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ABSTRACT

We present a study of the growth of local, nonaxisymmetric perturbations in gravitationally coupled stars
and gas in a differentially rotating galactic disk. The stars and gas are treated as two isothermal fluids of
different velocity dispersions, with the stellar velocity dispersion being greater than that for the gas. We
examine the physical effects of inclusion of a low-velocity dispersion component (gas) on the growth of non-
axisymmetric perturbations in both stars and gas, as done for the axisymmetric case by Jog & Solomon. The
amplified perturbations in stars and gas constitute trailing, material, spiral features which may be identified
with the local spiral features seen in all spiral galaxies.

The formulation of the two-fluid equations closely follows the one-fluid treatment by Goldreich & Lynden-
Bell. The local, linearized perturbation equations in the sheared frame are solved to obtain the results for a
temporary growth via swing amplification. The problem is formulated in terms of five dimensionless
parameters—namely, the Q-factors for stars and gas, respectively; the gas mass fraction; the shearing rate in
the galactic disk; and the length scale of perturbation. By using the observed values of these parameters, we
obtain the amplifications and the pitch angles for features in stars and gas for dynamically distinct cases, as
applicable for different regions of spiral galaxies.

A real galaxy consisting of stars and gas may display growth of nonaxisymmetric perturbations even when
it is stable against axisymmetric perturbations and/or when either fluid by itself is stable against non-
axisymmetric perturbations.

Due to its lower velocity dispersion, the gas exhibits a higher amplification than do the stars, and the
amplified gas features are slightly more tightly wound than the stellar features. When the gas contribution is
high, the stellar amplification and the range of pitch angles over which it can occur are both increased, due to
the gravitational coupling between the two fluids. Thus, the two-fluid scheme can explain the origin of the
broad spiral arms in the underlying old stellar populations of galaxies, as observed by Schweizer and Elmegreen
& Elmegreen. The arms are predicted to be broader in gas-rich galaxies, as is indeed seen for example in M33.
In the linear regime studied here, the arm contrast is shown to increase with radius in the inner Galaxy, in
agreement with observations of external galaxies by Schweizer. These results follow directly due to the inclu-
sion of gas in the problem.

Subject headings: galaxies: ISM — galaxies: kinematics and dynamics — galaxies: spiral — hydrodynamics —

instabilities

1. INTRODUCTION

An analysis of local, axisymmetric instabilities in a galactic
disk consisting of stars and gas was presented by Jog &
Solomon (1984a, b, hereafter JS1 and JS2 respectively). In that
work, a galactic disk is treated as a two-fluid system where
stars and gas are taken to be two isothermal fluids with differ-
ent velocity dispersions, with the stellar velocity dispersion
being greater than that in the gas. The two fluids interact
gravitationally with each other. The existence of even a small
fraction (<10%-20%) of the total disk density in a low-
velocity dispersion component, namely gas, was shown to sig-
nificantly decrease the stability of the entire two-fluid disk.

In a two-dimensional disk, the general perturbation is non-
axisymmetric. Because of the differential rotation in a galactic
disk, this case is not a trivial extension of the axisymmetric
case. The epicyclic motion of a disk particle and the local,
unperturbed shear flow in a sheared galactic disk have a
similar sense of motion. This, plus the self-gravity of the fluid,
leads to a strong though temporary growth of the non-
axisymmetric perturbations even when the disk is stable to the
growth of axisymmetric perturbations. This was shown for a

one-component case—for gas by Goldreich & Lynden-Bell
(1965, hereafter GLB), and for stars by Julian & Toomre
(1966)—who also indentified the amplified, local, non-
axisymmetric perturbations with local spiral features in spiral
galaxies. Toomre (1981) has called this phenomenon swing
amplification since the maximum growth occurs as a wave
swings from a radial to a trailing position.

These one-fluid results have been confirmed through
numerical simulation work by Sellwood & Carlberg (1984) and
Carlberg & Freedman (1985). They have also shown that gas
accretion onto a galaxy and/or star formation, or cloud colli-
sions, lead to an effective dynamical cooling of the disk, and
hence allow the formation and growth of recurring spiral fea-
tures. However, the cooling of the disk is introduced in an ad
hoc fashion in these papers.

