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Abstract

An impact parameter representation for soft gluon radiation is applied to obtain both the initial

decrease of the total cross-section (σtot) for proton-proton collisions as well as the later rise of σtot

with energy for both pp and pp̄. The non-perturbative soft part of the eikonal includes only limited

low energy gluon emission and leads to the initial decrease in the proton-proton cross- section. On

the other hand, the rapid rise in the hard, perturbative jet part of the eikonal is tamed into the

experimentally observed mild increase by soft gluon radiation whose maximum energy rises slowly

with energy.

∗Electronic address: rohini@cts.iisc.ernet.in
†Electronic address: igrau@ugr.es
‡Electronic address: pancheri@lnf.infn.it
§Electronic address: srivastava@pg.infn.it

1

http://arXiv.org/abs/hep-ph/0408355v3
mailto:rohini@cts.iisc.ernet.in
mailto:igrau@ugr.es
mailto:pancheri@lnf.infn.it
mailto:srivastava@pg.infn.it


I. INTRODUCTION

In this paper, we extend our approach to the role played by soft gluon radiation in

determining the energy dependence of total cross-sections [1], by including new low energy

features. The experimental information on the total cross-section is now sufficient to allow for

definite progress towards its description through QCD. Thanks to the recent measurements

at HERA [2, 3, 4, 5] and LEP [6, 7] providing knowledge of total hadronic cross-sections

involving photons in the energy interval
√

s = 1 ÷ 100 GeV , we now possess a complete

set of processes to study in detail and in depth, namely pp, pp̄, γp and γγ. The purely

hadronic processes are well measured over an extended range, up to cosmic ray energies [8],

leading to quite precise parametrizations [9], while the other two allow for probes of the

hadronic content of the photon versus that of the proton. They also allow for checks of the

Gribov-Froissart factorization hypothesis [10, 11].

The three basic features which the data exhibit and which require a theoretical explana-

tion and understanding are: (i) the normalization of the cross section, (ii) an initial decrease

and (iii) a subsequent rise with energy. All three are reasonably well described in the Regge

trajectory language, which suggests a parametrization of all total cross-sections[12] as a sum

of powers of the square of the c.m. energy s. The oldest and simplest of these parametriza-

tions is

σtot(s) = Xsǫ + Y s−η. (1)

In this model, the initial decrease reflects the disappearance (with increasing energy) of a

Regge trajectory exchanged in the t-channel, with η = 1 − αρ(0) where the intercept (at

t = 0) of the leading Regge trajectory is αρ(0) ≈ 0.5. At the same time, the rise in the

cross section is attributed to the exchange of a trajectory (the Pomeron) with the quantum

numbers of the vacuum, such that αP (0) = 1 + ǫ. ǫ is expected to be a small number so as

not to defy too much the Froissart bound, and, phenomenologically, ǫ = 0.08÷ 0.12[13, 14].

The two terms in which the cross-sections are split in Eq.(1) describe well the main

features of the observed total cross-section data, with an apparently constant behaviour

at
√

s ≈ η
ǫ

Y
X

. For proton-proton and proton-antiproton scattering, this occurs between 15

and 25 GeV, where the cross-section is about 40 mb. At large energies, the Regge term

disappears, while the first term is important everywhere, and dominates asymptotically.

Thus the decrease is due to the Regge term, the rise described by the Pomeron with some
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taming due to the Regge term and the normalisation is determined by both the Regge and

the Pomeron terms. More recent analyses add further terms such as log2(s/s0) terms[15].

In the following we shall discuss these features one by one within the context of QCD,

using the simple but useful parametrization of Eq.(1) as reference. We shall modify it and

through it develop further the model of ref.[1] to increase our understanding of the energy

dependence within QCD. In section II, we discuss the QCD origin of the two component

model of Eq. (1). In section III, we summarise how the Born term of the QCD contribution,

the mini-jets, is embedded in the eikonal formalism which provides a unitarised descrip-

tion of the total cross-section. In section IV, we discuss the analyticity requirements upon

the impact parameter amplitudes of the eikonal formalism. In section V, we review the

soft gluon transverse momentum distribution on which our model for the b-distribution of

partons is based. In section VI we discuss the main features of the model[1] for the energy

dependence of the impact parameter distribution, induced by soft gluon emission. In section

VII, through soft gluon emission, we obtain the transverse parton overlap function for the

non-perturbative part of the cross-section. In section VIII, we introduce the normalisation

of the cross-section. We present our model for σtot for pp and pp̄ and compare them with

currently available data. In section IX, we present an interesting feature of our model: in a

proton or antiproton collision, the (average) distance between the scattering centres (i.e. the

constituents) in the transverse space decreases as the energy increases. Similar results have

been previously obtained in an analysis of the hadronic events at the Tevatron, through an

impact parameter picture. We note again that our model of the energy dependent impact

parameter distribution offers a reasonable understanding of both the initial fall and later

rise with energy of the σtot, whereas for the normalization there is still further work to do.

Before beginning the detailed discussion, we indicate below briefly and qualitatively, why

we believe that it is both important and necessary to include effects of soft-gluon emission

in the mini-jet formalism [16, 17, 18]. We recall here that in the mini-jet picture the rise

in cross-sections is driven by the increasing number of low-x gluon-gluon collisions and that

the predicted rate of the rise is generally found to be uncomfortably large. In section VI we

give the details of the mechanism by which the effect of soft gluon emissions can reduce the

rate of this rise, at any given c.m. energy. Below we summarise the effect qualitatively.

In a calculation in the QCD improved parton model, the effect of gluon radiation on the

longitudinal momentum carried by the partons is included, at least in part, in the Dok-
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shitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP) [19] evolved parton distribution.

Here we crucially look at the effect of initial state gluon radiation on the transverse momen-

tum distribution of partons. In our model the soft gluon resummed transverse momentum

distribution of partons in the hadrons and the parton distribution in impact parameter

space are Fourier Transforms of each other. The larger the transverse momentum the larger

is the acollinearity of the two colliding partons, leading to a reduction in parton luminosity

and hence to a reduction of the cross-section. The higher the c.m. energy of the parent

hadron, the more energetic are the parent valence quarks emitting gluons and the more is

the acollinearity of the two partons involved in the parton subprocess. Hence, we expect the

effect to be dependent on the c.m. energy.

