recently [§]. The result in [§] is that the vy cross section is
comparable to the corresponding Drell-Yan process at high energies, e.g. at /s = 40 TeV
for my, ~ 100 GeV. At LHC energies the v cross section in the same mass range was found
to be [§] one order of magnitude smaller than the DY cross section.

We have repeated the calculations for scalar and fermion pair production, and find
that in both cases the v cross sections are well below the Drell-Yan contribution [f]. In
what follows we outline briefly the basic tools and approximations in the calculation.

In order to calculate the pp cross section we have used the Weizsacker-Williams
approximation [[[] for the inelastic case (ypX vertex) and a modified version of this approx-
imation [[[T,[7] for the elastic case (ypp vertex). In the latter case the proton remains intact.

The inelastic (inel.) total pp cross section for HtH ™~ as well as L™ L~ production reads

, 1 1 1 1
U;Zel'(s) = Z/ dzl/ dl’g/ dzl/ dzs 6262/
aq 4m?2 /s 4m?2 sz 4m?2 sz 2 4m?2 /sx1T221

: fq/p(x’l’ Q2) fq’/p(x% Qz)fv/q(zl) f“//q’(z2) &77($1$2Z1325) (3)

where m is the mass of either H* or L*, e, = 2/3, ¢4 = —1/3 and 6., is the production
subprocess cross section with the center of mass energy V5 = \V/T1T221228. The structure
functions have the usual meaning: f,/, is the quark density inside the proton, f,/, is the
photon spectrum inside a quark. We use the the MRSD' parameterization for the partonic

densities inside the proton [[J]. The scale Q* has been chosen throughout the paper to be

5/4. With
Qem (14 (1 —2)?)
f(2) = f'y/q(z) = f'y/q’(z> = o hl(@%/@%) (4)
we can write (f) in a more compact form as
inel.( )_/1 d /1 d /1 d /1 d 1Fp( Q2)
Upp 8= 4m?2 /s T 4m?2 /sy 2 4m2 /sz1z2 A1 4m2 /sz1x221 2 e 2%
1 .
: I_Féﬁ(x% Qz)fv(zl) f'y(z2) 077(I1x2z1228) (5)
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where F} is the deep-inelastic proton structure function. There is a certain ambiguity about
the choice of the scales Q7 in the argument of the log in eq. (f]). We choose Q2 to be the
maximum value of the momentum transfer given by §/4 —m? and the choice of Q% = 1 GeV?
is made such that the photons are sufficiently off—shell for the Quark—Parton—Model to be
applicable.

The semi-elastic (semi-el.) cross section for pp — HTH (LT L™ )pX is given by

. 1 1 1 1
semi—el. 2
_9 d / d / dzs— FP(z1,
v (S) 4m?/s “ 4m?2 /sx1 - sm?/sz121 2 X1 2 (xl Q )
- fo(z1) [ (22) 64 (2121 28) (6)

The subprocess energy now is given by v/§ = /sz12122. The elastic photon spectrum fjl/'p(z)
has been obtained in the form of an integral in [[T]. However, we use an approximate analytic
expression given in [ which is known to reproduce exact results to about 10%. The form

we use is given by

el. () _ Qtem Ry Sno3 3 1
p2) =g~ (L= 2)) A= e+ 5 = o + 3 (7)
where
0.71(GeV)?
A=14+ # (8)
with

1
i = —2m> + % {(s +m2)(s — zs +m})

— (s — mﬁ)\/(s —zs —m2)? — 4dm2zs (9)

At high energies Q2 ;, is given to a very good approximation by m>z*/(1 — z). Since the
relevant values of the scaled photon energy z; can in general take smaller values in the elastic
case as compared to the inelastic case, eqs. ({),(§) and ([]) imply that even in the elastic
case there is a logarithmic enhancement of the photon densities.

Finally the pure elastic contribution wherein both the photons remain intact and

hence can in principle give rise to clean events, can be written as
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1 1
T (5) = / o Amz/zls dzy [57,(21) [3),(22) 02 (5 = 21225) (10)

4m?2 /s
Defining 3y, i = (1 — 4m3 1/8)"? the 7y subcross sections take the simple form

6(yy = H"H™) = —2m W)

By [2—6H L= Py, ”/GH] (11)

2085 1 — B

and for lepton production

o(yy— LTL7) =

4 (M2)BL l?) ﬁL 1+ﬁ:L
26,  1-4

Note that we have used ae,, = 1/137 in (f]) and ([]) and ae, (M3,) = 1/128 in the subcross
sections ([) and (I2).

For completeness we also give here the Drell-Yan ¢g annihilation cross section to

- Bi)] | (12

HTH~ including Z° exchange, for the case that H* resides in an SU(2) doublet:

Ama? (M2) (By)*? cot 20y 5(8 —m2)
HTH™ w 2 2 Z
o(q7 = )= 35 g | T 2Cav, sin 20y (8 —m%)? 4+ I'ym%
) 5 \ cot? 20y, 5
13
+ (v, + 9a,) sin? 20y, (3 — m%)2 +I'2m? (13)

In the above gy, , ga, are the standard vector and axial vector coupling for the quark.

