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ABSTRACT

It has been proposed by Fukunaga and Jog & Ostriker that gravitational scattering of clouds off one
another in encounters caused by differential rotation can account for the velocity dispersion of the largest
molecular clouds in our Galaxy. Angular momentum transfer in cloud-cloud scatterings increases the eccen-
tricity, or epicyclic amplitude, of the clouds. This input of random energy is ultimately balanced by dissipative

cloud collisions, leading to equilibrium.

Here we recalculate the energy input to the clouds using the proper linearized equations of motion, includ-
ing the Coriolis force and allowing for changes in the guiding center. Perturbation theory gives a result in the
limit of distant encounters and small initial epicyclic amplitudes. Direct integration of the equations of motion

allows us to study the strong encounter regime.

Our perturbation theory result differs by a factor of order unity from that of Jog & Ostriker. The result of
our numerical integrations for the two-dimensional (planar) velocity dispersion, adopting the same model for

energy loss as Jog & Ostriker, is

0 ~094GM_ x)!* =51kms!
for our fiducial cloud of mass 5 x 10° M at Ry/2, slightly smaller than the value obtained by Jog &

Ostriker.

In an Appendix we calculate the accretion rate for a molecular cloud in the galactic disk.
Subject headings: interstellar: molecules — nebulae: internal motions

1. INTRODUCTION

The motivation for considering gravitational scattering as a
mechanism for increasing the velocity dispersion of giant
molecular clouds has been discussed by Jog & Ostriker (1988,
hereafter JO), and by Fukunaga and collaborators (Fukunaga
1984; Fukunaga & Tosa 1989, and references therein). Briefly,
since the velocity dispersion of interstellar clouds changes little
over more than three orders of magnitude in mass, we know
that the most massive clouds are not in equipartition with the
smaller clouds whose kinetic energy is supplied mainly by
interactions with supernovae. There must then be some other
mechanism accelerating the largest clouds. Gravitation, which
acts as a local force in a nearly two-dimensional system like the
Galactic disk, can provide a viscous couple capable of trans-
ferring energy from ordered rotational motion to random
motions and hence accelerating the giant molecular clouds
(GMCs).

Our physical approach is motivated by the analysis of
random velocities of particles within Saturn’s rings by Gold-
reich & Tremaine (1978). In their model, mildly inelastic colli-
sions between particles set up a viscous stress that transfers
energy from rotational to random motion. The requirement
that energy gains and losses balance one another then fixes the
coefficient of restitution for particle-particle collisions as a
function of the optical depth through the ring. Since the coeffi-
cient of restitution is a monotonically decreasing function of
impact velocity for the materials that make up Saturn’s rings,
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the coefficient of restitution uniquely determines the velocity
dispersion.

The Galactic disk obviously differs from planetary rings in
important respects. First, there are other forces, such as accel-
eration by supernovae, ram pressure, and magnetic fields that
may act on the clouds. Second, because the gas that makes up
the disk is highly dissipative, it hovers on the brink of insta-
bility and collective effects (spiral arms) can be important. We
work with an idealized model of the Galactic disk that ignores
these effects, treating the molecular cloud distribution as
uniform and ignoring physical processes other than two-body
gravitational scattering and cloud-cloud collisions. In our
model, the collisions between clouds are almost completely
inelastic and clouds typically undergo only one strong collision
at a time. We assume that all the clouds are of the same mass,
that there are no destructive or sticking collisions, and that the
clouds are indefinitely long-lived. Within the context of this
admittedly simplistic model the equilibrium velocity dispersion
of GMCs in the disk can be calculated and the dynamics of
gravitational scattering in the disk thoroughly understood.

Before working through the details, we can clarify the
problem by making a few simple estimates for the rate at which
clouds gain and lose random energy due to gravitational scat-
tering and physical collisions.

First, a cloud will typically lose some fraction of order unity
of its total random energy (= $M, k%a?, where M, is the
cloud mass, k is the epicyclic frequency, and a is the epicyclic
amplitude) in physical collisions that occur with a frequency
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We,.- Denoting an ensemble average by angle brackets, we
have
d{a®> R
hud Sudli4 ~ — a . 1
( )~ e 1)

Next, we note that for gravitational scattering in two dimen-
sions, the most important encounters are the strong, close
ones. Strong encounters occur when two clouds approach
more closely than a few times the tidal radius of the cloud;
since molecular clouds are observed to have a radius that is
of the same order as the tidal radius (Stark & Blitz 1978),
strong encounters will occur with about the same frequency as
physical collisions. The typical velocity change in these
encounters is essentially the shear velocity at the tidal radius
~2A(GM /x)'3 ~ (GM,x)'3. This estimate holds for
systems where the velocity dispersion is less than about the
escape velocity from the surface of the clouds, a condition that
is satisfied by the molecular cloud population of our Galaxy.
Thus

2
<d<a >) ~ O GMy )" . @
dt gain
Equating gains and losses gives for the steady state
<a*y = o(GM4x)*?, A3)

where a ~ 1. Our final numerical results (§ 3) yield « = 1.19.