II. THE TWO COMPONENT MODEL

Before entering into the technical details about unitarization, it is well to ask (i) where

the “two component” structure of Eq.(1) comes from and (ii) why the difference in the two

powers (in s) is approximately a half.

Let us first remember that the two terms of Eq.(1) reflect the well known duality between

resonance and Regge pole exchange on the one hand and background and Pomeron exchange

on the other, established in the late 60’s through FESR [20]. This correspondance meant

that, while at low energy the cross-section could be written as due to a background term

and a sum of resonances, at higher energy it could be written as a sum of Regge trajectory

exchanges and a Pomeron exchange.

Our present knowledge of QCD description of hadronic phenomena gives further insight

into the nature of these two terms. We shall start answering the above two questions

through considerations about the bound state nature of hadrons which necessarily transcends

perturbative QCD. For hadrons made of light quarks(q) and glue(g), the two terms arise

from qq̄ and gg excitations. For these, the energy is given by a sum of three terms: (i) the

rotational energy, (ii) the Coulomb energy and (iii) the “confining” energy. If we accept

the Wilson area conjecture in QCD, (iii) reduces to the linear potential[21, 22]. Explicitly,

in the CM frame of two massless particles, either a qq̄ or a gg pair separated by a relative

distance r with relative angular momentum J , the energy is given by

Ei(J, r) =
2J

r
− Ciᾱ

r
+ Ciτr, (2)
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where i = 1 refers to qq̄, i = 2 refers to gg, τ is the “string tension” and the Casimir’s

are C1 = CF = 4/3, C2 = CG = 3. ᾱ is the QCD coupling constant evaluated at a

some average value of r and whose value will disappear in the ratio to be considered. The

hadronic rest mass for a state of angular momentum J is then computed through minimising

the above energy

Mi(J) = Minr[
2J

r
− Ciᾱ

r
+ Ciτr], (3)

which gives

Mi(J) = 2
√

(Ciτ)[2J − Ciᾱ]. (4)

The result may then be inverted to obtain the two sets of linear Regge trajectories αi(s)

αi(s) =
Ciᾱ

2
+ (

1

8Ciτ
)s = αi(0) + α′

is. (5)

Thus, the ratio of the intercepts is given by

αgg(0)

αqq̄(0)
= CG/CF =

9

4
. (6)

Using our present understanding that resonances are qq̄ bound states while the background,

dual to the Pomeron, is provided by gluon-gluon exchanges[23], the above equation can be

rewritten as
αP (0)

αR(0)
= CG/CF =

9

4
. (7)

If we restrict our attention to the leading Regge trajectory, namely the degenerate ρ−ω−φ

trajectory, then αR(0) = η ≈ 0.48 − 0.5, and we obtain for ǫ ≈ 0.08 − 0.12, a rather

satisfactory value. The same argument for the slopes gives

α′
gg

α′
qq̄

= CF/CG =
4

9
. (8)

so that if we take for the Regge slope α′
R ≈ 0.88 − 0.90, we get for α′

P ≈ 0.39 − 0.40, in

fair agreement with lattice estimates [24].

We now have good reasons for a break up of the amplitude into two components. To

proceed further, it is necessary to realize that precisely because massless hadrons do not

exist, Eq.(1) violates the Froissart bound and thus must be unitarized. To begin this task,

let us first rewrite Eq.(1) by putting in the “correct” dimensions

σ̄tot(s) = σ1(s/s̄)
ǫ + σ2(s̄/s)

1/2, (9)
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where we have imposed the nominal value η = 1/2. In the following, we shall obtain rough

estimates for the size of the parameters in Eq.(9).

A minimum occurs in σ̄tot(s) at s = s̄, for σ2 = 2ǫσ1. If we make this choice, then

Eq.(9) has one less parameter and it reduces to

σ̄tot(s) = σ1[(s/s̄)
ǫ + 2ǫ(s̄/s)1/2]. (10)

We can isolate the rising part of the cross-section by rewriting the above as

σ̄tot(s) = σ1[1 + 2ǫ(s̄/s)1/2] + σ1[(s/s̄)
ǫ − 1]. (11)

Eq.(11) separates cleanly the cross-section into two parts: the first part is a “soft” piece

which shows a saturation to a constant value (but which contains no rise) and the second a

“hard” piece which has all the rise. Morover, s̄ naturally provides the scale beyond which

the cross-sections would begin to rise. Thus, our “Born” term assumes the generic form

σB
tot(s) = σsoft(s) + ϑ(s − s̄)σhard(s). (12)

with σsoft containing a constant ( the “old” Pomeron with αP (0) = 1) plus a (Regge)

term decreasing as 1/
√

s and with an estimate for their relative magnitudes (σ2/σ1 ∼ 2ǫ).

We shall assume that the rising part of the cross-section σhard is provided by jets which are

calculable by perturbative QCD, obviating (atleast in principle) the need of an arbitrary

parameter ǫ.

An estimate of σ1 may also be obtained through the hadronic string picture. Eq.(3)

gives us the mean distance between quarks or the “size” of a hadronic excitation of angular

momentum J in terms of the string tension

r̄(J)2 =
2J − CF ᾱ

τ
. (13)

So the size R1 of the lowest hadron (which in this Regge string picture has J = 1, since

αR(0) = 1/2) is given by

R2
1 =

1

τ
= 8α′ (14)

If two hadrons each of size R1 collide, their effective radius for scattering would be given by

Reff =
√

R2
1 + R2

1 =
√

2R1, (15)
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and the constant cross-section may be estimated (semi-classically) to be roughly

σ1 = 2πR2
eff = 4πR2

1 ≈
4π

τ
= 32πα′, (16)

which is about 40 mb, a reasonable value. In the later sections, for the “soft” cross-section

we shall take a value of this order of magnitude as the nominal value.

