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ABSTRACT

We examine the consequences of treating a galactic disk as a two-fluid system for the stability of the
entire disk and for the stability and form of the gas in the disk.

We find that the existence of even a small fraction of the total disk surface density in a cold fluid (that is, the
gas) makes it much harder to stabilize the entire two-fluid disk. (Cy min ).y the critical stellar velocity dispersion
for a two-fluid disk is an increasing function of u,/p,, the gas fraction, and pu,/k, where p,, p, and y, are the
gaseous, stellar, and total disk surface densities and « is the epicyclic frequency. In the Galaxy, we find that
(Cs,min)2-5 as a function of R peaks when y,/k peaks—at galactocentric radii of R ~ 5-7 kpc; two-fluid instabilities
are most likely to occur in this region. This region is coincident with the peak in the molecular cloud
distribution in the Galaxy.

At the higher effective gas density resulting from the growth of a two-fluid instability, the gas may become
unstable, even when originally the gas by itself is stable. The wavelength of a typical (induced) gas instability
in the inner galaxy is ~400 pc, and it contains ~107 M of interstellar matter; these instabilities may be
identified with clusters of giant molecular clouds.

We suggest that many of the spiral features seen in gas-rich spiral galaxies may be material arms or arm

segments resulting from sheared two-fluid gravitational instabilities.
The analysis presented here is applicable to any general disk galaxy consisting of stars and gas.
Subject headings: galaxies: internal motions — galaxies: Milky Way — galaxies: structure — instabilities —
interstellar: matter — interstellar: molecules

I. INTRODUCTION

In the preceding paper (Jog and Solomon 1984, hereafter
Paper I) we formulated a two-fluid scheme wherein the stars
and the gas in a galactic disk are represented as two isothermal
fluids, and the two fluids interact gravitationally with each
other. The disk is supported by rotation and random motion.
We formulated and solved the hydrodynamic equations
describing this system and studied the characteristics of the
resulting (axisymmetric) two-fluid gravitational instabilities in
such a system. The main result from this study was that even
when both the fluids in a two-fluid system are separately
stable, the joint two-fluid system, due to the gravitational
interaction between the two component fluids, may be unstable.
Second, the contribution per unit surface density, u, toward
the formation of two-fluid instabilities is substantially greater
for the gas than it is for the stars; this is due to the lower gas
velocity dispersion C, as compared to the stellar velocity
dispersion C;.

In this paper, we examine the consequences of treating a
galactic disk as a two-fluid system for the stability of the entire
disk (§ II) as well as the stability and form of the gas in the
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disk (§ III). We also comment on the connection between
two-fluid instabilities in a disk and the observed small-scale
spiral features in external spiral galaxies (§ IV).

In § IT we calculate (C; min),-s, the critical stellar velocity
dispersion needed to stabilize the entire two-fluid disk. For
this, we study two-fluid neutral equilibrium. From analytical
calculations (for an infinitesimally thin disk) in § Ila, we find
that the ratio of the two-fluid and one-fluid (stars-alone)
critical stellar velocity dispersion is always greater than 1 and
increases as the gas fraction in the two-fluid disk (at constant
total disk surface density) is increased. From the numerical
results for a finite height disk presented in § IIb we find that
(Cys.min)2-5 is an increasing function of p,/u, the ratio of gas to
stellar surface densities and p,/x, where py, is the total disk
surface density and « is the epicyclic frequency. (C min)2-5 @S @
function of R in the Galaxy peaks at R = 5 kpc.

In § IIT we examine the formation of condensations in the
(initially stable) gas as a result of the increase in gas density
resulting from the growth of a two-fluid gravitational instabi-
lity. We find that in the Galaxy, these condensations are most
likely to occur at R = 4-7 kpc which does indeed coincide
with the peak of the molecular ring in the Galaxy. The
wavelength of a typical (induced) gas instability in the galactic
disk is ~400-500 pc, and it contains a mass of gas
~1-2 x 10" M.

Section V contains a summary of the conclusions from this
paper.
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II. DISK STABILITY: TWO-FLUID NEUTRAL EQUILIBRIUM

A one-fluid stellar disk is stable against the growth of
axisymmetric perturbations if the (planar one-dimensional
rms) stellar velocity dispersion C in the disk exceeds the critical
stellar velocity dispersion, C; yin)i-s (= nGu/x) (Toomre
1964).* (Cy, min);- corresponds to the neutral equilibrium for a
one-fluid disk. We extend Toomre’s argument for a neutrally
stable one-fluid disk to a disk composed of a two-fluid system
and define (C, min),-y, the critical stellar velocity dispersion for
a two-fluid disk. We solve for (C; min),-, in terms of the other
input parameters; this is a valid approach as long as the gas
alone is stable.