JO have estimated the heating and cooling rates (eqs. [1]
and [2]) for the cloud distribution function using perturbation
theory. In this paper we recalculate the energy exchange in the
limit of large impact parameter, starting with the proper linear-
ized equations of motion rather than the approximations
introduced by JO (see their eqs. [34] and [35]). These equa-
tions of motion include the Coriolis force and allow for
changes in the guiding center over the course of an encounter.
In addition, we retain only the lowest order term in the expan-
sion of the postencounter epicyclic energy and simplify con-
siderably the mathematical treatment. Since the most
important encounters occur in the region where perturbation
theory is inapplicable, we numerically integrate orbits to
obtain the exact heating and cooling terms under certain
assumptions about the cloud-cloud collision process.

The perturbation theory aspect of this problem is formally
analogous to the classical problem of the perturbation of one
planet by another in the Sun’s gravitational potential, although
the galactic potential is not Keplerian. In the limit of distant
encounters where the finite size of the clouds can be neglected,
cloud-cloud scattering is similar to cloud-star scattering, a
problem first considered by Spitzer & Schwarzschild (1951,
1953), who concluded that the existence of massive (10° M)
objects in the disk could account for the observed stellar veloc-
ity dispersions. The principle difference between cloud-star
scattering and cloud-cloud scattering is that the epicyclic
amplitude of stars is large compared to the tidal radius of
clouds in the Galactic disk (the dispersion-dominated regime),
whereas giant molecular clouds have epicyclic amplitudes
roughly of the same order as the tidal radius of the clouds (the
shear-dominated regime). This prevents the direct application
of some of the stellar results to the GMC population. More
recently, the evolution of stellar velocity dispersions has been
considered by Icke (1982), Lacey & Ostriker (1985), and Binney
& Lacey (1988), and it is discussed in Binney & Tremaine
(1987, see Ch. 7, exercise 12). The velocity dispersion of molecu-
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lar clouds has also been considered in a series of papers by
Fukunaga (see Fukunaga & Tosa 1989, and references therein)
using both numerical and analytic methods. The present work
is principally concerned with the problem of two-body scat-
tering with dissipational collisions in a disk potential, which
has not been completely treated in any of the above works.

The plan for the remainder of this paper is as follows. In § 2,
we discuss the governing equations and, using perturbation
theory, obtain an expression for the change in epicyclic energy
that is valid in the limit of distant encounters. In § 3, we present
the results of our numerical investigation. § 4 contains our
conclusions.

2. GRAVITATIONAL SCATTERING IN A DISK POTENTIAL

Gravitational scattering in a disklike potential can be
divided into three regimes. At impact parameters small com-
pared to the tidal radius the clouds repel each other on horse-
shoe orbits and never come close to one another. These
encounters are weak and can be treated analytically (see, e.g.,
the simple discussion in Goldreich & Tremaine 1982; also
Dermott & Murray 1981). At moderate impact parameter the
encounters are close, the orbits are complex, and we are
reduced to solving the full three-body problem. This of course
can only be done numerically. At large impact parameter the
encounters are again weak and the encounter can be treated
perturbatively.

The small impact parameter encounters (horseshoe orbits)
are characterized by initial convergence of the clouds in
azimuth due to differential rotation. Because of the Coriolis
force, the gravitational interaction of the clouds effectively
repels them from each other and they slowly turn around and
diverge in azimuth, describing a horseshoe shape in a frame
rotating with the center of mass of the clouds (see orbit E in
Fig. 1, which shows the evolution of the relative coordinate).
The contribution of these orbits to the heating of the cloud
distribution can be neglected for at least two reasons. First, the
encounter frequency is proportional to the shear velocity,
which in turn is proportional to the impact parameter, so there
are relatively few encounters at small impact parameter.
Second, these encounters take place very slowly in comparison

TTTT TTTT TTTT TTTT[T1rTrTT TTTT TTrTT TTrTT TTTT T
P A A A R AR AARR AARAL RO RARAR A
Lﬂj B I
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x

F1G. 1.—Orbits in the relative coordinate, with the Galactic center in the
—x direction and rotation locally in the +y direction. The initial epicyclic
amplitude is O for all the orbits, and the effective radius is 0.4.
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to an epicyclic period, so that the epicyclic energy is protected
by adiabatic invariance and thus changes little.

The large impact parameter encounters will also turn out to
be negligible, but this is less obvious, so we carry out the
perturbation calculation below. There has been considerable
attention to the problem of gravitational scattering of two
bodies in the presence of a much more massive third body in
connection with planetary rings (Goldreich & Tremaine 1980;
Petit & Hénon 1986; Hénon & Petit 1986). A similar problem
arises in the theory of mass condensations in the protosolar
nebula (Safronov 1972, § 21; more recently Nishida 1983;
Hasegawa & Nakazawa 1990; Greenzweig & Lissauer 1990).

2.1. Governing Equations

We wish to calculate the change in epicyclic energy of a
cloud of mass M, due to an encounter with a second cloud of
mass M,. We shall define the epicyclic energy as

1
=- M;x%a?*, @

Ecpi,i 2
where k is the epicyclic frequency, a is the radial amplitude of
the epicyclic oscillation, and (i = 1, 2) denotes the ith cloud.
The epicyclic energy is the energy available to an observer on a
circular orbit at the guiding center radius. The encounter is
caused by differential rotation in the disk. We ignore com-
pletely the motion of the clouds perpendicular to the disk.
This approximation is valid because the radius of GMCs is
within a factor of 2 of their scale height. Our notation is similar
to that of Petit & Hénon (1986).