The unitarization now proceeds very simply by eikonal exponentiation in impact param-

eter space, as described in detail in the sections to follow.

III. THE RISE WITH ENERGY

QCD offers an elegant explanation of the rise in the minijet formalism as has been pointed

out by several authors in the past [16, 17, 18]. The original suggestion was that the rise of

σtot with energy is driven by the rapid rise with energy of the inclusive jet cross-section

σab
jet(s) =

∫

√
s/2

ptmin

dpt

∫ 1

4p2
t /s

dx1

∫ 1

4p2
t /(x1s)

dx2

∑

i,j,k,l

fi|a(x1)fj|b(x2)
dσ̂ij→kl(ŝ)

dpt
, (17)

where subscripts a and b denote particles (γ, p, . . .), i, j, k, l are partons and x1, x2 the

fractions of the parent particle momentum carried by the parton. ŝ = x1x2s and σ̂ are hard

partonic scattering cross–sections. Note that dσ̂/dpt ∝ p−3
t ; the cross–section defined in

Eq.(17) therefore depends very sensitively on ptmin, which is supposed to parametrize the

transition from perturbative to nonperturbative QCD. The rise of the inclusive jet cross-

section with energy is understood in terms of the increasing number of hard partons which

gives rise to an increasing probability for the occurrence of hard scattering processes. Quan-

titatively, factorisation of QCD allows us to use the currently available parametrisations

of the scale dependent parton densities and calculate the energy dependence of the result-

ing jet cross-section, by convoluting the parton densities with the subprocess cross-section

determined by perturbative QCD.

For any fixed ptmin, typically 1÷2 GeV, one finds that this cross-section is a steeply rising

function of energy. If
√

s ≫ ptmin, the integral in Eq.(17) receives its dominant contribution

from x1,2 ≪ 1. The relevant parton densities can then be approximated by a simple power

law, f ∝ x−J . In case of pp or p̄p scattering, a = b and the cross–section asymptotically

scales like [25]

σjet ∝
1

p2
tmin

(

s

4p2
tmin

)J−1

log
s

4p2
tmin

, (18)
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if J > 1. For J ≃ 1.3, as measured by HERA, the jet cross–section will therefore grow

much faster than the total p̄p cross–section, which only grows ∝ log2 s (Froissart bound

[26]), or, phenomenologically [12] for
√

s ≤ 2 TeV, ∝ s0.08. Eventually the jet cross–

section (17) will therefore exceed the total p̄p cross–section. In fact, this rise is far more

violent than the experimentally observed gentle rise of the total cross-section[18, 27]. This

has led to various phenomenological strategies (among them the eikonal formalism [28])

directed towards softening this rise. The apparent paradox is solved by the observation that,

by definition, inclusive cross–sections include a multiplicity factor. Since a hard partonic

scattering always produces a pair of (mini–)jets, we can write

σab
jet = 〈njet pair〉σab

inel, (19)

where 〈njet pair〉 is the average number of (mini–)jet pairs per inelastic collision. σjet
ab > σab

inel

then implies 〈njet pair〉 > 1, which means that, on average, each inelastic event contains more

than one hard partonic scatter. The simplest possible assumption about these multiple

partonic interactions is that they occur completely independently of each other, in which

case njet pair obeys a Poisson distribution. At a slightly higher level of sophistication, one

assumes these interactions to be independent only at fixed impact parameter b; indeed, it

seems natural to assume that events with small b usually have larger njet pair. This leads to

the eikonal formalism mentioned above.

Convenient and elegant, the eikonal method reduces the rise of this cross-section, and

allows one to enforce the requirement of s-channel unitarity. Here one obtains the total

cross-section through the eikonal formula

σtot = 2
∫

d2~b[1 − e−ℑmχ(b,s)cosℜeχ(b, s)] (20)

and one introduces the jet cross-section as the term which drives the rise in the eikonal

function. This can be done unambiguously by defining the inelastic cross-section[29] given

in the eikonal formulation by

σinel =
∫

d2~b[1 − e−2ℑmχ(b,s)]. (21)

This expression can also be obtained upon summing multiple collisions which are Poisson

distributed with an average number n(b, s) = 2 ℑm χ(b, s). Making the approximation

ℜeχ = 0, one obtains a very simple expression

σtot = 2
∫

d2~b[1 − e−n(b,s)/2] (22)

8



To proceed further, one needs to introduce the soft processes, which cannot be described by

perturbative QCD. Following the separation shown in Sect.II, one can approximate n(b, s)

by introducing a separation between soft and hard processes as:

n(b, s) = nsoft + nhard = Asoft(b)σsoft(s) + Ajet(b)σjet(s) (23)

The separation between hard and soft processes is of course approximate and so is the

factorization into energy and transverse dimension dependence. However, it is useful as

it allows one to break down the calculation into building blocks, which can be separately

understood and put together again later as part of the whole structure.

The procedure of Eq.(20) reduces the fast rise due to the mini-jet cross-section, but the

extent to which this softens the rise, is highly dependent on the impact parameter (b)-

dependence of n(b, s). The simplest [28] ansatz, which introduces a minimum number of

parameters is to assume that the b-dependence is the same for both the soft and the jet

component, and further that it is given by the Fourier transform of the electromagnetic

form factor of the colliding hadron, F(q)[28]. Thus for protons and antiprotons one will

have

Asoft(b) = Ajet(b) =
1

(2π)2

∫

d2~beiq·b[Fp(q)]
2 =

1

(2π)2

∫

d2~beiq·b[
ν2

q2 + ν2
]4 (24)

It is well known [30] that these Eikonal Minijet Models (EMM) are unable to properly

reproduce the experimentally observed, complete rise of the cross-section from the beginning

up to the asymptotia, without introducing further parameters. As an example, results

obtained using Eq.(24) with ν = 0.71 GeV 2, and current Glück, Reya and Vogt (GRV)

parton densities for the proton [31] to calculate the jet cross-sections in Eq.(17), are shown

in FIG. (1). One can see from the figure that a ptmin ≈ 2 GeV is needed, in order to obtain

a numerical value of the total proton cross-sections in the 80 mb range, at Tevatron energies.

