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B.P.110, F-74941 Annecy-le-Vieux Cedex, France

bThe Institute of Mathematical Sciences,

Chennai 600 113, India

cLaboratoire de Physique Théorique, UMR 8627 CNRS,
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Abstract

We present a detailed phenomenological study of forward hadron (π0) production in deep
inelastic scattering, with both the direct and the resolved contributions calculated to NLO
accuracy. A comparison of the theoretical predictions for the various distributions with the
H1 data and a study of stability of the QCD predictions under changes of scales is the focus
of this study. We obtain a very good overall description of the recent H1 data with the
choice of scale Q2 + E2

⊥
, in contrast to the (Q2 + E2

⊥
)/2 required earlier when the resolved

contribution was included only at LO accuracy. We find a more modest variation of the
predictions, as the scale is changed from (Q2 + E2

⊥
)/2 to 2(Q2 + E2

⊥
), as compared to the

case where the resolved contribution was included only at LO accuracy. This variation is of
the order of the rather large experimental errors. Unfortunately, this fact prevents us from
concluding that perturbation theory gives an unambiguous prediction for forward particle
production in deep inelastic scattering. However, the overall success of perturbative QCD in
explaining the small xBj data means that perhaps a full resummation of the BFKL ladder
is not called for. We notice the need for rather large resolved contributions to explain the
data at low xBj even at somewhat larger Q2 values.
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1 Introduction

Recent experimental data, from the H1 collaboration [1], on large transverse energy hadron
production in deep-inelastic scattering have generated several theoretical papers attempting to
explain the data within the framework of perturbative Quantum Chromodynamics in the next-
to-leading order (NLO) approximation. These experimental results confirm and extend older
data from H1 [2, 3] and ZEUS [4, 5]. Since these H1 and ZEUS data on forward hadrons
as well as the data on forward jet [6, 7, 8] production at large transverse momentum probe
the small Bjorken-xBj region, it was argued [9] that they would be ideally suited to probe
the Balitsky-Fadin-Kuraev-Lipatov [10] (BFKL) regime, where the resummation of ln(1/xBj)
terms is important, and that they would show the breakdown of the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi [11] (DGLAP) regime. In this respect the single hadron data are more relevant
than the jet data since they cover a lower Bjorken-xBj range, down to xBj = 4.10−5 [1]. These
data are also expected to be more accurate than the jet data because of the difficulty of jet
identification at low transverse momentum and in the forward region.

A comparison of older H1 [2] results on single π0 production, with a model based on lowest
order matrix elements and parton cascades [12], shows very strong disagreement between data
and theory. The model falls much below the data (a factor 5 to 10 at low Q2 and low xBj) and,
besides, the shape of the xBj dependence is incorrect. Adding the contribution where the virtual
photon is resolved [13] reduces somewhat the disagreement at large Q2 but falls short of the
data at small Q2 unless a very large scale is chosen in the evaluation of the anomalous photon
component [1]. However, predictions based on improved leading order BFKL dynamics [14]
show a better overall agreement when compared to H1 data, specially at low Q2, but they do
not describe the Q2 evolution correctly [1].

The recent theoretical developments concern mainly the calculation of the single hadron pro-
duction in the NLO approximation [15, 16, 17, 18, 19]. Higher order diagrams neglected in the
earlier approaches modify the picture in several ways. They generate new topologies and new
hard scattering processes which should be considered as new Born terms. For example, at the
lowest order (LO) the hard scattering terms are mediated by quark exchange while in the NLO
approximation processes with gluon exchange appear and these become specially important [17]
in the forward region where the presence of the gluon pole enhances such terms. Also, at NLO,
terms associated with the qq̄ collinear component of the virtual photon, which build up the pho-
ton structure function (the so-called resolved component), appear. As is well known, a “large”
logarithm arises, asymptotically of type ln(E2

⊥
/Q2) when E2

⊥
≫ Q2 (E⊥ is the hadron trans-

verse momentum in the γ∗-proton center of mass frame2), and is associated with this structure
function, specially when the photon virtuality is small. This term can then be considered a
leading order term although it technically appears when calculating higher order diagrams [20] .
This is the reason why it was introduced in [13] where it indeed helped improve agreement with
the data. However, using a large scale in the photon structure function to enhance the resolved
contribution appears artificial. Indeed in an NLO calculation, the increase of the Born resolved
contribution is compensated by a decrease of the higher order direct contribution, not included
in [13], in such a way that the sum is more stable under changes of scales.