Encounters occur in a disklike potential that can be charac-
terized locally by the logarithmic derivative of its rotation

curve
dinv, A 1«2
ﬂ=dmr_1—2QQ_2 i~ L ©)

We choose units such that G = k = M, + M, = 1, where « is
the epicyclic frequency. Table 1 describes a “fiducial ” molecu-
lar cloud at galactocentric radius R,/2, and is based on Scoville
et al. (1987). Note that the length unit, effectively a tidal radius
in the Galactic disk, is [G(M, + M,)/x*]'/® ~ 94 pc. The time
unit is k! ~ 1.4 x 107 yr, and the mass unit for the typical
encounter between equally massive clouds is 10° M. In these
units, the rotation frequency, Q, and Oort’s constants A and B,
are given by

{O|x

Qz__l__ A____li B =
20+ p)° S +p) 8

TABLE 1
FipuciaL CLOUD PARAMETERS

Parameter Unit Typical Value
Mass unit ................... M, 10 Mg
Lengthunit ................. (2GM /)3 94 pc
Timeunit .................... k! 1.4 x 107 yr
Velocity unit ................ (2GM_ k)'7? 68 kms™!
Mass ....ooennnne. o 5% 10° Mg
Effective radius T enin/2 0.2~ 19 pc
Galactocentric distance ... r Ry/2
B dinV, /dInr 0.0
K ettt 0% g/ Or? 36 Ro/r kms™* kpc™!

1.17 x 10715 Ry/r s~
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where Oort’s constant A4 is
r dQ
2dr’

so that both A and Q are positive. We define u= M,/
(M, + M,). Recall thatx? = — 4QB = 1.

We use a local Cartesian coordinate system that rotates with
the guiding center of the center of mass of the two clouds, with
the x-axis pointing in the direction of increasing radius and the
y-axis pointing in the direction of increasing azimuth. In dim-
mensionless form the equations of motion (Spitzer & Sch-
warzschild 1953) can be written

Xy =44Qx; +2Qj; — (1 — @)(x, — Xz)/r3 s
1= —2Qx%, — (1 — )y, — yz)/"3 s (8)

for cloud 1 and conversely for cloud 2, with u replaced by
1 — 4. Here r is the distance between clouds. We have
neglected terms of second order and higher in S/R, where S is
the impact parameter and R is the galactocentric radius of the
center of mass. For molecular clouds in our Galaxy, the
requirement R > S is readily satisfied for the encounters of
interest, since most of the molecular gas is at R 2 4 kpc
(Scoville & Sanders 1987), and (see § 3) the most important
encounters occur at an impact parameter of a few x (GM/
k)13 ~ 200 pc for our fiducial cloud.

Transforming to relative and center of mass coordinates, we
have

A= ™

erxl_XZ’ yrE.V1_y2, (93)
Xem = X1 + (1= p)X5, Yem = py; + (1 — )y, . (9b)

The subscripts cm and r are used to denote quantities in the
center of mass and relative coordinates, respectively. The rela-
tive coordinate equations of motion are

X, = 44Qx, + 2Qj, + €A, , (10a)
V= —2Qx, +€4,, (10b)

where
€e=S5"?, A, = _x/S) 0./S) (11)

=T T Taysy

Similar equations apply in the center of mass coordinates
except that there is no interaction term (the total angular
momentum of the system is conserved).

If we neglect the gravitational interaction (i.., to zeroth
order in €) the solutions to the center of mass equations of
motion are free epicycles, as are the solutions to the relative
coordinate equations of motion:

x,=D;,cost+D,, sint+38S,,
y,= —2QD, ,sint + 2QD,, cos t —2AS,t + D3, ,
Xem =Dy mcost+D, ,sint+3S,,,
VYem = —2QD ., sin t +2QD, . cost—2A4S,,t+ D; ., .
(12)

Similar solutions hold for clouds 1 and 2, with the coefficients
written as D, , D, ,, etc. The constants D5 ,, D3 ., and S, can
be made to vanish in a suitably chosen coordinate system,
where the center of mass oscillates about the origin and the
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encounter occurs at t ~ 0. We assume this choice from now on,
and denote S, as simply S.
The relative coordinate equations of motion (egs. [10a, b])
admit a conserved quantity:
1 1
= 3 (%2 + y2) — 24AQx% — pe (13)
where r is the distance between clouds (e.g., Brouwer & Clem-
ence 1961, § XI1.18). This is the analog of the Jacobi integral
for the linearized equations of motion. At large distances (early

and late times) the last term in equation (13) can be neglected
and I rewritten in terms of D,, D,,and S:

A A
rioo =D%,r+D§.r—5 S2 =ar2 _asz )
where g, is the epicyclic amplitude in the relative coordinate.
The change in epicyclic energy, A(E.; ;) of cloud i (i = 1, 2)
over the course of the encounter can be written in terms of the
D; j(seeeq.[12]) as

AE

(14)