However, for such ptmin = 2 GeV , the rise does not begin until
√

s is already in the 100 GeV

region. On the other hand, a smaller value for the regulator ptmin, typically just above 1

GeV, would allow for the beginning of the rise around 20÷30 GeV , as the data indicate, but

then the cross-section rises too rapidly in comparison with the Tevatron data. In FIG. (1),

in all jet cross-sections computed using Eq. (17), we use the strong coupling constant αs at

scale pt. Even at pt = ptmin, this value for the scale, albeit low, is still in a range where the

asymptotic freedom expression is approximately valid. For the low energy behaviour, all the

curves shown in FIG. 1 are obtained with the same phenomenological fit as in ref.[1].
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FIG. 1: Comparison between data [8, 32, 33, 34, 35, 36, 37] and the EMM (see text), for different

minimum jet transverse momentum.

Different solutions to the above problems have been adopted, including energy dependence

of the cut-off parameter ptmin, adding more terms in Eq. (23) or using Eq. (24)[28, 30] with

different constants for the low and the high energy part.

We have taken the approach to keep fixed ptmin (for a given beam and target combination)

and have an energy dependent overlap function, the energy dependence being modelled by

a QCD motivated calculation. The QCD motivated model gives a transverse momentum

distribution of the partons which is energy dependent and this, in turn, makes our overlap

functions energy dependent. We shall see in the next sections that in this model soft gluon

emission has an effect very similar to that of an energy dependent ptmin.

IV. ANALYTICITY REQUIREMENTS ON THE IMPACT PARAMETER DIS-

TRIBUTION

Within the context of QCD, the problem described in the previous section, sometimes

referred to as the soft and hard Pomeron problem, can have (at least) two different origins. If

complete factorisation between the dependence on the energy
√

s and the impact parameter

10



~b holds, then the abovementioned soft and hard pomeron prolem may simply be taken to

be indicative that the s-dependence generated through gluon densities, is wrong. On the

other hand, given the fact that gluon densities are measured in Deep Inelastic Scattering

experiments, one may think of an alternative explanation of the probelm. This second, com-

plementary explanation is that not all the s-dependence is due to the jet-cross-sections and

there is further energy dependence in the impact parameter distribution. Some general ana-

lyticity arguments can be invoked to shed light on the above and thus limit the arbitrariness

in the choice of the function χ(b, s).

Consider the elastic scattering amplitude Tel(s, t) (with s and t the usual Mandelstam

variables) normalized so that the total cross section is given by

σtot = 2
∫

d2~b[1 − e−ℑm χ(b,s) cosℜe χ(b, s)] = (
2

s
) ℑm Tel(s, t = 0), (25)

and the elastic differential cross section by

d2σel

d2~q
=

1

4π2s2
|Tel|2 (26)

Consistently with Eq.(25), one then has

Tel(s, t) = is
∫

d2~bei~q·~b[1 − eiχ(b,s)]. (27)

For complete absorption, i.e. ℜe χ = 0, we get

Tel(s, t) = is
∫

d2~bei~q·~b[1 − e−n(b,s)/2] (28)

Let us briefly examine restrictions imposed on the large b-behaviour of the function n(b, s)

by the requirements of analyticity. Consider the Fourier transform of the elastic scattering

amplitude,

A(s, b) =
−i

4πs

∫ 0

−∞
dt Tel(s, t)J0(b

√
−t) (29)

where t = −~q2, with ~q the transverse momentum variable. Equivalently, we have

Tel(s, t) = πis
∫ ∞

0
db2J0(b

√
−t)A(s, b) (30)

The finite range of hadronic interactions implies that the partial wave expansion converges

beyond the physical region, i.e., throughout the Lehmann ellipse. This requires that Tel(s, t)

be analytic in t up to t = 4µ2, where µ is the pion mass. For positive t, we continue the
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above expression for
√
−t = iW , with W real and positive. In this “unphysical” region, we

have

Tel(s, W
2) = πis

∫

db2I0(bW )A(s, b2) (31)

For large b, I0(bW ) ∼ ebW√
2πbW

, so that for the integral to converge, one needs

|A(s, b2)| < e−bWo with Wo ≃ 2µ (32)

In the purely absorptive model (ℜe χ = 0) thus,

1 − e−n(b,s)/2 < e−bWo/2, (33)

and we see that n(b, s) must be bounded at least by an exponential. Stronger (but model

dependent) constraints arise provided one imposes that the elastic differential cross-section

exhibit a “diffraction peak”. That is

Tel(s, t) ≃ f(s)eb̂(s)t (34)

where b̂(s) is the so-called width of the diffraction peak, which has an observed ( approxi-

mately) logarithmic s dependence. Then, Eq.(29) gives

Â(s, b) ≃ if(s)

4πs

∫

dq2J0(bq)e
−b̂(s)q2

=
if(s)

2πs

[

1

2b̂(s)

]

e
− b2

4b̂(s) , (35)

which requires a Gaussian fall-off of the amplitude in the impact parameter b, with its scale

determined by the width of the diffraction peak. In the Regge pole description,

b̂(s) ∼ α′ln(s/s0), f(s) ∼ −iβ(s/so)
1+ǫ (36)

and

A(s, b) ≃ β(s/so)
ǫ

4π(α′so)ln(s/s0)
e
− b2

4α′ln(s/s0) (37)

In the EMM, where the impact parameter distribution is given by the Fourier transform

of the proton form factor, a model we refer to as the Form Factor (FF) model, one has

n(b, s) =
ν2

96π
(νb)3 K3(νb)[σsoft + σjet] (38)

The modified Bessel functions of the third kind Kµ(z) are bounded by an exponential at

large values of the argument, i.e. Kµ(z) ∼
√

π
2z

e−z{1 + O(1
z
)}. We see then that the EMM

in the FF formulation does satisfy the requirements of analyticity in the Lehmann ellipse.
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But in the EMM, the observed shrinking of the diffraction peak, corresponding to an energy

dependent near gaussian fall off, is not present. Even if one were to introduce an ad hoc

energy dependence (as is often the practice) instead of the constant scale parameter ν, as

in the FF model, still one would be nowhere near the stronger Gaussian decrease at large

impact parameter values. This is one reason why the FF model in the eikonal formulation,

where jet cross-sections drive the rise, fails to provide an adequate description of the overall

energy dependence of the total cross section, without introducing an ad hoc modification of

the scale parameters.