In the present paper, we study the growth of local, non-
axisymmetric perturbations leading to swing amplification, in
the coupled stars and gas in a two-fluid galactic disk. The aim
is to study the physical effects of inclusion of gas on the growth
of perturbations in both stars and gas in a galaxy. By the
appropriate choice of observed values for the five dimension-
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less parameters in the problem, we obtain the two-fluid ampli-
fication results as applicable to different regions and types of
spiral galaxies.

The lower velocity component, namely the gas, shows a
higher amplification than the stars, and the gas features are
more tightly wound than the stellar ones. When the gas contri-
bution is high, the stellar amplification and the range of pitch
angles over which it occurs are increased, due to the coupling
between the two fluids. Thus we can explain the origin of the
broad spiral arms in the old stellar populations as observed by
Schweizer (1976), and Elmegreen & Elmegreen (1984). The arm
contrast in the inner Galaxy is shown to increase with radius,
this agrees with observations of external galaxies by Schweizer
(1976).

We thus explain the local spiral features in all spiral galaxies
as being trailing, material arms which arise as the amplified,
local, nonaxisymmetric perturbations in stars and gas. Our
analysis is particularly applicable to galaxies which exhibit a
patchy or messy spiral structure with many, fragmented spiral
arms, such as M33 (NGC 598), or NGC 2841, or NGC 488.
Such galaxies are more common than the grand-design spiral
galaxies, such as M51 (NGC 5194) (e.g., Binney & Tremaine
1987).

The coupled, linearized equations governing the growth of
nonaxisymmetric perturbations in a sheared, two-fluid galactic
disk are obtained in § 2. These are solved as an initial value
problem, and results are obtained for realistic values of param-
eters (§ 3). Section 4 contains a summary of conclusions from
this paper.

2. NONAXISYMMETRIC PERTURBATIONS IN STARS AND GAS

2.1. Physical Parameters of a Two-Fluid Galactic Disk

We assume that the stars and the gas in the disk form two
isothermal fluids, each characterized by y;, the surface density,
and c;, the isothermal sound speed or the one-dimensional rms
velocity dispersion in the fluid. The subscripts i =s and g
denote the parameters for the stars and gas, respectively. The
gas fluid is “colder,” that is, ¢, < c¢;. The two fluids interact
gravitationally with each other. They are distributed geometri-
cally in an infinitesimally thin disk which is supported by the
differential rotation and the random motion of the fluids. The
two fluids corotate with each other. The unperturbed and per-
turbed surface density and gravitational potential are denoted
by ue, ou and Y, 6y, respectively.

The fluid representation of stars as used here simplifies the
mathematical treatment. Though not completely rigorous, it is
still physically relevant for the local, linear analysis of the non-
axisymmetric perturbations (e.g., Goldreich & Tremaine 1978),
and in regions away from the Lindblad resonance (Bertin 1980)
and for moderately sheared features (Julian & Toomre 1966)—
which correspond to the range of maximum amplifications as
we will show in § 3.

2.2. Formulation of Equations

We consider local perturbations—that is, those with wave-
lengths small compared to the galactocentric radial distance.
The perturbations are taken to be planar—this requires the
minimum wavelength of perturbation to be greater than the
vertical scale height of the stars (> the scale height of the gas).
The formulation of the hydrodynamic equations closely
follows the one-fluid treatment by GLB, except that we treat a
two-fluid system, and also we consider an infinitesimally thin

disk whereas GLB treat a finite height disk. The thin disk
assumption simplifies the calculation and still gives reasonably
accurate results (to within <15%), as shown for the axisym-
metric case (Toomre 1964; JS1).

In the following analysis the subscripts i=s and i=g¢g
describe the equations for star and gas, respectively. The Euler
equations in a uniformly rotating frame (using galactocentric
cylindrical coordinates r, ¢, z) are given as

av; c?

L) A ) A ——'vu,

= VY, + ¥,) — 2@ x V, + Q%
Hoi

1, @

where Q = Qz is the angular velocity of the rotating frame.
Q = —Q, where Q, is the rotation of the disk as in the stan-
dard notation; this choice is suitable since we want to study the
growth of trailing features. Note that B— 4= —Q, =Q
where A and B are the standard Oort constants. V; denotes the
two-dimensional fluid velocity with respect to the rotating
axes. The right-hand sides of equations (1) and (2) denote the
force experienced by either fluid in the rotating frame. Note
that because of the gravitational interaction between stars and
gas, each fluid experiences the joint gravitational potential,
(Y5 + ¥,), resulting from the two fluids.