Recall from § Ilc of Paper I that the behavior of a given
perturbation mode (k, ), where k = (27/1) is the wavenumber
and o is the angular frequency, to the two-fluid system (for an
infinitesimally thin disk) is governed by:

wz(k) = %{(“s + O‘g) - [(“s + ‘xg)z - 4(0‘s %y — :Bs ﬁg)]l/z} > (1)
where
ay = k2 + k*C2 — 2nGky
a, = k> + k*C,* — 2nGky, ,
By = 2nGkyy ,
B, = 2nGky, . (2)

The corresponding equations for a finite height two-fluid
case are given by equations (23) and (24), respectively
(Paper I).

A system is in neutral equilibrium when the following
simultaneous equations

w*(k) =0 3)
and
dw*(k))/dk = 0 )
have real k solutions.

For the two-fluid system, w?(k) is a fourth order equation in
k (see eq. [1]); hence, in this case three solutions for (ko),.,
the two-fluid neutral wavenumber, and therefore for
(Cs,min)2-y—one corresponding to each solution for (k),.,—
are possible. We expect (ko),., to be near the neutral wave-
numbers for the stars-alone (ko); and the gas-alone (ko),,
respectively, for low and high u,/p,. The resulting solution for
(ko)2-y in any given case denotes the wavenumber at which
it is hardest (or, at which the highest C; is needed) to stabilize
the two-fluid system, by solving for C,.

a) Analytical Calculation of (Cq min),-y for an
Infinitesimally Thin Disk

From the equation for w?(k) for a two-fluid system with
zero scale height (eq. [1]), we can see that the condition in
equation (3) is identical to

asag—ﬁsﬁg=0' (5)
Equation (5) reduces to (see egs. [21], [22] in Paper I)
2nGku, 2nGky,
=1. 6
K* + k*C,? T k2C,? (6)

4 A hydrodynamic approach yields this definition whereas the distribution
function approach used by Toomre gives 3.36 instead of m in the above
definition.
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Equation (4) reduces to the following form when equation
(5) is satisfied:

dik (x50t — B B,) =0
that is,
2k3C2C,% — 3nGk? (1, Ci* + 1 C,?)
+kk*(C2 + C,%) — 16K (ug + 1) =0 (7)
We want to express equations (6) and (7) in terms of dimen-

sionless quantities. Define C = nGu,/k = unit of velocity and
A = nGu,/x? = unit of wavelength. Also define:

k-A=y, pl/uw=c,
[(Cs,min)Z-f/C] =ds, and Cg/c = qg (8)

Here, C is equal to (Cg min);-y, the Toomre critical stellar
velocity dispersion, for the case when all the disk density is in
the stellar fluid alone. Note that /' = u,/u,, the gas fraction,
equals (¢/1 —€) and ¢, = Qy(1 —¢) and g, = Q,¢, where
0, (= «Cy/nGy,) and Q, (= xC,/nGp,) are the respective
Toomre factors for the stars-alone and gas-alone systems.

Equations (6) and (7) when expressed in terms of the
above set of dimensionless parameters (eq. [8]), reduce respec-
tively to:

2x(1 —¢) 2xe
=1
1 + x%q* 17 x%q,? ©)

and
2x%qq,% — 3x7[eq + (1 — €)g,%]
+ x(gs* +¢,°)—1=0. (10)

We next solve equations (9) and (10) together numerically,
and obtain g, for a given (g,, ¢). That is, we obtain g
at a given set of values for k, y,, e(= p,/u,), and C,. To check
that this value of g, does indeed leave the system stable at all
x, we have to make sure that the function w?(k) is indeed
greater than 0 for all x values between x = 1/(1 — €) and 1/e.
We do this by evaluating the left-hand side of equation (9)
(at the above g, value) and checking that it is less than 1 in
the above x-range.

In Figure 1, we present the results for gq,, that is,
(Cs,min)2-/C as a function of p,/u, for two sets of values of «,
w—each set giving rise to one of the two curves. We keep C,
constant at 5 km s~ ! for both cases. Under this assumption,
q; is effectively a function only of f, that is, u,/u,.

From Figure 1, we see that at any p,/u, C; (Cs min)2-5 1S
always greater than C [= (C, min);1-s]; that is, it is harder to
stabilize a two-fluid disk than the corresponding one-fluid
stellar disk (of the same total disk surface density). Second,
(Cs,min)2-s/C increases as p,/p, is increased. [Qualitatively,
both these results were expected from Fig. 3 of Paper I, where
we found that if a small fraction of the total density of an
initially neutrally stable stellar disk is put in a cold fluid,
that is, gas, the resulting two-fluid system (at the same C;)
is unstable and becomes progressively more unstable as p,/u,
is increased. Hence (Cj min),-, Would be expected to increase
with increasing pu,/u at constant total disk surface density,
as is indeed seen to be true from Fig. 1 here.] In the limiting
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F1G. 1.—The ratio of the critical stellar velocity dispersions for a two-fluid

system and a one-fluid stellar system (at constant total surface density) as a
function of the gas fraction y,/u,. Two cases as shown for k = 74 km s~ kpe !,
1 =248 M, pc™? (giving p/k = 3.3 Mg pc™?/km s~ kpc™!), and k = 39
km s~ 'kpe™ !, y, = 82 M pc™ 2 (giving g,/ = 2.1 Mg pc™2/km s~ kpe™?).
C,=5km s~ ! for both cases. The divergence of (Cj, min),-s/C occurs where
the gas alone approaches neutral equilibrium (Q, ~ 1).

case Of py/pis = 0, (Cq min)2-5/C does tend to 1 in each case,
as expected.