= imAD}; + D3 ), (15)

epi, i)
since

Eepii = ymix*al = ym;x*(D1; + D3 ), (16)

epi,i
where m, = u and m, = 1 — u. The following relations follow

immediately from the definition of the relative and center of
mass coordinates:

D;y =D+ (1 —pD;,,

D;, =Djm—uD;, . (17)
Similar relations apply for the impact parameter S. We can
now write

Di2,1 = Diz,cm + 2(1 - #)Di,cm Di.r + (1 - iu)lez,r . (18)

We will calculate the change in epicyclic energy averaged
over initial epicyclic phases (¢; = tan~'(D, ;/D, ;)), assuming
that they are randomly distributed. The phase average in the
physical coordinate system, denoted { f), is given by

5> = G j - f 4,46, 5, (19)
where ¢, refers to the initial phase of cloud i. Thus we have
CA(Eepi )y = im A(<D%,i> + <D§1>) > (20
and
(AD?,> =21 — XDy o AD;,> + (1 — w)*CADE,> . (21)

Now AD;, can be expanded in powers of D, and D, ,, but
does not depend on D, ,,, so that the first term vanishes under
phase averaging. A similar result obtains for (AD?,), so that
(AD};) = m{<AD},>, (22
where k # j. Hence
(A(E pi,)> = sm;mi<A(DT, + D3 ) - (23)

It follows that (A(E,y; ;))/<A(E.y;,)> = m;/m;. Thus on average
the less massive cloud obtains a larger share of the rotational
energy tapped in gravitational encounters than the more
massive cloud. This result was obtained earlier by JO (their
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Appendix C) for the special case of zero initial velocity of the
clouds.

We now comment briefly on how the disk-scattering
problem can be expressed in action-angle variables (e.g.,
Binney 1987). The radial action is J, = $a?, while J, = —2BS
is a linear function of the z-component of the angular momen-
tum. These actions and their associated angles are related to x,
¥, %, and y by

1(4 1\ 1
Jx=-<——x+—j)> + = %%,

®,=cos™ ! _*
2\B 2B 2 T T
(24a)
J,=2Qx+j, ©,=y—20x, (24b)

where A and B are the Oort constants. The Hamiltonian is the
“Jacobi constant ” I expressed in action-angle variables:

A
2B

where y, is the perturbing potential. This coordinate system
turns out to be convenient for the numerical investigation of
distant encounters.

The disk scattering problem can be qualitatively understood
by examining a few representative orbits. Figure 1 shows orbits
in the relative coordinates (x,, y,). For simplicity we have set
the initial epicyclic amplitude to 0. The orbits are labeled A
through E, and enter the plot from the upper right. Orbit A is a
distant encounter that results in a small increase in the epi-
cyclic energy. This encounter is weak enough that it can be
adequately treated with perturbation theory. Orbit B is a
strong encounter with a large increase in epicyclic energy, but
with no change in the sign of the impact parameter. Orbit C is
a close encounter that approaches the origin more closely than
Fmin = 2 X ry, Where r is the effective cloud radius, and is
treated as a collision. Orbit D is a strong “ horseshoe ” encoun-
ter that results in a large increase in epicyclic amplitude and a
change in the sign of the impact parameter. Orbit E is a weak
horseshoe encounter. Orbits B through D lie in the range in
impact parameter where there are strong encounters, chaotic
orbits, physical collisions, and large variations in epicyclic
energy. At large impact parameters the typical change in epi-
cyclic energy per encounter declines rapidly (as 1/5*, where S is
the impact parameter) while the encounter frequency increases
as S, so it is encounters at intermediate values of the impact
parameter, such as orbits B through D, that are most impor-
tant for heating the cloud distribution. This may be contrasted
with relaxation in a three-dimensional homogeneous system,
where each logarithmic interval in impact parameter contrib-
utes equally. Finally, Figure 2 shows an orbit in action-angle
variables, with the same impact parameter as Orbit A, above,
but with a{®? = 1.0. The ordinate in each case is the change in
the phase space coordinate from the value it would have had
had the perturbing force been absent.

H=J +—=J:+Vy,, (25)

2.2. First-Order Perturbation Theory

The postencounter epicyclic energy can be expanded in
powers of € = §~2, where § is the initial impact parameter.
Here we calculate the lowest order (in €) variation in the epi-
cyclic amplitude under the assumption that the initial epicyclic
amplitude is small, using the technique of variation of coordi-
nates.
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FiG. 2.—Typical orbit in the action-angle variables (see eq. [24]), with S = 6 and a®? = 1.0

The second equation of motion (eq. [10b]) can be integrated
and substituted into the first (eq. [10a]) to obtain

t
% +x, = e(Ax +20 J dr Ay> . (26)

We then expand x, in powers of € and find that

t
3 4+ xV = 40 4 20 J dt AQ (27)
— oo
where the superscript (i) indicates that the expression is evalu-
ated to order i in €; A and A{” are then evaluated along the
unperturbed orbit. The solution is

X = u®M cos t + ulM sin ¢, (28)
where

t v
ul) = —J‘ dt’ sin t'(Af‘o) +2Q J dt"A‘f’) s (292)