V. THE SOFT GLUON TRANSVERSE MOMENTUM DISTRIBUTION

The model for the total cross-section presented in this paper is based on the ansatz

that QCD provides the main processes at work leading to the observed energy rise of all

measured total cross-sections. An important motivation of this model is to make quantitative

calculations based on current QCD phenomenology, namely current parton densities with

their energy momentum dependence, running behaviour of the coupling constant and soft

gluon resummation techniques. Of all these at present soft gluon resummation is the one

which presents the toughest technical challenge.

Let us begin by considering the well known function which describes soft gluon emission

from a parton-parton pair, namely the soft gluon transverse momentum distribution[38, 39]

d2P (K⊥)

d2K⊥
≡ Π(K⊥) =

∫

d2~b

(2π)2
eiK⊥·b−h(b) (39)

with

h(b) =
∫

d3n̄g(k)[1 − e−ik⊥·b] =
∫

d3k

2k0

∑

i,j=colors

|jµ,i(k)jµ,j(k)|[1 − e−ik⊥·b] (40)

where d3n̄g(k) is the distribution for single gluon emission in a scattering process, and jµ,i

the QCD current responsible for emission. The above expression has been widely used to

study the initial state transverse momentum distribution in Drell-Yan processes [40, 41] as

well as W-production [42, 43].

In the limit of large k⊥b, one can neglect the exponential term, and the above expression

reduces to the well known Sudakov form factor [44], namely

h(b) ≈ S(b) =
∫

d3n̄g(k) =
∫

d3k

2k0

∑

colors

|jµ,i(k)jµ,j(k)| (41)
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Introducing the running coupling constant and its asymptotic freedom expression, the inte-

gration from 1/b up to an upper limit Q gives [45]

h(b) ≈ 4CF

(11 − 2nf/3)
ln

Q2

Λ2
ln

ln(Q2/Λ2)

ln(1/b2Λ2)
(42)

For small momenta, however, the above expression is not sufficient to reproduce the

observed tranverse momentum distribution in various hadronic processes. Thus, an intrinsic

transverse momentum (of Drell-Yan pairs or W-boson or partons, depending on the physical

process under consideration) has to be introduced. The function now reads [46]

h(b) = b2p2
⊥int + S(b) (43)

where the intrinsic transverse momentum p⊥int is a constant, of the order of a few 100 MeV,

parametrized according to the process under consideration.

In our model, the function in Eq. (40), in addition to describing various hadronic trans-

verse momentum effects, also plays a major role in total cross-section calculations. Our

model for the hadronic transverse momentum distributions due to soft gluon resummation

differs in two major points from what we have just described. Basically, we focus on the

lower and higher limits of integration in Eq. (40). At the lower limit, since this expression

refers to soft gluons, we suggest that the correct use of this equation requires to integrate

the gluon momentum down to k⊥ = 0 and avoid the introduction of ad hoc quantities such

as the intrinsic transverse momentum. At the upper limit, one needs to specify, for each

given process, how the maximum soft gluon energy is defined. However, in order to use the

above expression for a believable calculation, a number of points need to be clarified, namely

(i) whether it makes sense to use a parton picture when the gluon momenta become close

to zero, with the related question of what is the behaviour of the strong coupling

constant αs when one integrates the gluon momentum down to zero

(ii) whether the emitting particles are quarks or gluons

(iii) what are the constraints from kinematics upon the maximum gluon momentum

We shall discuss some of these issues in detail in the sections to come, here we comment

briefly on these three points.

Concerning the parton picture, while we use it for the mini-jet contribution to the cross-

section, soft gluon Bloch-Nordsieck resummation factors out of the LO basic scattering
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process, and is thus independent of parton densities, involving only the momenta and the

QCD coupling between soft gluons and the emitting partons. On the other hand when

k⊥ → 0, this coupling is not an observable quantity, since it refers to a single soft gluon

emission, and one soft gluon is not an observable quantity (only its integrated spectrum is).

This has two effects: firstly, one needs to use a non-perturbative expression for the QCD

coupling constant, since the momenta are so small, and secondly only the integral of moments

of αs will matter. The infrared behaviour of αs is a matter of speculation. We propose our

own model, whose justification rests upon a Regge description and on the Richardson type

potential for quarkonium. As will be described in the next sections, a specific form for αs is

chosen, singular in the infrared limit, but integrable [1].

Another issue to address relates to the effect of emission from quarks, valence and sea, and

from gluons in the parton processes. In this paper, we only deal with emission from the initial

valence quarks, and use the relevant kinematics with their averages. This approximation is

justified by the fact that, relative to the emission from the initial valence quarks, emission

from the gluon legs is to be considered as emission from internal legs, thus subleading in

infrared terms. A complete calculation should of course include also emission from partons

other than the valence quarks and hence mostly the low-x gluons. We expect this inclusion

may eventually increase the softening effect.

To describe the softening effect quantitatively, one needs to focus on the maximum trans-

verse momentum allowed to single gluon emission. This quantity is energy dependent, as

one can easily see using the kinematics of single gluon emission in parton-parton scattering

of initial c.m. energy
√

ŝ. For the process

pi + pj → gluon + X (44)

where ŝ = (pi + pj)
2 and X a final state of given momentum Q, the maximum transverse

momentum of the gluon is given by

qmax(ŝ) =

√
ŝ

2
(1 − Q2

ŝ
) (45)

If we consider the state X to be the final (mini) jet-jet system in the inelastic collision

contributing to the cross-section, then the above expression depends on the parton sub-

energies and on the final state momentum of the jet-jet system, characterized by a transverse

momentum pt ≥ ptmin, where ptmin is a scale chosen to separate hard and soft processes. In
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principle, for each subprocess of given ŝ and Q2 one should evaluate the function h(b) with

the above qmax. In practice, we use a value for the maximum transverse momentum allowed

to single gluons, which is averaged over the initial and final parton momenta. This is shown

more explicitely in [1] and in section VI, but the result is that for a given ptmin cut-off in the

minijet distribution, for the valence quarks, the scale qmax increases with the c.m. energy

of the hadron-hadron system. This can be qualitatively understood by considering that the

valence quarks will on the average carry a larger energy and can then shed more soft gluons.