We see that the ratio (Cg min)2-5/C is a linearly increasing
function of p,/u;, for low values of the same. At higher u,/u,,
this ratio increases nonlinearly and finally diverges at very
large gas fraction, p,/u;. The onset of divergence is related to
the approach of (ko),., toward ~(ko),—away from ~ (ko)s,
which in turn is coincident with the gas-alone tending toward
neutral equilibrium (Q, — 1) since the stellar contribution is
negligible near (k,),. Now, as Q, — 1, a, — 0. That is,

a, = (k* + k*C,> — 2nGkp,) -0,
which gives
2nGky,
e IC

Thus, at (ko),., = (ko),» €quation (6), which is a necessary
condition for two-fluid neutral equilibrium, can be satisfied,
in view of equation (11), only by C, — co. The sharp increase
in (Cy,min)2-y Occurs at a lower u,/u for a higher u,/x, as seen
from equation (11) and in Figure 1. Also, at a given pu,/x,
the higher the value of C,, the larger is the value of p,/u,
at which this divergence occurs. For example, if C, =8
km s~! were to be used in Figure 1, the divergence would
occur at a gas density that is ~(8/5) = 1.6 times larger.

In the limit that o, <0, the two-fluid system cannot be
stabilized—that is, equation (6) cannot be satisfied—no matter
how high Cj is; hence the function (C; min);-, is no longer
meaningful. In fact, an effective upper limit on (C, pin);-, may
be placed as the case when (C min),-y is a significant fraction
of the rotational velocity, since the system cannot be treated
as a disk any more.

1. (11)

0.20
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b) Numerical Evaluation of (Cq min)a-y, and the
Characteristics of (Cq min)2-5 in the Galaxy

Here we consider the most general form of w? as applicable
to a two-fluid system in a finite height disk (eq. [23] of
Paper I). The quantities 2k, and 2k, are the total scale heights
for the stars and the gas, respectively. In this case, equations
similar to (9) and (10) may be derived but would be tedious to
solve analytically. Hence, instead, for a given set of values for
the parameters «, g, p, C,, h, we obtain (Cg min),-; by
maximizing w?(k) (eq. [23], Paper I) with respect to k for
different C,, and the C; for which the peak in w? equals zero
is then critical stellar velocity dispersion, (Cgmin)2-y- We
determine h, using equation (28) of Paper I, n=2 (see
§ IIla, Paper I).

For comparison, we employ a similar procedure (beginning
with eq. [25], § IId, Paper I) to obtain (Cj, min)1-y for a finite
height disk. Here h, is obtained using equation (28), n =1
(see I1a, Paper I).

In Figure 2, we present results for (Cg min)2-y as a function
of R, the galactocentric radius for p,/u; = 0.1, 0.15, and 0.2.
R = 10 kpc denotes the solar neighborhood. For the galactic
disk, x and p, are taken from Caldwell and Ostriker (1981).
We assume p, =y, — pi;. The input data and results for
Figure 2 as well as the corresponding (Cg, min)i-y at each R
are listed in Table 1. The numerical results (for a finite height
disk) agree very well with the analytical results (for an
infinitesimally thin disk) given in § Ila: The difference [in
each (Cs min)2-y and (Cg min)i-s] is less than 109, as long as

100 T T T T T T
80F .
Tm
E
=
_~ 60} -
£
E
73
e
40t .
204 6 8 10 12

R(kpc)

FIG. 2.—(Cg, min)2-s, the two-fluid critical stellar velocity dispersion versus
R, the galactocentric radius. The input parameters, k, y,, as functions of R,
are listed in Table 1. The peak in (C min);-y VS. R (for a constant p,/u,
with R) occurs at the peak in p/k vs. R; that is, at R =35 kpc. The
location of the peak coincides with the molecular “ring” in the Galaxy.
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TABLE 1
(Cs,min)2-y AS A FUNCTION OF R IN THE GALAXY
ltis = 0.1 Hg/pts = 0.15 Uglts =02

R K e Comin)eoy  Comindzr (o), Cominr  (Coin)yy  (Cominds (Coma)if®

(kpc) (km s kpC_ 1) (MO pC_ 2) (km s™! (Cs,min)l-f (km s” 1) (Cs‘min)l-f (km st (Cs.min)l-j (km s” l)
4 89 281 42.0 1.15 44.4 1.22 50.8 1.39 36.4
S 74 248 44.5 1.11 471 1.18 90.5 2.26 39.9
6 65 209 42.6 1.09 453 1.16 89.3 2.29 39.0
T o 57 171 39.8 1.11 423 1.18 65.6 1.83 35.8
8 49 137 36.9 1.11 38.9 1.17 50.0 1.51 330
L, 44 107 323 1.10 343 1.17 37.7 1.29 29.2
10 oo 39 82 278 1.10 29.1 1.15 310 1.23 25.2

® The values of k and y, are adapted from Caldwell and Ostriker 1981.