- — o0

t t
ugd) = J dt’ cos t'(A‘,?’+29f dt’ A;°)>. (29b)

— —
If the initial epicyclic amplitude is zero, so that

X0 =5, = —248, (30)
then

1 o 24t

0) —_——
SARTFTVeS e

2T Ty aary R G1)

It follows that

e 20
2Q Jl dt A;o) = —m‘m‘ . (32)

The term in parentheses in equation (29a) is an even function of
t, so that u{" vanishes, and

w-_| dt’ cos t' 1 + 2
u’' = . €os (1 + 442022 T (1 + 442D 7))
(33)

These integrals can he evaluated using the identity
(Gradshteyn & Ryzhik 1980, p. 959)

® cosazdz aT@)
J; (1 + 22)v+ 1/2 = Kv(a) 2VF(V + %) s (34)

where K, is a modified Bessel function of the second kind of
order v and I is Euler’s I'-function. Then

1 1 1
- _— Kol — K| — i
X\ A [ZQ °<2A> + 1<2A>] sint, (35)

which was first obtained by Julian & Toomre (1966).
In the limit of small initial epicyclic amplitude [a(®? <
(2GM/x?)**], we then have

(Aaly = 2e*(x(V?) . (36)
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If we do not require that the initial epicyclic amplitude be
small, lower order terms arise that vanish under phase averag-
ing. Variation of coordinates fails for higher order terms
because of a logarithmic divergence in y!. These higher order
terms are straightforward, in principle, to calculate by per-
turbing the actions.

We can now comment on the perturbation theory result of
JO, which is of the form

(AE.;) =« . 37
Under the equations of motion adopted by JO variation of
parameters works to all orders, and a, can be directly calcu-
lated. However, their Taylor series expansion of the perturbing
force includes only terms of up to linear order (the “tidal”
terms). It turns out (see § 3) that higher order terms in the
expansion can make contnbutlons to the change in epicyclic
amphtude of order €, so that JO neglect a term proportional
to S~ and their value of a, is of the wrong sign.

2.3. Comparison to Previous Results
The lowest order change in {a?) per encounter is

) 1 1 1\
(Aa?y =€ ( 4A2>[2QK0<2 A) +K ( 2A>] = 2¢2F(f) .

(38)
Then
<A(Eep1 l)> = € m; i My <a(1)2>
=" Fip (39)

The function F is shown in Figure 3; note that it peaks for

B ~0. If we assume that both clouds have the same mass

@ = 0.5), and let # = 0 (flat rotation curve), then Q = 24 = 1/
2 and

(A(Eqy,)) = g5 1= 04256 (40)
l TTT ] TTIrT I L I LI I TrTr l TTT I TrT I L I TTT I TTT l-'
3 .
2 - -
< T ]
= - ~
[ 1
1= ]
i ]
r h
0 '—I 111 I L1l I 111 [ 1 11 l 111 , 111 l 111 I 111 l 111 l 111 l—
-1 -8 -6 -4 -2 0 2 4 6 .8 1

B = din(v,)/dIn(r)
FiG. 3.—F(f), which is proportional to the gain in epicyclic energy at large
impact parameter (see eq. [38]).
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Note that {A(E,; ;)> is a rapidly decreasing function of impact
parameter, implying that the most important encounters for
epicyclic excitation are the closest ones. We compare this result
to that obtained by JO (see their eq. [105])

(ME s D0 =7 m (j’;f) (82 (/»’)+[V ]f(ﬂ)) @)

where f' is 2.828 for a flat rotation curve. If we cast this in
dimensionless form, and assume that the masses of the two
clouds are equal, we can write

o(8) <1 +f(/>")af>
32425% 9(B)s?) "

=1//8, f(B)=1847,

<A(Eepi, i)>JO =

For a flat rotation
g(#") = 0.626. Then

“2)

curve,

0.157 a?
CA(Epi, )10 = S <1 + 295 ?> . 43)
Comparing this to equation (40) above, we have
CA(Eepi, )50 a?
————= = 0.369] 1 95 =
<A(Eep|.t)>GOJ 6 + 2 95 Sz ’ (44)

so that the ratio of the two results is of order unity.

3. NUMERICAL RESULTS

Since the most important encounters for heating the cloud
distribution occur at intermediate impact parameters [S ~
(GM_,/x*)'*] where the orbits are analytically intractable, the
true heating and cooling rates (in our model) can only be found
by the direct numerical integration of orbits. First, however, it
is of interest to numerically estimate higher order terms in the
perturbation series expansion of Aa? (eq. [38]), and to see
where and how seriously perturbation theory breaks down.

3.1. Corrections to Perturbation Theory

The expression for the average change in energy per encoun-
ter obtained from perturbation theory in the last section can be
extended numerically by directly calculating the phase-
averaged change in energy and then fitting the result to a series
expansion. The equations of motion suggest a series expansion
of the form

<Aa,2(S, aﬁo))> = €2 Z %, ei(a:())z)j

i,j=0

45)

where we may set a, o = 6.8099 from equation (38) in the case
of a flat rotation curve. We then fit for the coefficients in equa-
tion (45) in the range S = [7, 20], a? = [1, 2], sampling on a
grid with 6S = 1.0 and da? = 0.1. The range in impact param-
eter was chosen so that impact parameter was large enough
that the perturbation expansion was approximately valid, but
small enough so that S/R < 1 for the fiducial cloud. The range
in initial epicyclic amplitude was chosen with hindsight from
calculations described below so as to include the final equi-
librium value.