Thus, in the picture we present for hadron-hadron collisions, as the overal energy increases,

we have more parton-parton collisions for the same ptmin (since the number of low x-gluons

increases) but also more energy available to soft gluons both from initial valence quarks

and from all the hard partons in general, and thus more of a reduction. It is the balancing

of these two effects which we believe to be responsible for the observed softer rise of total

cross-sections.

VI. SOFT GLUON EMISSION AND ENERGY DEPENDENCE IN THE IMPACT

PARAMETER DISTRIBUTION

In our previous work, we have advocated that a cure for the difficulty in obtaining the

early dramatic rise and the softer asymptotic behaviour simultaneously, lies within QCD

itself; viz., the ubiquitous soft gluon emission accompanying all QCD scatterings which can

slow down any abrupt rise in the cross-section. To make this quantitative, we put forward

a model for the impact parameter distribution of partons in the hadrons, based on the

Fourier transform of the transverse momentum distribution of the soft gluons emitted in the

collisions, as described in the Block-Nordsieck (BN) summation procedure.This distribution

is energy dependent simply because the maximum energy allowed to each single emitted soft

gluon, in turn depends on the energy of the colliding partons. In detail, we have a picture

of parton-parton collisions at all admissible subenergy values and with a given transverse

momentum due to initial state radiation. In our model the soft gluon resummed transverse

momentum distribution of partons in the hadrons and the parton distribution in impact

parameter space are Fourier Transforms of each other. In principle, this formalism could

be used to obtain impact parameter dependent parton densities, but our aim in the present

paper is to obtain a prediction for the total cross-section based on currently used QCD
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functions and parameters such as parton densities and ΛQCD. We thus follow our previous

proposal [1, 47] to average out the behaviour of partons in their transverse momentum

variable and arrive at the following expression

2ℑm χ(b, s) = n(b, s; qmax, ptmin) = nsoft + njet = Asoft(b)σsoft + ABN (b, qmax)σjet (46)

As mentioned earlier, the eikonal formulation provides a natural framework, in which dif-

ferent contributions to the total cross-section can be resolved into their various structural

elements: the rise is incorporated in njet, and the decrease and normalization in nsoft. In

our previous work, we had parametrized phenomenologically the soft part, and used per-

turbative QCD for the jet part. In this paper, we study whether soft gluon summation can

describe the (experimentally observed) initial decrease in proton-proton scattering.

For this purpose, we write

n(b, s) = Asoft
BN σsoft + Ajet

BNσjet (47)

with

ABN =
e−h(b,s)

∫

d2~be−h(b,s)
(48)

where from Eq.(40) we have

h(b, s) =
8

3π

∫ qmax

0

dk

k
αs(k

2) ln(
qmax +

√

q2
max − k2

qmax −
√

q2
max − k2

)[1 − J0(kb)] (49)

and qmax depends on energy and the kinematics of the process[41]. From Eq.(45), the

following average expression for qmax was proposed in our previous paper [1],

M ≡< qmax(s) >=

√
s

2

∑

i,j

∫ dx1

x1
fi/a(x1)

∫ dx2

x2
fj/b(x2)

√
x1x2

∫ 1
zmin

dz(1 − z)
∑

i,j

∫ dx1

x1
fi/a(x1)

∫ dx2

x2
fj/b(x2)

∫ 1
zmin

(dz)
(50)

with zmin = 4p2
tmin/(sx1x2) and fi/a the valence quark densities used in the jet cross-section

calculation.

M establishes the scale which, on the average, regulates soft gluon emission in the colli-

sions, whereas ptmin provides the scale which characterizes the onset of hard parton-parton

scattering. For any parton parton subprocess characterized by a ptmin ≈ 1 ÷ 2 GeV , M has

a logarithmic increase at reasonably low energy and an almost constant behaviour at high

energy[1]. The eikonal formalism which we use to describe the total cross-section, incorpo-

rates multiple parton parton collisions, accompanied by soft gluon emission from the initial
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valence quarks, to leading order. Notice that in this model, we consider emissions only from

the external quark legs. In the impulse approximation on which the parton model itself is

based, the valence quarks are free, external particles. In this picture, emission of soft gluons

from the gluons involved in the hard scattering, is non leading. As the energy increases, more

and more hard gluons are emitted but there is also a larger and larger probability of soft

gluon emission : the overall effect is a rise of the cross-section, tempered by the soft emission,

i.e. the violent mini-jet rise due to semi-hard gluon gluon collisions is tamed by soft gluons.

Crucial in this model, are the scale and the behaviour of the strong coupling constant which

is present in the integral over the soft gluon spectrum. While in the jet cross-section αs never

plunges into the infrared region, as the scattering partons are by construction semi-hard, in

the soft gluon spectrum the opposite is true and a regularization is mandatory. We notice

however that here, as in other problems of soft hadron physics[48], what matters most is not

the value of αs(0), but rather its integral. Thus, all that we need to demand, is that αs be

integrable, even if singular [49]. We employ the same phenomenological expression for αs as

used in our previous works, namely

αs(k⊥) =
12π

(33 − 2Nf)

p

ln[1 + p(k⊥

Λ
)2p]

(51)

Through the above, we were able to reproduce the effect of the phenomenologically intro-

duced intrinsic transverse momentum of hadrons [49], and more recently obtained a very

good description of the entire region where the total cross-section rises[1]. This expression

for αs coincides with the usual one-loop expression for large values of k⊥, while going to

a singular limit for small k⊥. For p = 1 this expression corresponds to the Richardson

potential[50] used in bound state problems. We see from Eq.(49) that p = 1, leads to a

divergent integral, and thus cannot be used. Notice that, presently, in the expression for

h(b, s), the masses of the emitting particles are put to zero as is usual in perturbative QCD.