® (Cs,min)1-s is evaluated numerically for a finite height stellar disk with (i), = (1),

(ko)2-y ~ (ko)s, that is, at low pu,/u,, and is <309 when
(ko)2-5 = (ko),, that is, at high u,/u;. Thus the value of pu,/u,
at which the onset of divergence in Figure 1 occurs is
underestimated slightly.

From Figure 2, we see that at a given R, (C; yin)2-s is higher
for a higher p,/u,; and at a given p,/p, the highest (Cq min)2-s
coincides with the position of highest p/k (as seen from
Table 1). Also, note that, at a given p/ps, (Cg min)z-y as a
function of R peaks at an intermediate point (R =5 kpc)
in the galactic disk.

Now it is most difficult (that is, it takes the longest time)
to establish two-fluid neutral equilibrium in the region where
(Cs.min)2-r peaks. Therefore, the two-fluid instabilities and,
in view of the large p,/k in the region where (Cs min)s-s
peaks, the induced gas instabilities as well (discussed in § III)
are more likely to occur in this region. The formation of
gravitational instabilities will lead to a significant increase in
the gas density which will result in the formation of dense
clouds or cloud complexes and a consequent conversion of
hydrogen to molecular form. The molecular to atomic surface
density ratio in the ISM, p,(H,)/u, (H 1), will therefore peak
in the same region where (C; min)2-s(R) peaks. Note that this
result arises solely due to the interaction between the two
fluids in the two-fluid scheme. Conversely, when the disk is
treated as consisting of two separate noninteracting fluids,
there is no connection expected between the stellar velocity
dispersion and the form of density in the gas.

Given the particular values for x(R), ,(R) in the Galaxy
(and assuming a constant p,/u at all R), we predict that the
maximum gas fraction in the molecular form will be found
to occur at R = 5 kpc, which does indeed coincide with the
peak (in density) of the “molecular ring” (Scoville and
Solomon 1975) in the Galaxy, thus corroborating the above
discussion. The analysis in this section can also be applied
to external galaxies, and we plan to do this in a future paper.

A comment is in order about the uncertainty in the absolute
value of (Cj min);-, resulting from the same in p,/p, and g,
in the disk. Observations of gas density in the disk indicate
(see § Illa of Paper I) that over R =4-10 kpc, p,/u, is
expected to be ~0.1-0.15 (see Sanders, Solomon, and Scoville
1984). But p, is uncertain by ~50% and g, is known only
from approximate exponential (galactic mass) models (see
discussion in § IIla of Paper I). Therefore, there is a
considerable range (see Table 1) in the predicted values of

(Cs,min)2-s at each R in the Galaxy. There exists a further (and
more important) uncertainty in (Cg min)s-y, however, as
explained next. Now, the results for (Cs min):-; given in
Table 1 represent the case when all the nongaseous disk
density—that is, (4, — p,)—is in a single stellar component
characterized by (Cj min)2-s- In the solar neighborhood, how-
ever, only a fraction of the nongaseous disk density is
accounted for by the observed disk stars. If the remaining
density resides in a higher velocity component, then the value
Of (Cy min)2-y for disk stability at R = 10 kpc as derived above
is overestimated. Indeed, Nakamura (1978)° has done the
technically identical analysis of two-fluid neutral equilibrium
except from the point of view of determining only a lower
limit on the velocity of the as yet unseen disk component
in the solar neighborhood. Nakamura, assuming gas to be
stable, estimates this to be 25 km s~ * which is roughly equal to
the two-fluid critical stellar velocity dispersion at R = 10 kpc,
with p,/u, = 0.1 (see Table 1). One cannot, however, a priori
do a smmilar study for the nonlocal regions. For these cases
as well as for R = 10 kpc, we assume that all the nongaseous
disk density is in a single stellar component. Under this
assumption, the values of (C min)2-; that we have derived
(Table 1) are correct.

We end this section by a brief discussion about the com-
parison of the current observed C; in the disk with (C; min)2-
calculated above. For a one-fluid stellar disk, Toomre (1964)
argued that even an initially unstable (one-fluid) disk would
undergo several successive generations of instabilities, each of
which would add some more kinetic energy of random
motions to the system. In a few rotation periods, the system
would then reach an equilibrium state in which the random
velocity at each point in the Galaxy would have become
about equal to the local (Cg min)i-y, that is, the minimum
value needed for disk stability at each point.