It should be stressed that single hadron production in deep-inelastic scattering experiments
present a very stringent consistency test of perturbative QCD and its various input distributions:
it involves the proton structure function as well as the hadronic fragmentation functions, all
quantities rather precisely measured in other experiments. As just discussed it is also very

2The variable which we denote E⊥ here is called p∗

T in Ref. [1].



sensitive to the virtual photon structure function [21, 22, 23], which is less well known but
which has been recently discussed in detail in [19].

The common features of recent NLO calculations [15, 16, 17, 18] are the following. The cross
section contains two (complicated) pieces: the “direct” cross section, where the virtual photon
couples directly to the hard process, and the “resolved” cross section, where the photon acts as
a composite object which is a source of collinear partons taking part in the hard subprocess.
The direct contribution is calculated in the NLO approximation, i.e up to O(α2

s), while the
cross section involving the resolved component is calculated to lowest order (LO) accuracy with
the photon scale compensating term included in the higher order part of the direct piece. No
DGLAP type resummation is performed on the virtual photon structure function. Using modern
proton structure functions [24, 25] and fragmentation functions [26] a very good agreement is
achieved with the data when using a common (renormalization, factorization and fragmentation)
scale set equal to (Q2 + E2

⊥
)/2. However all the above calculations exhibit the same large

scale dependence of the predictions mainly associated with the renormalization scale as will
be seen below. A rather large sensitivity of the predictions to the fragmentation functions is
also observed, with the data clearly favoring [16], like other hadronic data, the parametrization
of Kniehl, Kramer and Pötter [26] (KKP) over that of Kretzer [27]. Furthermore, in [17] a
discussion is given to isolate the origin of the large corrections terms and it is found that they
are associated with processes with a gluon exchange which are interpreted as the Born terms of
the BFKL ladder. The theoretical papers differ in the procedure to obtain the cross section: in
[15, 16] a calculation of the single particle spectrum is performed with the infrared divergences
compensated analytically while in [17, 18] a Monte-Carlo generator at the partonic level is
constructed with a numerical compensation of divergences.

In [19], the first evaluation, at the NLO accuracy, of the resolved contribution is presented: it
includes both the construction and the use of the NLO virtual photon structure function as well
as the NLO calculation of the hard matrix elements for the resolved processes. In the limited
phenomenological analysis performed, good agreement with the data is obtained with the scale
(Q2 + E2

⊥
), larger than that of the previous NLO calculations. The importance of the resolved

contribution to the cross section is again emphasized and it is shown that its factorization scale
dependence is reduced at the NLO accuracy compared to the LO calculation. It is then expected
that the full cross section will be less scale sensitive than in the work of [15, 16, 17, 18].

In the following we present a detailed phenomenological study of hadron production in deep-
inelastic scattering with both the direct and resolved contributions calculated at NLO accuracy.
A special emphasis will be put on the study of the scale variation of the cross section to determine
the domain where the perturbative QCD approach is reliable, i.e. stable under changes of scales.

In the next section we set up the theoretical framework and discuss the instabilities related to the
various scales introduced in the calculation (factorization scale M on the proton side and Mγ on
the photon side, fragmentation scale MF and factorization scale µ). A detailed comparison with
the various experimental H1 distributions [1] is performed next: at small Bjorken-xBj the large
corrections are found to be related to BFKL-like terms which appear in the NLO calculation in
some approximation (first corrections in αs ln(1/xBj)). Studying the Q2 dependence of the cross
section will probe the photon structure function as it is expected to play a dominant role at low
Q2 while at large Q2 the direct term is expected to dominate. Finally, studying the rapidity ηπ

or xπ = Elab
π /Elab

p distributions, as well as the transverse momentum distribution of the pion
will help constrain the quark and gluon fragmentation into pions.

Hadron production in DIS experiments offers a very rich structure: it is a two scale problem,
Q2 and E2

⊥
, with a large variation in the ratio of these two scales allowing the testing of the



theoretical results in different regimes. Furthermore, the small Q2 limit makes it possible to make
contact with photoproduction experiments. Combining all the data will help in understanding
the non-perturbative input to the photon structure function and its decreasing importance when
the virtuality of the photon increases. It will give some insight on the transition from the non-
perturbative to the perturbative regime, for the photon structure function.