Thus, for a convergent integral, one requires p < 1 and the successful phenomenology indi-

cated in [1] gave p = 3/4. However, more study is needed, especially in the full utilization

of the Bloch-Nordsieck description, before one can completely define an expression for αs

in the infrared limit. A different possibility is to use a so-called frozen αs model, for which

αs(k
2
⊥) = 12π

27 ln[(k2
⊥

+a2Λ2)/Λ2)]
. These two expressions lead to very different large-b behaviour

of the function n(b, s) and, in light of the above discussion concerning the shrinking of the

diffraction peak, give quite a different s-dependence in the rising region of the total proton
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cross-section.

In [1], we presented analytic approximations for the function h(b, s), obtaining, in the

frozen αs case

lim
b→∞

h(b, M, Λ) =
2cF ᾱs

π

[

1

4
ln(2Mb) + 2 ln(Mb) ln(aΛb) − ln2 (aΛb)

]

(52)

while for the singular case

lim
b→∞

h(b, M, Λ) =
2cF b̄

π
(b2Λ2)p

[

1

8(1 − p)

(

2 ln(2Mb) +
1

1 − p

)

+

1

2p

(

2 ln(Mb) − 1

p

)]

where M ≡ qmax, ᾱs = 12π
27 ln a2 , b̄ = 12π

33−2Nf
. From the above, one can see that an approx-

imately Gaussian limit results in the singular αs case, but not in the frozen case. Indeed,

for the singular case, one has, to the lowest order, limb→∞ n(b, s) ∼ e−b2p
i.e. an exact

Gaussian limit for the Richardson potential, which corresponds to p = 1. This provides the

theoretical reason why the entire region where the total cross-section rises is well described

by perturbative QCD (jet cross-section) combined with Bloch-Nordsieck summation with a

singular αs in the infrared region. In contrast, neither the frozen αs model nor, the Form

Factor (FF) model are successful there.

Other models for the behaviour of αs in the infrared region, and studies of the range of

variability of the parameters used in Eq(51) will be presented in a forthcoming publication.

VII. THE DECREASE PRIOR TO THE ONSET OF MINI-JETS

Let us now address the question of the lower energy range, prior to the rise, using the

same phenomenological and theoretical tools of [1], but abandoning the FF and the frozen

αs models which appear to be inadequate. To study the low energy region, we apply our

procedure to proton-proton scattering, where the absence of resonances in the s-channel and

leading Regge poles in the t-channel make the picture remarkably simple. At low energies,

say before 10 GeV in the proton-proton c.m. system, one observes a very soft decrease, which

converts in a rise at an energy of ≈ 15 GeV in the c.m. In this low energy region, we know

that gluon densities are still very small, and that (almost) all hard parton-parton scattering

takes place among valence quarks : σjet, as defined through Eq.(17), is a few thousands

of the observed σtot. In the break up of ℑm χ into a soft and a hard part, the parameter
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ptmin separates hard and soft processes, namely for pparton
t ≥ ptmin one counts parton-parton

processes as part of the jet cross-section, whereas for pparton
t ≤ ptmin the process can be

counted as part of σsoft. Thus, in this region, we can study the contribution of valence

quark scattering without complications from inelastic gluon-gluon collisions.

This region then exhibits the effect of soft gluon emission accompanying gluon exchanges

among the valence quarks. At higher energies, these soft interactions still take place and

be a substantial part of the cross-section, but they will be shielded by the more dramatic

behaviour of the perturbative QCD processes, since as the energy increases, smaller and

smaller x-values of the gluon densities are probed and gluon exchanges among gluons start

becoming important. Thus we must build a piece of the total cross-section which will survive

at high energies, but which does not contribute to the rise. To begin with, we start with

a very simple ansätz : that for proton-proton the cross-section σsoft is a constant and the

slight decrease comes from the straggling, acollinearity effect of soft gluon emission. We

therefore propose, in first instance, the following expression for the average number of soft

collisions

nsoft(b, s) = Asoft
BN σ0 (53)

with Asoft
BN calculated through Eqs.(48,49) and investigate whether it is possible to find a

constant σ0 and a set of parameters (qmax) which can describe pp scattering at low energy.

For the soft part, the scale qmax corresponds to the maximum energy allowed to soft gluons

accompanying scattering with a final parton transverse momentum smaller than ptmin. We

are dealing with soft emission (for hard gluons pt > ptmin) and thus we expect qmax not to

be larger than 10− 20 % of ptmin. This provides an upper bound for qmax for soft processes.

The observation is then that for processes contributing to nsoft, a soft gluon will always

carry away less energy than for those contributing to nhard. The question is how much lower

is the allowed energy. We have proceeded phenomenologically, and found a set of values

which, as will be shown in the last section, can give an acceptable description for σpp before

the rise. These values are shown in Table I. Notice that, in order to reduce the number

of free parameters, we assume that, at low energies, there is only one value of qmax, for

both hard and soft processes. However, as the energy increases, the scale characterizing

the soft processes does not grow as the one for the hard case, the latter obtained through

the kinematics of jet production in a hard parton parton scattering. Here we should expect

the scale to start as a slowly increasing function of s, but to become a constant as soon as
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TABLE I: Average qmax values used for the impact parameter distribution of the soft part of the

eikonal
√

s(GeV ) qsoft
max(GeV )

5. 0.19

6. 0.21

7. 0.22

8. 0.23

9. 0.235

10. 0.24

50. 0.24

100 0.24

hard processes become substantial for
√

s ≥ 10 GeV . This is necessary, i.e. qmax does not

increase indefinitely, because as the energy available to soft gluons increases, at a certain

point the soft gluons will become hard and then undergo scattering among themselves.