From the various cases considered for a two-fluid system
(see § IIIb of Paper I), we found that a typical two-fluid
instability has a time growth, T, ~ a few x 107 years (< the
age of the Galaxy). Therefore, we propose that prior to some
unspecified earlier epoch, the Galaxy must have been unstable
and then reached two-fluid neutral equilibrium; with the stellar
velocity dispersion at each point ~ (C min),-7- We expect, then,

5 This paper by Nakamura was recently brought to our attention, after
we had completed our work presented in this paper.
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that at the current epoch the stellar velocity dispersion, on
average, at any point in the disk (for a uniform disk) equals or
exceeds the local value of (Cj, min)2-,- This increase in C; above
and beyond (C; )2, Which may be attributed to an accelera-
tion mechanism such as the Spitzer-Schwarzschild (1953)
mechanism, would not disturb the disk stability.

The higher value of (C; min);., as compared to (Cq min)s-s
means that during the evolution of the disk, it is harder to
stabilize a two-fluid disk. Once the disk is stabilized, however,
the two-fluid scheme gives a higher value for the lower limit
on the observed stellar velocity dispersion in a disk at the
current epoch than the one given by the Toomre model for a
one-fluid stellar disk.

III. GAS INSTABILITIES INDUCED BY THE
TWO-FLUID INSTABILITIES

As discussed earlier in § I of Paper I, over a large region
in the inner Galaxy the gas is on the brink of allowing the
growth of gravitational instabilities, requiring an increase in
the overall gas density by only a factor of 2 or less before the
gas alone becomes unstable to the growth of gravitational
instabilities. In this section, we investigate whether the
increase in the gas density (for gas within a two-fluid instabi-
lity), resulting from the growth of a two-fluid instability, can
precipitate the formation of instabilities in the gas alone or
not. In § Illa, we calculate the gas density amplification
resulting due to the growth of a two-fluid instability. In § ITIb,
we derive the criterion for the onset of induced gas instabili-
ties, and in § IIc we study the properties of the induced gas
instabilities in the Galaxy.

a) Gas Density Amplification Due to a
Two-Fluid Instability

The increase in gas density resulting from the growth of a
two-fluid instability depends on the relative fractional growth
in the perturbations in the two fluids, that is, on (du,/uy0)/
(0us/us0), Where py and g, are the unperturbed gas and stellar
surface densities respectively, and on the maximum allowed
fractional growth in the stellar fluid perturbation which is
given by (0u/uso) & 1. The latter condition arises from our
assumption that the two-fluid instabilities can continue to
grow only as long as the stellar fluid is far from the non-
linear regime, the reason being that the stellar fluid cannot
dissipate the increase in the random motion “pressure” due to
the increase in the density, whereas the gas can dissipate the
heat of compression via collision, radiation, turbulence etc.

Now, although a perturbation (k, w) to the two-fluid system
grows at the same rate in both the fluids since w is the same,
the perturbation does not become nonlinear at the same epoch
in both the fluids, as shown next. This is because, as shown
in § Ille of Paper I, the original magnitudes of the perturba-
tion surface densities, du," and dp, are not independent for a
two-fluid case; rather, they are governed by the coupling of the
two fluids that occurs via the force equation. The velocity
dispersion of either isothermal fluid dictates its response to
the joint gravitational perturbation (see eqgs. [33] and [34] of
Paper I). Equation (35) from Paper I gives:

(5.ug,/:ug0) _ Kz + k2C52 B wZ
(Ous/uso) 12+ K2C* —w?

(12)
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Since we are considering two-fluid instabilities, w?(k) <0
in the last three equations and hence the ratio in equation (12)
is a positive definite quantity. Starting from ¢ = 0, consider
the ratio of the fractional growth in the perturbation surface
density for the two fluids, at a given time ¢t later:

(5.119/#30) _ KZ + kzcs2 B wZ (13)
(5ﬂs/lus0) B Kz + k2cg2 - wZ '
Since the maximum allowed value for (du/ug0) is ~1, we

find from equation (13) that the corresponding value of &/,
allowed is:

24 k202 — 2
= (Kz 2 Sz c02)- (14)
=1 (K% + k*Cy* — w?)
This quantity is greater than 1 when C; > C,. We denfie 4,
the gas amplification factor, as:

k2 + k*Ct — w?
A [1 + (KZ KRG, = wz)} . (15)

Thus p, - A is the gas density reached as a result of the
growth of a given two-fluid instability (k, w). Note that 4 > 2;
that is, the gas is in a nonlinear regime. We assume that the gas
continues its collapse even after reaching the nonlinear
density; hence we can apply equation (13), derived from a
linear calculation, to the gas in a nonlinear regime.

Conversely, for a given set of values for the input parameters
and op,/ug0, We can, using equation (13), determine Suy/uyo.
The maximum value of the latter is 1 for a constant set of
input parameters, especially C,. Note that because the stellar
fluid is incompressible, its subsequent separate collapse (unlike
that of gas to be studied next) is not expected to take place.
Instead we expect the density enhancement in the stellar fluid
to disperse with time. Hence the above calculated value of
O/ 1iso is applicable only for the young (t < t,., = 1/w,. ) two-
fluid instabilities.