2 Theoretical framework

We first discuss the features of the resolved cross section which were not taken into account in the
previous papers [15, 16, 17, 18]. When calculating the higher order (HO) corrections to the direct
contribution there appear configurations where the virtual photon turns into an almost collinear
q-q pair with the quark or the antiquark subsequently interacting with a parton from the proton.
This HO contribution, in principle negligible for E2

⊥
close to Q2, is important when E2

⊥
becomes

large. In this case we cannot content ourselves with the lowest order expression of the quark
distribution in the virtual photon, proportional to ln(E2

⊥
/Q2). The latter must be replaced

by a resummed LO or NLO expression. The standard procedure consists in subtracting from
the HO corrections a term proportional to ln(M2

γ /Q2) and to calculate a resolved contribution
with fully evolved parton distributions at the factorization scale M2

γ . The M2
γ -dependence of

the resolved part is partly compensated by the ln(E2
⊥
/M2

γ ) counterterm which remains in the
direct HO contribution. In Ref. [19] it was argued that a physical choice for the factorization
scale is M2

γ = (Q2 + C2
γ E2

⊥
) with Cγ of order O(1). With this scale, the resolved component is

negligible when E2
⊥
≪ Q2, whereas it is large when E2

⊥
≫ Q2. In the latter case, we recover the

standard factorization scale C2
γ E2

⊥
of large-E⊥ reactions.

Direct and resolved cross sections, calculated in the NLO approximation, have been discussed
respectively in Ref. [17] and [19]. Here, we do not give the technical details of these calculations
which can be found in the relevant references, but we summarize the main results that were
obtained:

1) The HO corrections to the direct cross section are very large (in the H1 kinematical domain)
and essentially come from graphs containing the exchange of a gluon in the t-channel. These
graphs represent a zeroth order approximation to the BFKL ladder.

2) The NLO direct cross section strongly depends on the renormalization scale µ.

3) With the factorization scale M2
γ = Q2 + E2

⊥
the NLO resolved contribution is as large as the

NLO direct one. Therefore we have access, through this contribution, to the parton distributions
in the virtual photon.

4) With the “natural” scale Q2 + E2
⊥
, the total cross section is in good agreement with the H1

data, thus suggesting that a sizeable BFKL type contribution may not be necessary to explain
the data.

The second point above is important because it does not allow us to make stable predictions for
the cross section and to assess the need for other contributions of the BFKL-type. Preliminary
studies of the renormalization scale dependence have been performed separately, for the direct
cross section [17] and the resolved cross section [19]. Here we would like to do a more complete
study of the scale sensitivity of the total cross section, including also the effects of the various
factorization scales. As is well known, only the total cross section has a physical meaning. The
separate contributions, Born terms, HO terms, direct or resolved terms are all factorization and
renormalization scale dependent. Since the direct and resolved NLO cross section are available,
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Figure 1: The cross section dσ/dxBj corresponding to the range 4.5 GeV2 ≤ Q2 ≤ 15 GeV2 and
E⊥ > 2.5 GeV compared to H1 data [1]. Cuts on all the other kinematical variables are given
in the text. The symbol HOs denotes the direct HO correction from which the lowest order
resolved contribution has been subtracted.

such a study of the scale sensitivity is now feasible.

Before starting this study let us specify the various building blocks of the total cross section. For
the parton distributions in the proton, we use the CTEQ6M tables [25], and for the distributions
in the virtual photon the parametrization given in Ref. [19]. In the latter this parametrization
was used with fixed value of Q2 corresponding to the average value <Q2> observed in a cross
section. For instance for the cross section dσ/dxBj in the range 4.5 GeV2 ≤ Q2 ≤ 15 GeV2 (see
Fig. 1), we used <Q2>= 8 GeV2. This value corresponds to the overall bin 1.1 10−4 ≤ xBj ≤
11.0 10−4. However this value changes with xBj and the description of the whole xBj domain by
a single value <Q2> is not accurate. Therefore in this paper we use a parametrization depending
continuously on xBj , Q2 and M2

γ . We work in the MS renormalization and factorization schemes
and all the scales are equal to (Q2 + E2

⊥
). We take nf = 4 flavors and for αs(µ) we use an

exact solution of the two-loop renormalization group equation with ΛMS = 326 MeV. The
fragmentation functions of the partons in π0 are those of Ref. [26]. With these inputs we
obtain the cross section displayed in Fig. 1 and compared with H1 data measured in the range
4.5 GeV2 ≤ Q2 ≤ 15 GeV2 [1]. Our calculations are performed at

√
S = 300.3 GeV and the

forward-π0 cross section is defined with the following cuts. In the laboratory system a π0 is
observed in the forward direction with 5◦ ≤ θπ ≤ 25◦ ; the laboratory momentum of the pion is
constrained by xπ = Elab

π /Elab
p ≥ 0.1, and an extra cut is put on the π0 transverse momentum

in the γ∗ − p center of mass system: E⊥ > 2.5 GeV. The inelasticity y = Q2/xBjS is restricted
to the range 0.1 < y < 0.6.