The orbits were integrated in action-angle space using a
combination of the Bulirsch-Stoer and Runge-Kutta methods
as implemented by Press et al. (1986, Ch. 15). Using action-
angle variables permitted more reasonable control over the
accuracy of the integration. The Runge-Kutta method was
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used for a 30 time unit interval near the encounter (at t ~ 0),
and the Bulirsch-Stoer for the rest. The phase averaging was
carried out using Gauss-Legendre integration with 15 weights,
which provided adequate accuracy since at large impact
parameters the final epicyclic amplitude is a smooth function
of epicyclic phase (see Fig. 5a, which shows the variation of the
change in epicyclic amplitude over phase at large impact
parameter). There is a slight error incurred by integrating over
a finite interval around ¢ = 0. This was minimized by averaging
over an epicyclic period at the end of the integration (to accel-
erate convergence of the actions, which oscillate slightly) and
then beginning at early enough times so that this contribution
to the error was insignificant.

After fitting for the leading terms in equation (45) by mini-
mizing the squared relative error at each point on the numeri-
cal grid, we find

6.8099 1 2
Ba2y =25 (1 +16 5 —10 “:92 ) .

The error is everywhere less than 0.5%. The coefficients are a
fitting formula and not what would be obtained in a higher
order perturbation calculation, but we do not expect the per-
turbation theory coefficients to differ in sign or order of magni-
tude. The accuracy of this extended perturbation expansion is
evaluated in Figure 4. Here <{Aa%(S, a®? = 1.8, B =0)), as
calculated by techniques to be described below, is shown as a
solid line, while the extended perturbation result is shown as a
dashed line. The extended perturbation expansion is in serious
error for § < 3.4.

(46)

3.2. Direct Calculation of Gains and Losses

Now we evaluate the full epicyclic excitation and damping
rates. Following JO, we use a simple model for collisions: if the
cloud separation becomes less than r,,, the relative epicyclic
amplitude and impact parameter are set to zero, and it is imag-
ined that the clouds drift to some large separation. Each cloud
retains some residual epicyclic energy from the motion of the
center of mass. All energy loss is then the result of physical
collisions between clouds. In other words, we can think of the
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collisions as occurring with a coefficient of restitution that is
large enough that the clouds do not stick.

We calculate the gains and losses for an individual cloud
with a given value of the epicyclic energy interacting with an
ensemble of clouds with the same energy. Equating gains and
losses for this cloud will give the correct result for the equi-
librium epicyclic energy if the distribution of clouds over epi-
cyclic energy is sharply peaked at the equilibrium value. The
ensemble averaged energy gain per unit time per cloud is

dE.; 1 [
—B) = — | (A0, dS
< dt )gain 16 J_ w( a, >wenc

where w,,,, = Z2AS is the encounter frequency per unit impact
parameter, X is the surface number density, and we have
assumed that m; = m, = 1/2. The brackets indicate as before
that Aa? has been averaged over phase. The energy gain per
unit time is then proportional to the integral

(47)

P(a:'())’ ﬁ’ rmin) = J <A03>S dS s (48)
(V]

where r_;, is such that if the orbit passes within r;, of the

origin, then Aa? is set to 0. The ensemble average energy loss

per unit time cloud is given by

dE,; 1 [
Qhepi) _ 1 (0)2
( dt )IOSS 16 j— w<®>ar wenc dS ’

where O is 1 if there is a collision (r < r,;,) and zero otherwise.
This is proportional to the integral

(49)

W(a®, B, Toin) = f (®)SdS . (50)
o
Energy balance now requires that
P =ad"%w . (51)

Here, as in planetary rings in the limit Q/w,,; > 1 the collision
frequency (surface density, or optical depth for rings) does not
appear in the equilibrium equation. However, since we are
considering long-range force and nearly inelastic collisions,
both our gain and loss terms have different dependences on the
velocity dispersion than is the case for planetary rings. In par-
ticular, the effective viscosity induced by gravitational inter-
actions in the Galactic disk is at a local maximum when all the
GMC:s are on perfectly circular orbits.

We have evaluated P and W by directly integrating orbits in
the relative coordinate, phase averaging, and integrating over
impact parameter. The integrals over phase and impact param-
eter were evaluated using the trapezoidal rule. Since there are
four parameters that characterize the accuracy of the integra-
tion, it is diifficult to obtain a simple error estimate. After
changing each of these parameters in turn by a factor of 2
toward higher accuracy and obtaining changes that were
always substantially less than 1%, we informally estimate that
the errors are less than 1%, and this is the origin of the error
bars in Figures 9 and 10 below. For all the encounters, we set
B =0, appropriate for a flat rotation curve, and r_,, = 0.4,
corresponding to twice our estimate for the effective radius of
the fiducial cloud. Although we have prevented the closest
encounters from contributing to the energy gain per unit time,
P is not divergent in the limit r,;, — 0; rather it tends to a finite
limit that is of the same order as the results for r;, = 0.4.
Indeed, our numerical results and those of Petit & Hénon
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FIG. 5—Aa?(¢), the variation in squared epicyclic amplitude over relative epicyclic phase at (@) S = 10.0 and (b) S = 2.0 and with a{®? = 1.5

(1986) suggest, but of course do not prove, that AaX(S, ¢) is
bounded above.