(5:ug/,ug0)

b) Criterion for the Onset of Induced Gas Instabilities

The one-fluid gas dispersion relation for a finite height disk
is given (by eq. [26] of Paper I) as:

w?yp=K> + k*C2 — 2nGkuyo{[1 — exp (—kh,)]/kh,} . (16)

With (u,0 A) as the effective gas density, resulting from the
growth of a two-fluid instability, the above equation
reduces to

0?1y =Kk + k*C,> — 2nGk(ugo A){[1 — exp (—kh,)]/kh,} .
(17)

Because of the compressible nature of the gas, the value of
C, is unaltered even after p, increases. Equation (17) is
applicable to all k values larger than the one characterizing
the particular two-fluid instability under consideration.

From equation (16), we can numerically obtain (i)criicals
the critical gas density (at a given C,) for which gas-alone
instabilities can occur. [Note that at (iy)eisicars Q, (for a finite
height gas disk) equals 1.] Comparing equations (16) and (17),
it is clear that even when the average observed gas density,
Ko, 15 less than (u,)eriica, the (induced) gas instabilities can
still occur if pyo > [(#)erisica/A), hence the label “induced”
for these instabilities. w?®, (k) (as given by eq. [17]) <0
constitutes the criterion for the onset of induced gas
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instabilities. Thus, (,)crisicar has been effectively redefined by
taking account of the gas amplification resulting from the
growth of a two-fluid instability. Therefore, while considering
the stability of the gas in a two-fluid system, one cannot treat
the gas separately as an isolated system. As a result of the
compressible nature of the gas, once it becomes unstable and
the density increases, most of the gas may be converted to a
molecular form. Thus the stability as well as the form of the
gas in a two-fluid system is affected by the stellar fluid in the
system.

¢) Results for Induced Gas Instabilities

The analysis for induced gas instabilities is applicable to a
section of a real galaxy only when the local value of C; is less
than (Cg min),-s- If the gas does become unstable, its further
evolution could only be studied by doing a nonlinear analysis
which we do not attempt to do in this paper. However, if such
induced gas instabilities were feasible and if the resulting
instabilities were long-lived (> teee.ran1), as there is evidence for
from the observations of a dense interstellar medium in the
Galaxy, then we could explain the existence of dense gas
clouds in the ISM formed by gravitational instabilities [with
g in clouds > (i, )criicar] €ven when the average gas density
/"g (= :ugO) iIl ISM iS <(ﬂg)critical'

For the purpose of illustrating the properties of the resulting
typical induced gas instabilities, we consider the following
hypothetical cases. Assuming that C; at each point is an
arbitrary fraction, 6 (which is constant for all R), of the
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local (Cy min)a-y, We first calculate the local value of 4 and
hence the effective gas density (u)egeciive = K40 4, at each R.
For this, we use (C; min)2-; as a function of R as given in
Table 1 and use equation (23) of Paper I to derive w?,.,.
Next, we calculate the characteristics, Kpea and @, for the
respective fastest growing mode for the gas-alone system at
Uy = (Ug)emrective- We carry out this entire procedure first for
0 =0.8 and then repeat it for 6 =0.9 so as to study the
variation (if any) in the properties of the resulting induced
gas instabilities. The results from this calculation are given in
Table 2. At each R in each case, we find that A4, the gas
amplification factor, is typically in the range of 3.5 to 4 (and is
therefore moderately independent of the variation in C;). The
induced gas instabilities on the other hand are more likely (as
seen from values of (lug)eﬁective/(ﬂg)critical, Table 2) in the inter-
mediate region in the galaxy, from R =4 to 7 kpc, that is,
where p,/x is high (low Q,). Although this ratio is greater than
1 for each R, the actual likelihood of induced gas instabilities
at each R must depend on the respective peak growth rate
which is seen to be maximum in the intermediate R-range.

Note that we have assumed a constant value of y,/u,(= 0.1)
in doing the above calculations, so that u, peaks at the
lowest R (~4 kpc) under consideration here. Hence, the
resulting coincidence between the region of fast growth of the
induced gas instabilities and the observed “ring” region of the
molecular gas density distribution is not simply due to the
high total gas density.

The location of the peak in (Cj min),., coincides with the

TABLE 2A®

RESULTS FOR INDUCED GAS INSTABILITIES

Mgas
(in induced gas

R C Hgo® (Hg)eriticar Gas Amplification (Hg)esreciive (Ay-p)t (@01 peak instabilities)

(kpc) (kms™')  (Mopc?) (Mo pe ?) Factor 4 ()erien (kpe™ 1) (kms™ 1 kpe~!)? (Mo)
4o 336 25.5 328 3.60 2.80 242 8.83 x 103 1.51 x 107
S 35.6 225 27.5 3.80 311 2.39 9.65 x 103 1.34 x 107
6 34.1 19.0 24.1 3.83 3.02 221 7.89 x 103 1.49 x 107
T 31.8 15.5 211 3.74 2.75 1.97 5.57 x 10® 1.49 x 107
8 29.5 125 18.3 3.73 2.55 1.75 397 x 103 1.52 x 107
O 25.8 9.7 16.1 3.58 2.16 1.48 223 x 103 1.59 x 107
100 222 7.5 144 341 1.78 123 1.05 x 103 1.69 x 107