The results of our calculations are presented in Fig. [l for H*H~ production and
in Fig. B for the lepton case. As far as the HTH~ production in vy fusion is concerned
we differ from the results given in [H] by roughly three orders of magnitude: our 4y cross
section is far below their results and also approximately two orders of magnitude smaller
than the DY cross section. The logarithmic enhancement of the photon densities is simply
not enough to overcome completely the extra factor a2, in the v process. Even if the Higgs
is doubly charged (such a Higgs appears in triplet models [J]) the ratio of DY to ~y cross
section changes only by a factor 1/4 as compared to the singly charged Higgs production.
We also find that contributions from elastic, semi-elastic and inelastic processes to the total
~~ cross section are of the same order of magnitude. The elastic process contributes ~ 20%
of the total v cross—section at smaller values of my going up to 30% at the high end. This

can be traced to the logarithmic enhancement of the photon density even in the elastic case
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mentioned earlier. Assuming the I1,1r to be degenerate in mass the cross—section for ~y~
production of sleptons (for one generation) will be twice the corresponding H™H~ cross—
sections.

Our results for leptons are given in Fig. Here again we find that at LHC energies
DY exceeds v by two orders of magnitude even for relatively small m; masses in the range
of 50 — 100 GeV [B]. In general the L™ L™ cross—sections are higher than the corresponding
H*H~ cross—sections (both for 4y and DY) by about a factor of 5-7. This can be traced to
the different spin factors and the different 3 dependence of the subprocess cross—section for
the fermions and scalars. The cross—section for the v+ production of charginos will again be
the same as that of the charged leptons.

One might think that by sacrificing rate for ‘cleanliness’ the purely elastic processes
might prove useful. Moreover, even inelastic or semi—elastic vy events might be characterized
by “rapidity gaps”, where the only hadrons at central rapidities are due to the decay of
the heavy particles produced. However, at the LHC one expects about 16 minimum bias
events per bunch crossing at luminosity £ = 103! cm™2 sec™!; even the elastic vy events
will therefore not be free of hadronic debris. These “overlapping events” will fill the entire
rapidity space with (mostly soft) hadrons, thereby obscuring any rapidity gap. Notice also
that in the purely elastic events the participating protons only lose about 0.1% of their
energy, making it very difficult to detect them in a forward spectrometer of the type now
being installed at HERA detectors. We are therefore forced to conclude that most likely
one will not be able to distinguish experimentally between DY and ~~ events if the LHC is
operated anywhere near its design luminosity. The clean elastic events might be detectable

at luminosities well below 1033 ¢m™2

sec™!, where event overlap is not expected to occur.
However, our results show that at such a low luminosity one is running out of event rate at
masses not much above the limit that can be probed at LEP200; moreover, there might be

sizable backgrounds, e.g. due to the process vy — WTW ™.

At this point it might be instructive to compare the ~v cross—sections with other



(model dependent) possible production mechanisms for various weakly interacting charged
particles. Studies [[4] have shown that search for charginos in hadronically quiet multilepton
events due to associated production of a chargino with a neutralino (via DY) at LHC might
be feasible up to m,+ ~ 250 GeV. The detection of sleptons with mass up to ~ 250 GeV
also seems possible [[J]. Hence the DY process still seems to be the dominant mode for
production for sleptons, charginos as well as heavy leptons. For larger masses the DY cross—
section falls off and in some cases the gluon induced production (which we discuss below)
will take over.

For the charged Higgses the situation is somewhat different. The question of
DY /yv/gg production becomes relevant in this case only for m; < mpy+. If my > mpy+
the charged Higgs can be produced in the decay of the top quark and the strong production
of top quarks gives large rates allowing one to probe at LHC upto my= ~ m; —20 GeV [[{].
Even when m; < mpy+ production of a single charged Higgs in association with a t quark

via the process
gb— tH™ (14)
might provide a measurable signal in the decay channel
tH' — ttb — b(bqq' ) (blv). (15)

The cross—section is ~ 15 pb for my+ ~ 150 GeV and could provide a feasible signal up to
mp+ ~ 200 GeV over a wide range of parameter space, if b quarks can be tagged with high
purity and not too low efficiency [I7]. Fig.[] shows that even for the DY process the charged
Higgs cross—section is only a few tens of fb or less if my+ > my.

Another process that contributes to the pair production of Higgs bosons and charged

leptons is one loop gluon fusion:

gg— HTH™

gg— LTL™ (16)



These contributions will only be competitive with ordinary DY production if some couplings
of the produced particles grow with their mass. Accordingly the first process will be large
[Lg] if m; > mpy+ (in which case HT production from ¢ decays will have even larger rates) but
is expected to decrease for my+ > my. Since the coupling of chiral leptons to Higgs bosons
and longitudinal Z bosons grows with the lepton mass, graphs containing the (1-loop) ggH*
and ggZ% couplings dominate the production of both charged [[J] and neutral [2(] chiral
leptons of sufficiently large mass.

In summary, we have shown that the cross section for the pair production of heavy
charged scalars or fermions via v fusion amounts to at best a few % of the corresponding
Drell-Yan cross section; in many cases there are additional production mechanisms with even
larger cross sections. Moreover, at the LHC overlapping events prevent one from isolating
v events experimentally unless the machine is run at a very low luminosity, in which case
the accessible mass window is not much larger than at LEP200. We do therefore not expect
v~y fusion processes at the LHC to be competitive with more traditional mechanisms for the
production of new particles.

While writing this note we have received a preprint [BI]] which treats the same subject
of v+ processes in pp colliders and gets similar results. However we differ somewhat in the
details which is most probably due to the different treatment of the photon luminosity
functions.
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FIGURES
FIG. 1. Cross section in fb for DY and ~~ production of the charged Higgs at LHC energies,

as a function of the Higgs mass. The dashed, dash-dotted and long-dashed lines show the el., inel.
and semi-el. contributions (as defined in the text) to the 4y cross sections. The total vy cross

section and the DY contributions are shown by the labeled solid lines.

FIG. 2. Cross section in fb for DY and ~ production of the charged Leptons at LHC energies,

as a function of the Lepton mass. The convention is the same as in [[.
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