The results of our numerical integrations are presented
graphically in Figures 5 through 8. Figures 5a and 5b show the
function Aa?(¢,) for a single initial value of the epicyclic ampli-
tude and for two values of the impact parameter. At large
impact parameter the function is smooth and sinusoidal over
¢, (Fig. 5a), while at impact parameters where collisions occur,
the function is ill behaved (Fig. 5b) due to complex interactions,
including trapping and temporary capture, as was noted earlier
by Icke (1982, Fig. 4), and Petit & Hénon (1986, Fig. 1). The
phases where Aa? = 0 in Figure 5b correspond to orbits with
collisions. Figure 6 shows the variation in (Aa*(S)> over S for
al®? = 1.5. The large dip in the middle of the curve is due to
physical collisions, which give zero increase in the epicyclic
energy, under our accounting. Figure 7 shows a scatter of
points about the phase-averaged function (Aa*(1.5, S)). The

LU L N R L L L N R L L L Y A

15 — —

éa,
1

|[111L||11||1|1LL|11|

1111141
1 2 3 4 5 6

impact parameter

FiG. 6.—Aa?(S), the variation in squared epicyclic amplitude over the range
in impact parameter S = [1.0, 6.0] for a®? = 1.5.

points are the change in the squared epicyclic amplitude at
various values of the initial epicyclic phase. The variation over
phase is an order larger (in €) than the phase average at large
impact parameter, so phase randomness must be well satisfied
for our calculation to be valid. Figure 8 shows the loss function
{©(1.5, S)>. There is a sharp peak in the collision frequency
near S = 1.8; for impact parameters less than 1.4, no collisions
occur and the clouds repel one another on horseshoe orbits.
The functions P(a{®?) and W(a!®?) defined by equations (48)
and (50) are shown in Figures 9 and 10. A least-squares fit to
our numerical integrations in the range a{®? = [0.9, 1.8] yields

P, 0, 0.4) = 2.12 — 0.37a®? (52)
and
W(a, 0, 0.4) = 0.87 + 0.13¢02 . (53)
4 l T T 7T l—[ L [ T I T T TTr l TTr T I T T 1T | L I L:
3 ]
2 J
o r ]
Oi_ 4
—1 :_ ]
N T T T N T
1 2 3 4 5 6 7 8

impact parameter

FIG. 7—Aa?(S), the variation in squared epicyclic amplitude over impact
parameter with a{®? = 0.4. The points plotted in the background show AaZ(S,
¢,) sampled evenly in ¢,.
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impact parameter

FiG. 8.—OX(S) (see eq. [49]), which is proportional to the loss rate and
collision frequency per unit impact parameter, at a'®? = 1.5.

Qualitatively, the dependence shown here is what one expects
in dynamical problems: the larger the velocity dispersion, the
smaller the energy exchange in individual gravitational
encounters (eq. [52]) but the larger the loss in physical encoun-
ters (eq. [53]).

The solution to the energy balance equation (eq. [51]) is
a2 = 1.5. Dependences on cloud size ry = 37y, and the
shape of the rotation curve 8, have been suppressed to obtain
this result. We can now evaluate the dependence on f and r;,
near this equilibrium point. A least-squares fit yields

P(L5, B, ) ~ 1.57 — 4438 — 0.65(r i — 0.4)  (54)

and

W(L5, B, F ) ~ 1.07 + 0.658 + 0.86(rpin — 0.4) . (55)

—-
©

1.8

LANLINL L O L D L N L L
Illllll]llllllllllllllll

1.4 1 1 | | 1 1 | 1 1 L | 1 1 1 ] 1 1 1 |

1 1.2 14 16 18
(02
ar

FIG. 9.—P(a!®?), defined by eq. (48), proportional to the gain in epicyclic
energy of a point mass per unit time interacting gravitationally with a popu-
lation of clouds such that the relative epicyclic amplitude is typically a,. The
line is the least-squares fit given by eq. (54). The error bars are informal
estimates.
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FIG. 10—W(a!®?), defined by eq. (50), proportional to the loss of epicyclic
energy in collisions per unit time, according to the simple model for collisions
used. The line is the least-squares fit given by eq. (55). The error bars are
informal estimates.