We clearly observe in this figure the points 1), 3) and 4) mentioned above, and in particular,
the very large HOs (the index s means that the lowest order resolved component has been
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Figure 2: Cross section variations with CI which has been defined in the text. The cross sections
are normalized to 1.0 at CI = 1. The choice of kinematic conditions is the same as in Fig.1.

subtracted from the HO corrections to the direct term, as discussed at the beginning of this
section). We also notice the importance of the HO corrections to the resolved cross section.
With respect to the corresponding figure of Ref. [19], we note that the resolved component
is larger at small xBj and smaller at large xBj , which improves agreement with data at large
xBj . This is due to the fact that the average <Q2> is smaller at small xBj than at large xBj .
Figure 1 is the starting point of our scale studies. We choose a kinematic region for which the
HO corrections are large (this is due to the small value of E⊥ > 2.5 GeV) in order to better
exhibit the scale dependence, but with the consequence (as we shall see) that the cross section
does not stabilize for an optimum choice of the scales. Let us define the factorization scales
M2

k = C2
k(Q2 +E2

⊥
) where k stands for I (the proton distribution scale) or F (the fragmentation

function (FF) scale). We also introduce the virtual photon factorization scale M2
γ = Q2 +C2

γE2
⊥

and the renormalization scale µ2 = C2
µ(Q2 + E2

⊥
).

We study the sensitivity of the various components of Fig. 1 in the single bin 1.1 × 10−4 <
xBj < 11.0 × 10−4 and start with the factorization scales MI and MF . In Figs. 2 and 3,
we observe very different behavior. The variation with MI is almost flat whereas that with
MF is strongly decreasing. These differences are due to the different average values of xp, the
proton distribution variable, and z, the fragmentation function variable, corresponding to the
kinematics of Fig. 1. In the direct process for instance, we have <xp>∼ 0.1, a domain in which
the proton distribution functions do not vary much with MI . For the fragmentation variable
we have <z>∼ 0.3 in the direct case, and <z>∼ 0.7 in the resolved case. In these ranges, the
variation of the fragmentation functions D(z,MF ) are not negligible; the higher the value of z,
the stronger the variation. Hence the different behavior of the direct and resolved contributions.
Moreover in the direct case, we observe that the HO corrections do not compensate the Born
term variation. This is due to the fact that the HO corrections contain new channels which
appear as new Born contributions for which there are no compensating ln(MF /E⊥) terms.
For instance, we have the opening of the new channel corresponding to Fig. 4a with the final
gluon fragmenting into a π0. At NLO there is no counter term which corrects this new Born
contribution. Such terms would only appear at NNLO. The contribution of this new channel,
involving the exchange of a gluon in the t-channel, is very large and the overall behavior of the
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Figure 3: Cross section variations with CF which has been defined in the text. The cross sections
are normalized to 1.0 at CF = 1. The choice of kinematic conditions is the same as in Fig.1.

q’

q
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Figure 4: Examples of HO graphs leading to the opening of new channels when the final hadron
is a fragment of the gluon or of the quark q.
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Figure 5: Cross section variations with Cγ which has been defined in the text. The cross sections
are normalized to 1.0 at Cγ = 1. The choice of kinematic conditions is the same as in Fig.1.

NLO cross section is very similar to that of the Born contribution. In the resolved contribution
a graph with a gluon exchanged in the t-channel already exists at the Born level and the HO
corrections contain the appropriate counter term. However the compensation between the Born
contribution and the HO is not complete due to the large values of <z> involved.