Clearly, a soft scale not larger than 240 MeV is consistent with our understanding of

how a proton is structured, if we attribute σsoft, the soft component, as the cross section

when the scattering protons (and antiprotons) manifest themselves as a quark and a spin

zero diquark. The point is that the slopes for meson and baryon Regge trajectories are

justifiably equal only if a baryon is pictured as a quark/diquark system similar to a meson

as a quark/antiquark system (thus making the string tensions equal). This mode for the

nucleon is soft and diffusely spread over about a fermi[51]. Consequently, the soft- gluon

radiation distribution must be limited (lest it break the system). Thus, we estimate for the

soft process a qmax ≈ 1/(1 fermi) = 0.2 GeV .

With the value of ptmin which gave a smooth description of the total cross-section in [1],

we plot in FIG. (2) the behaviour of qmax as a function of energy, where the upper curve

is the one obtained using Eq.(50), for ptmin = 1.15 GeV , whereas the soft qmax starts with

the same value obtained for the jet term, and then is made to become a constant when it

reaches 240 MeV.

With these values for qmax we can now calculate ABN for both the hard and soft terms

in the eikonal as a function of the impact parameter b. Both soft and hard ABN are shown
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FIG. 2: The maximum transverse momentum allowed (on the average) for single soft gluon emission

as a function of the c.m. energy of scattering hadrons.

in Fig. 3 for a set of representative c.m. energies,
√

s = 5, 10, 50, 100, 500 GeV . Notice that

Asoft
BN does not change for

√
s ≥ 10 GeV , since qmax remains constant.

VIII. NORMALIZATION AND TOTAL CROSS-SECTIONS

In order to obtain the average number of collisions and thus the total cross-sections, the

overall normalization, given by σsoft has to be determined.

As mentioned in the introduction, we are assuming that the entire rise is due to σjet. For

the proton-proton cross-section, one needs only one further parameter for the non perturba-

tive region, namely a constant σ0 which gives the normalization of the cross-section. As far

as the proton-antiproton cross-section is concerned, the rapid decrease after the resonances

is interpreted as dual to the Regge trajectory exchange and it should be described by a

power sαR(0)−1 ≈ 1/
√

s . Neglecting the real part of the eikonal, our model is now complete

and reads as follows :

σtot = 2
∫

d2~b[1 − e−ℑm χ(b,s)] (54)
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FIG. 3: The impact parameter distribution function calculated for the soft gluon summation model,

using the qmax values described in the text, for various energy values. Full lines are for the soft

term.

with

2ℑm χ(b, s) = ABN (b, qsoft
max)σ

pp,p̄
soft + ABN (b, qjet

max)σjet(s; ptmin) (55)

We also have

σpp
soft = σ0, σpp̄

soft = σ0(1 +
2√
s
) (56)

We find that, in order to properly reproduce the normalization of the cross-section, we need

a value σ0 = 48 mb, in good agreement with the considerations of Sect.II. We now show in

FIG. (4) the average number of collisions as a function of b, distinguishing between hard

and soft contributions and using the values of qmax shown in FIG. (2). We only show the

low energy region,
√

s = 10÷100 GeV where the transition between soft and hard processes

occurs.

Finally, in FIG. (5) we show the results of our model, putting all the pieces together, for

the total cross-section for proton-proton and proton-antiproton collisions. We see that the

model gives an overall satisfactory description of the energy behaviour of available data[8].
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IX. ENERGY DEPENDENT < b2 > IN THE BLOCH-NORDSIECK MODEL

The energy dependent transverse overlap function, ABN , discussed in the previous sec-

tions, can be used to estimate the energy dependence of the average distance among partons

in the transverse space during a scattering process, namely

< b2 >=

∫

d2~b b2[ABN (b, qsoft
max) + ABN (b, qjet

max)]
∫

d2~b[ABN (b, qsoft
max) + ABN (b, qjet

max)]
(57)

The energy dependence of the average rms distance between partons so defined, is shown in

FIG. (6).

One can see from this figure that for the hard part of the eikonal in the Bloch-Nordsieck

model (dotted curve), the mean distance between the scattering partons does decrease as

the energy increases, thereby increasing the shadowing and taming the rise, as opposed to

the Form Factor model where < b2 > is a constant. This is then further reflected in a more

modest high energy rise for the BN model as seen in FIG. (5). It is also pleasing to note
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from the Bloch-Nordsieck model described in the text.

the following self consistency. That is, at low values of
√

s, values of < b2 > are the same

for both the soft and hard part of the eikonal in both models, as they must since at low

energy the transverse overlap function from the BN model is very similar to that from the

FF model.

Observations about the need of a shrinkage in the radius of the proton, have been made in

Ref. [52, 53], where multiparticle production in hadron hadron interactions has been studied

in detail in an eikonal Monte Carlo model. They find that in the hard multi parton model, a

good fit to the CDF data is obtained if the proton radius is decreased [54] by about a factor

of 1.7, as compared to the form factor model. Now the observation has been extended to

photoproduction as well [55].
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X. CONCLUSION

In conclusion, we have shown that standard QCD processes such as hard parton parton

scattering and soft gluon emission from valence quarks can account for two salient features

of the total proton-proton cross-section, the rise at high energy and the very gentle decrease

at low energy. An important characteristic of this treatment is that, as the minijet cross-

section rises with energy, soft gluon emission produces an acollinearity of the partons and

reduces the probability of collisions. This affects the cross-sections in two ways : at low

energy it produces a very soft decrease in σpp
tot and contributes to the faster decrease in σpp̄

tot,

at high energy it tames the rise due to σjet. It is then possible to have a very small ptmin to

see the onset of the rise around 10÷ 20 GeV , without encountering too large a cross-section

when the energy climbs into the TeV range and beyond. We stress that the above behaviour
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is obtained from leading soft gluon emission from the valence quarks. Subleading emission

from internal gluon legs is not considered here. It is to be emphasized that singular αs

appears necessary for this purpose thereby implying that confinement plays a crucial role in

the energy dependence of the total cross section.

Further input is needed to understand the scale or the normalization, which plays a

dominant role in the early decrease of the proton-antiproton cross-section.
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