Consider a point (ry, ¢o) that is corotating in the above
rotating frame. We study the dynamics of the local region
around this point. Consider Cartesian axes (x, y, z) centered at
the origin (ro, ¢,), with unit vectors i, j, k respectively, with i
along the initial outward radial direction. The unperturbed
velocities V,; of the sheared flow in the galactic disk, with
respect to these axes, are given as (see GLB) follows:

Vos = Vo, = 24%j . )

The associated coriolis term in equations (1)—(2),
(=4A4Q, xi), is assumed to be balanced by the unperturbed
gravitational force [ = —V(o; + ¥,,)] as in GLB. Let v,; and
v,; denote the perturbation velocity components. Hence the
Euler equations for local, linear perturbations in stars and gas
are

avxi avxi 0 2 a(6”1)
o 24N G = 2= — S U+ B —
), (5)
v, d < Aom)
B —— —
ot + 24x 6y iy 2 oy Y5 + oy,) oy
©), (7)

Similarly, the linear perturbation equations for the equa-
tions of continuity, and the joint Poisson equation for an
infinitesimally thin disk are

o(op,) (o) avxl @L
ot + 2A4Ax oy + Uoi o + y =0 (8,09

62 62 62
(5: + F + >(51// + 0y,) = 4nG(du, + op,)d(z), (10)
where 6(z) is the Dirac delta function.

We next introduce sheared axes which are comoving with
the unperturbed flow in the above uniformly rotating frame—
this is the natural choice for. the study of sheared modes. The
sheared coordinates are defined as x, ', 2/, t', where

=z, andt'=t (11)

xX'=x, y=y—2A4Axt,
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so that

and (12)

It is easy to see that the linearized fluid equations (eqs. [4]-
[10]) when written in terms of the sheared coordinates allow
Fourier analysis in x’ and y’, but not in ¢’ since these equations
contain terms proportional to t'. Therefore, the trial solution
for the independent variables may be taken to be proportional
to exp [i(k,x" + k, )], and the magnitudes for the parameters
Vs> Uy Opli, OY; are denoted by the respective quantities (v,;,
etc.). These equations are solved to obtain oy, and oy, as func-
tions of time given their initial values. Next, following GLB,
define 7 (for a wavenumber k, # 0):

T =240 — kJk, . (13)

In the sheared frame, 7 is a dimensionless measure of time ¢/,
and it has different zeroes for each mode with a different k /k,.
In each case, 7 = 0 when the wavefront is along i (along the
radial direction), that is when the wavevector is along j as can
be seen by transforming the trial solution back to the non-
sheared frame

exp ik, x' + k,y) = exp i[k(—1x + y)] . (14)

Note that the wavenumber is constant with 7 in the sheared
frame while in the uniformly rotating frame it increases with 1
(Kponshearea = ky[1 + 12]1*/? =k, sec y). Here tan y = 7 and y is
the (pitch) angle between the instantaneous wavefront and i.
Hence dut) represents the density variation with time in the
sheared frame; whereas, in the nonsheared frame, it gives the
density for a mode of wavenumber [kl + t?)!/?] that is
sheared by an angle y = tan~! © with respect to i. The larger
the value of 7, the more tightly wound is the perturbation.

Thus, the local, linearized perturbation equations (4)-(10)
can be written in terms of the sheared coordinates using equa-
tions (11)-(12); and with the trial solution as described above
and with the above definition of 7, these reduce to

ov Q

xi

o A Oyt

2

=—i 2’% r[—(é://s + 0Y,) — ﬁ (5#9] (15), (16)

; k 2
a_;f + g Vg =1 gj [*(5% + oy, — :—0 (éui)] . (17), (18)

d k k,

= (op) — izj THo; Uxi ,+ i 24 Koity; =0 (19), (20)

ot
l:—kf(l +13) + %]((5!//s + 0y ,) = 4nG(dp, + dp,)o(z’) . (21)

Now, the Poisson equation (eq. [21]) can be solved easily,
and it gives

2nG
k (1 + 12)1/2](5/15 + 6#4]) . (22)
y

Next, define 6;, the dimensionless perturbation surface
density, to be the ratio of the perturbation surface density to