Let us now turn to the study of the variations with Mγ which are displayed in Fig. 5. In
the variations studied till now, there was no compensation between the resolved and the direct
terms. For instance, the MI dependence of the parton distributions in the photon were separately
compensated by ln(MI/E⊥) terms which appear in the direct or in the resolved HO corrections.
However, for Mγ , we have compensation between the resolved and the direct terms that we can
observe in Fig. 5. When Mγ increases the Born+ HOs direct contribution decreases. This is
due to the fact that a term proportional to log(Mγ/Q) is subtracted from the HO corrections
leaving a piece log(E⊥/Mγ) in the remaining HOs part, as explained at the beginning of this
section. On the other hand, the resolved contribution increases with the increase of the parton
distributions in the virtual photon. A counter term present in the HO resolved correction
dampens the variation of the NLO cross section compared to the Born case. More precisely,
the scale variation of the photon structure function contains two pieces (see i.e. eq. (16) in
Ref. [19]): the inhomogeneous part, proportional to α, and the homogeneous or hadron-like
part proportional to ααs. The scale variation of the inhomogeneous part is compensated by the
HOs direct term, while that of the homogeneous part is in the HO resolved contribution. For
a consistent calculation it is therefore necessary to work at the NLO level for both direct and
resolved pieces. Due to the compensation between the direct and the resolved contributions, the
total cross section exhibits a smoother behavior when M2

γ varies by a factor 20.

Finally let us consider the variations as a function of the renormalization scale µ. They are the
largest. We note the same phenomenon as observed for the MF -scale variation: no compensation
for the direct NLO term and a small compensation for the NLO resolved contribution. Con-
cerning the direct term, this behaviour again arises due to the opening of new channels, without
virtual corrections (they appear only at NNLO), containing terms in log(µ/E⊥) to compensate
the µ dependence of αs(µ). As these new Born terms are proportional to α2

s(µ) and constitute
a large part of the cross section [17], the variation of the latter is strong. On the other hand
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Figure 6: Cross section variations with Cµ which has been defined in the text. The cross
sections are normalized to one at Cµ = 1. The choice of kinematic conditions is the same as
in Fig.1 except for the rightmost panel, where the dash-dotted curve corresponds to the NLO
cross section calculated in the bin 20 GeV2 < Q2 < 70 GeV2, 3.9 × 10−4 < xBj

< 6.3 × 10−3,
E⊥ > 3.5 GeV.

virtual corrections to terms containing a gluon exchanged in the t-channel are present in the
resolved contribution. This produces the small effect observed in Fig. 5 and we do not find
any reasonable value of µ for which the cross section would reach an optimum. This is due to
the large HO corrections corresponding to the small values of the transverse energy in the H1
kinematical domain studied here. Indeed the H1 experiment puts a minimum cut-off on E⊥ (the
transverse energy in the γ∗-proton center of mass frame) of 2.5 GeV. This is a small value for a
“large-pT ” reaction and the resulting HO are large. However for higher values of the cut-off, the
HO corrections are smaller and we find a µ-variation of the resolved cross section which exhibits
an optimum (maximum) point. For instance in Ref. [19] a cut-off E⊥ > 5 GeV was used and an
optimum of the cross section was found for Cµ ∼ 0.2.

Therefore we reach the conclusion that the addition of the NLO resolved component improves
the behavior of the cross section with respect to the scale variation. However the sensitivity
of the cross section to the renormalization scale variation prevents us from predicting absolute
values for the latter. For instance, in the range 1/4 < C2

µ < 4, the predictions vary by a factor
2. This fact clearly points towards the necessity of calculating NNLO corrections. For the time
being with the aim of phenomenological applications in mind, we choose scales which lead to a
good description of the data in the range 4.5 GeV2 ≤ Q2 ≤ 15 GeV2. As we can see from Fig. 1,
such an agreement is found with all scales set equal to Q2 + E2

⊥
. Then with the same scales

we make predictions for dσ/dxBj in the other Q2-ranges, as well as for dσ/dE⊥ and dσ/dxπ.
Because of the marked scale sensitivity of the cross sections, scales giving a good description
of data in a given Q2-range do not necessarily lead to a good agreement in another range. It
turns out, as we shall see, that a satisfactory description of all the data can be obtained with
this single choice of scales. Of course the scale choice could be refined in order to improve the
agreement between data and theory in Fig. 1, especially at small xBj . But this is a formal
exercise that does not present any physical interest.