* Case a: C; = 0.8 (C, min)-s- The values of (Cq )., are taken for case i,/ = 0.1 from Table 1.
® pigo = 0.1p0. pe(= g0 + Hso) is adopted from Caldwell and Ostriker 1981.
TABLE 2B°
RESULTS FOR INDUCED GAS INSTABILITIES
Mgas
(in induced gas

R C, fgo® (Hg)eritical Gas Amplification ~ (Holemeenve (1, )1 (@21 )pea instabilities)

(kpe) (kms™')  (Mope™?)  (Mopc? Factor 4 (Mg)esitican (kpc)™*  (kms™'kpc!)? (Mo)
G 378 25.5 328 3.27 2.54 2.36 6.82 x 103 1.50 x 107
S 40.1 22.5 27.5 3.34 2.73 224 7.17 x 103 1.50 x 107
[ 38.3 19.0 24.1 3.32 2.62 2.06 5.68 x 103 1.49 x 107
T e 358 15.5 21.2 3.35 2.46 1.86 427 x 103 1.50 x 107
8 332 12.5 18.3 3.35 2.26 1.65 3.03 x 10° 1.54 x 107
9 29.1 9.7 16.1 3.33 1.94 1.40 1.63 x 103 1.60 x 107
10 250 7.5 144 3.18 1.66 1.18 7.79 x 10? 1.71 x 107

* Case b: C; = 0.9 x (Cy min)2-s- The values of (C;,in),-, are taken for case p,/p; = 0.1 from Table 1.

® pgo = 0.1p0;5 p(= pgo + fs0) is adopted from Caldwell and Ostriker 1981.
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region of maximum likelihood of induced gas instabilities.
This is because both of these functions are increasing
functions of u,/k at a constant p,/u,. If u,/u; were to change
with R so that yu/k and p,/x were to peak at different R
values, the above two functions need not peak at the same
location in the Galaxy.

The wavelength for a typical induced gas instability is
~400-500 pc, and the mass of gas in such a typical instability
at any R is ~1-2 x 107 M (see Tables 2A and 2B). Since
we have not considered the nonlinear case, the actual scale of
the resulting inhomogeneity may be substantially less, but the
mass will be preserved. Each of these features may very well
be the clusters of molecular clouds seen by Sanders and
Solomon (1984). Recall from Paper I, § IIIb, that the
wavelength for a typical two-fluid instability in the Galaxy is
~2-3 kpc and the mass of gas in it is ~4 x 107-108 M.
Therefore, when induced gas instabilities do occur, there are
typically from five to seven regions, each separated by about
500 pc within a typical two-fluid instability, assuming that
all the gas in the two-fluid instability ends up in such
condensations and that consequent fragmentation (if any) does
not destroy a given clump totally.

In § II1a, we saw that as a result of the onset of a two-fluid
instability, while p, increases to 2ug, p, increases to
(Hg)emrective = Hgo A at the same time. Hence, the typical linear
extent of the region occupied by the stellar component and
the gaseous component within a two-fluid instability con-
sequent to the growth in density due to the two-fluid instability
of wavelength 1,., is A,.,/2Y% and ,.;/[A]"?, respectively.
Pictorially, the spatial distribution of these various regions may
be schematically illustrated as in Figure 3.

IV. DISCUSSION OF THE SCALE-LENGTH OF THE
(NONAXISYMMETRIC) TWO-FLUID INSTABILITIES
AND THE SPIRAL STRUCTURE IN A DISK

In this paper (and in Paper I), we consider only the axisym-
metric case (for the perturbations to the two-fluid system).
Now for a two-dimensional disk, the most general perturbation
is nonaxisymmetric, and the treatment of this is not a simple

F1G. 3.—Schematic drawing of the various regions within a two-fluid
instability. Each of the three outer solid curves represents a two-fluid instability
of wavelength, 1, ,~2-3 kpc. The stellar and the gas components,
consequent to the growth in density due to the two-fluid instability, lie within
areas bound by the dashed curve and the dark solid curve, respectively, within
each instability; this has been shown explicitly in the leftmost section. The
surface areas of these two regions are given by (4,.,)%/2 and (4,,)%/4
respectively, where 4 ~ 3.5 is the gas amplification factor. The clumps within
the area occupied by the gas at high density are the induced gas instabilities,
each a few hundred parsecs in extent.
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extension of the axisymmetric analysis in the case of a
differentially rotating disk. We plan to carry out two-fluid non-
axisymmetric analysis in a future paper. The nonaxisymmetric
two-fluid instabilities in a differentially rotating galactic disk
can potentially explain the spiral features in disk galaxies,
consisting of stars and gas.