Note the steep dependence of the heating rate P on the
logarithmic derivative of the rotation curve $. This implies that
for a slightly declining rotation curve the heating rate should
increase dramatically. As expected, energy losses are greater
and gains are less for larger clouds at a fixed value of the
epicyclic energy. This requires a compensating decrease in a?
to achieve equilibrium. Quantitatively, we find that on combin-
ing equation (51), (54), and (55), and assuming |f| < 1 and
—-04]<1,

a®? = 15— 508 — 1.8(rpmin — 0.4) .

r.eq

| Tmin
(56)

The relative coordinate epicyclic amplitude can be related to
the amplitude for individual clouds as follows. From the defini-
tion of the relative coordinate and an average over the epi-
cyclic phases of each of the two clouds involved in an
encounter,

als = 3a5l; - (57)
The cloud epicyclic amplitudes are then related to the local,
two-dimensional velocity dispersion by

0? = o2(1 + 1/4Q% = 1a{%2(1 + 1/4Q%) (58)
(e.g., Binney & Tremaine 1987). If = 0,
0 = 32, (59)

so that the equilibrium velocity dispersion ¢ = 0.75. In physi-
cal units our basic result is then

o = 0.94(GM_,k)3(1.0 — 1.7 — 0.61(r i — 0.47,))

=51kms™' (60)

for the planar velocity dispersion of our fiducial cloud of
5 x 10° My at Ry/2, where r, is the length unit and 0.4r, = 19
pc. Note that for a declining rotation curve the shear rate
increases, and hence the velocity dispersion, while increasing
Fmin SETVES to increase the damping and decrease the velocity
dispersion.
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4. CONCLUSION

To summarize, we have calculated the phase-averaged
change in epicyclic energy in the limit of large impact param-
eter. The resulting expression is

m;m;
S4

<A(Eepi‘i)> = F(ﬂ) (61)
(see Fig. 3 and eq. [39]). We have also calculated the total
power transfer from orbital energy to random, epicyclic energy
as a function of initial epicyclic amplitude using direct numeri-
cal integration of the orbits. We find that distant encounters do
not contribute significantly to the increase in epicyclic energy,
nor do encounters at small impact parameter; the most impor-
tant encounters all occur at impact parameters of a few
x (GM/x?)!/3. Balancing gains from gravitational scattering
against losses from direct collisions, we find the simple result
that the equilibrium two-dimensional velocity dispersion in
our model is

o = 0.94(GM ,x)3(1.0 — 1.78 — 0.61(r;, — 0.4r,)

=51kms™! (62

in our Galactic disk at R,/2, slightly smaller than the equi-
librium value found in JO. The most significant part of this
result is not the exact value of the velocity dispersion, but
rather the scaling with M, and «, and the strong dependence
on the slope of the rotation curve.

To the precision of our calculation our results agree with
observations. Stark & Brand (1989) measure the rms difference
between the cloud’s radial velocity and the radial velocity of
the LSR at the location of the cloud. They find this to be
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between 7 and 8 km s, corresponding to a two-dimensional
velocity dispersion of between 10 and 11 km s~ *. This includes
local streaming motions. Knapp, Stark, & Wilson (1985) and
Clemens (1985) measure the radial velocity dispersion of gas at
the tangent point, or the azimuthal velocity dispersion, obtain-
ing 5.6 km s~ ! and 3 km s~ !, respectively. Clemens (1985) has
subtracted local streaming motions, and thus obtains a lower
velocity dispersion. The azimuthal and planar velocity disper-
sions are related by

0% =g}l +4Q?%, (63)
or
c=0,/T+2/0+P). (64)

If the rotation curve is flat at the tangent points, then o =
WV 304, implying two dimensional velocity dispersions of 9.7
and 5.2 km s !, respectively.

Some caution is required in applying these results to the
Galaxy. Throughout we have assumed that only two-body
scattering is important. This is a valid approximation if £ < 1,
where X is the dimensionless surface number density expressed
in units of 2GM_,/x%)~2/3. Since this condition is only margin-
ally satisfied at the molecular ring, it is likely that collective
effects will enhance the gravitational scattering. A more realis-
tic calculation would allow for a distribution of clouds over
mass and velocity, and the finite lifetimes of molecular clouds,
but must also include collective effects, possibly magnetic
fields, and a detailed model of cloud-cloud collisions.

We are happy to acknowledge valuable discussions with
Jeremy Goodman and Peter Goldreich. This work was sup-
ported by NSF grant AST 90-06958.

APPENDIX

ACCRETION RATES

Accretion in a differentially rotating disk differs from accretion in a homogeneous background in that the accretion rate is
controlled not only by the random velocities of particles, but also by the shear rate.

Given the function W(a'?, B, r..;), it is trivial to calculate the accretion rate for a pressureless fluid. First we set the mass of one of
the objects in the encounter to ~0. This implies that we are using a larger effective capture radius (36 pc for our fiducial cloud) for
GMC-small cloud encounters than for GMC-GMC encounters. Then the accretion rate is given by

M= f (O)2ASX,dS = 4AT, W ,

(65)

where X, is the surface mass density of the interstellar medium. In dimensional form

M =443, r?W[gs '],

where r, = (GM,/x*)*/*. This implies a growth time of
M M1/3K4/3
M~ 44%,G?P

where we have included the dependence on r
surface density of ~ 10 M, pc™ 2, the accretion rate is

5 (0.93 — 0.578 — 0.75(r /1. — 0.4)) [s],

(66)

(67)

min @and B near the equilibrium point (eq. [55]). For the fiducial cloud, assuming a

M=33x10"3Mgyyr !

corresponding to a growth time of 1.6 x 108 yr. This estimate agrees with that of Larson (1988). This growth time is an upper limit
since the pressure and self-gravity of the accreting medium could substantially enhance the accretion rate.
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