Finally, to ameliorate some of our negative conclusions on the scale dependence of the cross



0

20

40

60

80

0

500

1000

1500

2000

B
j

0

100

200

300

400

10 10−4 −3 xBj

d σ
/d

x
[n

b]

2 < Q  < 4.5 GeV2 2

4.5 < Q  < 15 GeV2 2

15 < Q  < 70 GeV2 2

Figure 7: Inclusive π0 cross section as a function of xBj in the range E⊥ > 2.5 GeV for three
different intervals in Q2. The cuts on other variables are given in the text. The data points are
from the H1 collaboration [1]. The histograms are the theoretical predictions obtained with all
scales set equal to (Q2+E2

⊥
); solid line: full NLO predictions; dashed line: “direct” contribution.

section, we note that at larger Q2 and E2
⊥
, the sensitivity to the renormalization scale is reduced.

In Fig. 6 (rightmost panel), we display the behavior of the total NLO cross section in the range
20 GeV2 ≤ Q2 ≤ 70 GeV2 with 3.9 × 10−4 < xBj < 6.3 × 10−3 (E⊥ > 3.5 GeV). The cross
section varies by less than ± 25% when Cµ is in the range 1/4 < C2

µ < 4.

3 Comparison to H1 data

We are now ready to compare the theoretical predictions to the H1 recent results [1] on single
π0 inclusive cross section. The same kinematical cuts as in the experimental data are imposed
on the theory, and they are given in the previous section while discussing Fig. 1.

Concerning the theoretical predictions “NLO” will refer to the full next-to-leading logarithmic
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predictions for the direct term as well as for the resolved term, where “direct” refers to the
lowest order (“Born”) term with the attached higher order corrections labeled “HOs” above3.
The MS scheme is used throughout with ΛMS = 326 MeV. For convenience we recall here the
basic ingredients entering the calculation. All predictions are made using CTEQ6M [25] for the
proton parton distributions and KKP [26] for the fragmentation functions of the pion. For the
virtual photon structure function, in the resolved term, the recent parametrization of Ref. [19]
is taken. Using the lowest order approximation (the so-called “box” approximation) changes the
results by less than 10%. The common scale is chosen to be (Q2 + E2

⊥
).

The comparison between theory and experiment for the single pion distribution as a function

3In [18] an extensive discussion is given of the interference terms where the photon couples to two different
quark lines, which leads to triangle graphs when calculating the cross section (the so-called Furry terms) and these
terms are found to give an appreciable contribution. In the present calculation, valid for neutral pion production,
these terms are not present because the quark production cross section is cancelled by the antiquark cross section.
The same reason makes them vanish in jet production.



of xBj is shown in Figs. 7 and 8 for the cuts E⊥ > 2.5 GeV and E⊥ > 3.5 GeV respectively.
We notice the very good overall agreement between data and theory (note the linear scale)
for the whole xBj range. At a finer level one may observe some systematics in Fig. 7 where
at low xBj , for the medium Q2 range, the theoretical predictions fall slightly above the data
while in the large Q2 bin it is the opposite. Furthermore, one notes the importance of the
resolved contribution (the difference between the solid and the dashed line). At low Q2 (upper
panels) it is 1.5 to 1.9 times the direct contribution, decreasing as xBj increases, while at large
Q2 (lower panels) it never exceeds the direct term and becomes almost negligible at large xBj :
this is as expected from the discussion in the previous section. The importance of the resolved
contribution to obtain agreement with the data was also pointed out by Kramer and Pötter who
calculated the NLO cross section (resolved term at leading order) to forward dijet production [28]
and compared it with H1 [3] and ZEUS [7] data, as well by Jung and collaborators[29] in their
analysis using a LO calculation. One may comment again on the rather unusual situation at
low xBj where the HOs correction to the direct term can be up to an order of magnitude larger
than the Born term (see Fig. 1) due to the appearance of the BFKL-like terms of Fig. 4 with
gluon poles. At large xBj however one recovers the “usual” situation where the HOs piece is of
the same order of magnitude as the lowest order term.

A very impressive agreement is also achieved, in Fig. 9, for the E⊥ spectrum for all Q2 values.
The resolved contribution decreases with Q2 but it remains important for all values of Q2 and all
transverse momenta. The E⊥ distribution should be sensitive to the choice of the fragmentation
functions and it is interesting to try different sets, in particular that of Kretzer [27]. We do not
do it here as it has already been shown by Daleo et al. [16] that the parametrization of [27]
leads to predictions which fall below the data. This confirms previous studies [30] showing that
the fragmentation functions of [27] systematically underestimate particle production in hadronic
reactions.