Observationally, it is seen that very few spiral galaxies
exhibit a grand two-arm or three-arm spiral pattern, and most
galaxies contain a messy distribution of spiral features on a
smaller scale, ~2-3 kpc (Sandage 1961; Prendergast 1967,
Goldreich and Lynden-Bell 1965; Toomre 1977; Elmegreen
and Elmegreen 1982). The two-fluid instabilities, especially
in the nonaxisymmetric case, may represent the spiral arm
segments or features, each of typical wavelength ~2-3 kpc,
seen in spiral galaxies. We view the spiral features in spiral
galaxies not as quasi-stationary wave phenomena (unlike in
the density wave theory; see Lin and Shu 1964, 1966) but
rather as material arms, that is, as randomly occurring, sheared
two-fluid gravitational instabilities. In the past, Goldreich and
Lynden-Bell (1965) have proposed that spiral arms (in Sc
galaxies) be considered as sheared gravitational instabilities.
Toomre (1977) also has stressed the idea that the “secondary”
spiral features may be considered to be material arms. Both
Goldreich and Lynden-Bell (1965) and Toomre (1964),
however, deal with a one-fluid stellar disk, and the wave-
length obtained is too large (~5-8 kpc) (Toomre 1964) to
represent a typical (small-scale) spiral feature in a galaxy,
as was pointed out by Toomre. The addition of the gas in
our two-fluid treatment reduces the wavelength, bringing it
into closer agreement with the observations.

At the end, we note that this alternative point of view—
namely, that the spiral arms are material entities—cannot
explain the grand spiral pattern seen in some external galaxies
(such as M81, M51 [Sandage 1961]). The grand spiral pattern,
when present, could be driven by a companion galaxy (Toomre
1969) or by a central bar (Toomre 1969; Sanders and
Huntley 1976; Feldman and Lin 1973).

It may well be that for isolated, non-barred, gas-rich
galaxies, the two-fluid instabilities dominantly determine the
spiral structure, while for the galaxies that do exhibit grand
spiral pattern, the density wave theory or any other theory
describing the spiral pattern as a wave phenomenon may be
important. Even in the latter cases, however, there will still be
random and localized perturbations (on the underlying grand
spiral pattern) that may be due to the two-fluid instabilities.

V. CONCLUSIONS

The conclusions from this paper are summarized below:

1. The critical stellar velocity dispersion required for the
disk stability is significantly larger for the two-fluid system
than it is for the one-fluid stellar system (of same total disk
surface density), even when only a small fraction (0.1-0.2)
of the total disk density is in a cold fluid (that is, gas).
Therefore, it is harder to stabilize a two-fluid disk than the
corresponding one-fluid stellar disk. The observed stellar
velocity dispersion should exceed the two-fluid value (on
average) for a stable galaxy.

(Cy.min)2-s 18 an increasing function of u,/u, and p/x. In
the Galaxy, (Cs min)z-y as a function of R peaks when p/x
peaks, at galactocentric radii of R~ 5-7 kpc; two-fluid
instabilities are most likely to occur in this region. We expect
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that gravitational instabilities lead to the formation of giant
molecular clouds through two-fluid instabilities and sub-
sequent induced gas instabilities. Observations of the distribu-
tion of dense interstellar matter (giant molecular clouds) show
a maximum concentration in a “ring” between 5 and 8 kpc
(see, e.g., Sanders, Solomon, and Scoville 1984), in good
agreement with the above result.

2. At the increased gas density resulting from the growth of
a two-fluid instability, the gas itself may become unstable to
the growth of gravitational perturbations, thus resulting in the
formation of induced gas instabilities, even when originally
the gas by itself is stable.

We find that the growth rate for induced gas instabilities is
greater in the regions of high y,/k—that is, in the intermediate
region (R = 4-7 kpc) in the Galaxy. The typical wavelength
of an induced gas instability in the Galaxy is ~400-500 pc.
Each of these contains gas of total mass ~1-2 x 107 M.
Such inhomogeneities may be identified with the observa-
tional feature of clusters of giant molecular clouds (Sanders
and Solomon 1984).

We can thus explain the existence of dense, molecular gas
clouds in the ISM even when the average spread-out gas
density in the ISM at the current epoch does not allow gas-

alone to be unstable. Thus, the stability as well as the form of
the gas in a two-fluid disk may be significantly affected by
the stars in the disk.

3. The two-fluid instabilities, especially in the nonaxisym-
metric case (to be presented in a future paper), may represent
the spiral arm segments or features, each of typical wavelengths
~2-3 kpc. We view many of the spiral features in spiral
galaxies as material arms—that is, as randomly occurring,
sheared two-fluid gravitational instabilities. For isolated, non-
barred, gas-rich galaxies the two-fluid instabilities may
determine the spiral structure seen.

The general analysis presented here is valid for any disk
galaxy. In a future paper we plan to apply the two-fluid
analysis to external galaxies, so as to evaluate the stellar
velocity structure and the distribution within a galaxy of the
molecular gas.
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