Similarly, the longitudinal momentum distribution of the pion is in remarkable agreement with
the data both for specific Q2 bins (Fig. 10) or specific xBj bins (Fig. 11). Again the resolved
component is important over the whole xπ range but, clearly, it gives a decreasing contribution
as Q2 increases. One has to note that there is little correlation between xπ and the fragmentation
variable z: for instance, in the resolved case <z>∼ .5 (calculated with the Born term only in
the region 2 GeV2 < Q2 < 4.5 GeV2) varies by less than 10% when xπ varies between the first
and the last bin of Fig. 10. Therefore we cannot rely on the xπ spectrum to constrain the z
shape of the fragmentation functions.

From the comparison with data we can conclude that perturbative QCD, in the NLO approxi-
mation, gives unexpectedly good results, especially in view of the initial discrepancy observed at
leading order between theory and data. Two ingredients explain this fact: the unusually large
correction to the direct term, specially at low xBj , and the importance of the resolved photon
contribution including the associated higher order corrections. Unfortunately, none of the in-
clusive observables discussed here allows for an unambiguous separation of the two terms. In
principle, looking at more exclusive quantities, such as hadron-jet correlations, would allow the
determination of the longitudinal momentum fraction in the photon xγ [31], and consequently
the separation of the two types of terms. However, since the HOs term is very large, it may lead
to a large contribution at xγ 6= 1 making the separation from the resolved term difficult.

The success of perturbative QCD to explain the data at small xBj is interesting. It seems to
imply that there is no clear signal in the H1 data of the BFKL type resummation effects and
that keeping only the lowest order term in the usual perturbative sense is justified. One reason
may be the following. The BFKL result is derived for asymptotic energies. However, at HERA
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Figure 9: Inclusive π0 cross section as a function of the π0 transverse momentum in the γ∗-
proton center of mass frame for three different intervals in Q2. The data points are from the
H1 collaboration [1]. The histograms are the theoretical results: the solid line corresponds to
full NLO predictions and the dashed line to the “direct” contribution. Choice of scales is as in
Fig. 7. The variable p∗T in the figure is the notation of the H1 collaboration and is called E⊥ in
the text.

the rapidity range, ln(S/Q2), available is not extremely large and threshold effects do not allow
for the full formation of the BFKL ladder [32, 33].

4 Comparison with other perturbative calculations

The H1 data are also in very good agreement with the NLO calculations of Daleo et al. [16] and
Kniehl et al. [18]. We recall that the difference between these approaches and the present one lies
in the fact that, in the former, no special consideration is given to the photon structure function:
the NLO correction to the direct term contains a “large” factor of type ln((Q2 +E2

⊥
)/Q2) which

amounts, in fact, to parametrizing the photon function by its lowest perturbative approximation.
Furthermore no NLO corrections are included in the resolved cross section. In contrast, in this
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Figure 10: Inclusive π0 cross section as a function of xπ = Elab
π /Elab

p in the range E⊥ > 2.5
GeV for three different intervals in Q2. The cuts on other variables are given in the text. The
data points are from the H1 collaboration [1]. The histograms are the theoretical results:the
solid line corresponds to full NLO predictions and the dashed line to the “direct” contribution.
Choice of scales is as in Fig. 7.

work, we use both a NLO expression for the resolved photon structure function and we include
the HO corrections to the resolved cross section. Agreement with the data is obtained in all
cases at the cost of using a different choice for the common scale. In [16] and [18], as well as
in our previous work [17], the scale (Q2 + E2

⊥
)/2 was the appropriate choice. In this work, it is

seen that the scale (Q2 + E2
⊥
) is preferred. The data do not obviously prefer one or the other of

the two sets of calculations as the shape of the observables is not affected. In Ref. [18] a very
large scale sensitivity was however observed: under the rather modest change from (Q2 +E2

⊥
)/4

to (Q2 + E2
⊥
) the theoretical predictions vary by as much as a factor 2 in some cases, and, in

any case, the theoretical uncertainties are much (sometimes twice) larger that the experimental
ones (statistic and systematic errors combined). In the current approach we expect a smaller
sensitivity to the scales since more HO corrections are taken into account. Besides, it is seen
from Figs. 3, 5, 6 that the variation with the scales seems to decrease at higher scales. This is
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Figure 11: Inclusive π0 cross section as a function of xπ = Elab
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p in the range E⊥ > 2.5
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illustrated in Figs. 12 and 13 where we show the results for (Q2 + E2
⊥
)/2 and 2(Q2 + E2

⊥
) 4.

Compared to the results of [18], the scale variations are somewhat tempered and are of the same
order as that of the rather large experimental errors.

5 Conclusions

Using the latest structure and fragmentation functions, the complete NLO calculation of the
direct and resolved contributions to forward particle production in deep-inelastic scattering at
HERA, describes the data rather well in the wide kinematical range available: 2 GeV2 < Q2 <

4Note that the resolved photon scale differs slightly from the others since we use, as explained in Sec. 2,
M2

γ = (Q2 + C2

γE2

⊥) with C2

γ = 1/2 and C2

γ = 2.
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Figure 12: Inclusive π0 cross section as a function of xBj in the range E⊥ > 2.5 GeV for three
different intervals in Q2. The data points are from the H1 collaboration [1]. The histograms are
the NLO theoretical results for different scales of the form C2(Q2 + E2

⊥
): C2 = .5, upper dotted

histogram; C2 = 1, solid histogram; C2 = 2 lower dashed histogram.

70 GeV2, 2.5 GeV < E⊥ < 15 GeV. The importance of the NLO corrections to both the direct
and resolved terms is pointed out. These large corrections are associated with new topologies
involving gluon exchange in the hard sub-processes. These terms, which have no equivalent
at the lowest order are interpreted as the first terms of the BFKL ladder. The data seem to
indicate that resummation of such ladder diagrams is not necessary, probably because of the not
so large rapidity phase space available. Agreement between theory and data is achieved choosing
a standard scale of the form (Q2 + E2

⊥
). The variations under the proton factorization scale

and the photon factorization scale are under control. However a rather large instability of the
predictions is observed when varying independently the renormalization and the fragmentation
scales. This prevents a really quantitative prediction for the single pion inclusive distribution in
the forward region. In this respect, taking account of the HO resolved contribution improves the
situation compared to calculations which ignored it but the situation is still far from satisfactory.
We have checked that imposing a larger E⊥ cut on the data reduces the scale sensitivity: for
example, with the conditions E⊥ > 7 GeV and 4.5 GeV2 < Q2 < 15 GeV2 the variation is ±13%

10%

for a scale variation as in Fig. 12. Probably, the evaluation of the next-to-next-to-leading order
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terms is required to obtain reliable and stable perturbative predictions.

Acknowledgments

The authors thank Jacek Turnau, Gudrun Heinrich, Jean-Philippe Guillet for discussions and
Roberta Shapiro for a critical reading of the manuscript. R.M.G. would like to thank the
Department of Science and Technology, India, for financial support to the Centre for High
Energy Physics, IISc, for a cluster, under the FIST program : SR/FIST/PSI-022/2000. P.A.
and M.F. thank the Institute of Mathematical Sciences, Chennai for hospitality and R.M.G
thanks LAPTH, Annecy for hospitality in addition.



References

[1] H1 Collaboration, A. Aktas et al., Eur. Phys. J. C 36 (2004) 441 [arXiv:hep-ex/0404009].

[2] H1 Collaboration, C. Adloff et al., Phys. Lett. B 462 (1999) 440 [arXiv:hep-ex/9907030].

[3] H1 Collaboration: C. Adloff et al., Nucl. Phys. B 538 (1999) 3 [arXiv:hep-ex/9809028].

[4] ZEUS Collaboration, M. Derrick et al., Z. Phys. C 68 (1995) 29 [arXiv:hep-ex/9505011].

[5] ZEUS Collaboration, J. Breitweg et al., Eur. Phys. J. C 11 (1999) 251
[arXiv:hep-ex/9903056].

[6] H1 Collaboration, A. Aktas et al., Eur. Phys. J. C 37 (2004) 141 [arXiv:hep-ex/0401010].

[7] ZEUS Collaboration, J. Breitweg et al., Eur. Phys. J. C 6 (1999) 239
[arXiv:hep-ex/9805016].

[8] ZEUS Collaboration. J. Breitweg et al., Phys. Lett. B 479 (2000) 37 [arXiv:hep-ex/0002010].

[9] A. L. Mueller, Nucl. Phys. (Proc. Suppl.) B18c (1990) 125.

[10] E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 45 (1977) 199;
I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822.

[11] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438 and 675;
L. N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94;
G. Altarelli and G. Parisi, Nucl. Phys. B 126 (1977) 298;
Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641.

[12] G. Ingelman, A. Edin and J. Rathsman, Comp. Phys. Comm. 101 (1997) 108
[hep-ph/9605286].

[13] H. Jung, Comp. Phys. Comm. 86 (1995) 147.
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