Vol. 390

the unperturbed surface density:
0; = oui/po; - (23), (249

Substituting equations (22)—(24) back into equations (15)—
(20), and assuming nonvortical perturbations as in GLB, we
obtain the following two coupled equations which describe the
evolution with 7 in 6;:

d20. do. 2t K2 23/A K2
= \Z il 73 —_ 2),2
(d‘[z) <d1)<1+12)+0‘l:4,42+1+1,z+4A2(1+1 )ei

Gk
= (10,0, + oy "-«)(7;722)(1 +)2, (29, 26)

where « is the local epicyclic frequency. These are symmetric in
terms of stars and gas (i = s and g), as expected, since here stars
and gas have been treated on an equal basis. The terms in the
square brackets on the left-hand side arise, respectively, due to
the epicyclic motion, the unperturbed shear flow in the disk,
and the fluid pressure. The right-hand side denotes the self-
gravity of the joint two-fluid system.

The schematic behavior of 6; with 7 is obtained by consider-
ing the evolution of a mode from a leading (r < 0, | t| large),
through a radial (t ~ 0), to a trailing position (z > 0, | | large).
At large | 7| values, the pressure term dominates, and the solu-
tion for 0; is oscillatory with a constant amplitude, and a fre-
quency proportional to ¢;t. This frequency is higher for stars
than for gas since ¢, > c,. For large | 7|, the two equations are
weakly coupled. As the mode evolves from a leading to a radial
position (t ~ 0), the terms denoting epicyclic motion and shear
become important, and they nearly cancel each other. Hence
these two effects are in a rough resonance for all realistic rota-
tion laws, with the cancellation being total for a flat rotation
curve. In addition, if the self-gravity dominates over the pres-
sure term, then the mode undergoes swing amplification, that
is, 0; increases as it evolves from 7 =0 to t > 0, i.e., from a
radial to a trailing position—as explained by GLB, and
Toomre (1981). The swing amplification is temporary—at large
7 > 0, the pressure term dominates and the solution is oscil-
latory again, assuming of course that we are in the linear
regime at all times.

The maximum acceleration [(d26,/dt?)/6;] occurs at T = 0, as
can be seen by setting y,, — 0 in equation (25). The maximum
value of 0;, (0)),..x, however, is reached later when the wave is
trailing. Define maximum amplification factor (MAF) for a
given mode as follows:

(MAF); = (0)max/(0)ini >

where (0;),,; is the initial amplitude of oscillation of 6;.

The coupling between the two fluids is highest at low |7|
values, exactly the region where amplification occurs. Hence,
both 6; and (0)),,,, in a two-fluid case are affected due to the
presence of the other fluid.

Note that equations (25)—(26) describe two coupled oscil-
lators, with time-dependent coefficients. Thus, the two-fluid
system is capable of diverse, and complex behavior depending
on the relative strengths of the two “natural frequencies” and
the coupling constants.

In the nonaxisymmetric case, the ratio 6,/6, varies with time
in the sheared frame. In contrast, for the axisymmetric case, the
equations governing the growth of two-fluid perturbations
have no terms with time-dependent coefficients and hence
these could be Fourier-analyzed in time, thus giving a constant
value for the ratio du,/dp, (see JS1, their eq. [35]).

(27), (28)
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2.3. Limiting Cases and Comparison with Earlier Work

As an intermediate step to obtaining equation (25) from
equations (15), (17), (19), and (22), we obtain a relation that is
identical to equation (65) of GLB except for the difference in
geometry; that is, du/1,, is shown to be a linear function of v,
and v,,. Hence it follows that oy, — 0, in the limit of o, — 0, for
arbitrary values of v, and v,,. Similarly, we also get a relation
as in equation (66) of GLB, from which it follows that
[0(6us)/0t] = 0, when py, — 0. Thus, in this limit, both the sides
of equation (25) are identically equal to zero, for arbitrary dpu,.
Therefore, in the limit of 4, — 0, the evolution of 6, with 7 is
fully governed only by equation (26), which reduces to:

420, (d8,\( 2t K 2BA K
<d12>—<dr ) R Fyrhsp 4A2(1+ )

_ u0g<’f4’§ )(1 + 72)1/2] 0. (29

This is identical to the corresponding equation for the non-
axisymmetric perturbations in the one-fluid gas case (see eq.
[72] of GLB) as expected, except for the term denoting self-
gravity which is slightly different due to the thin disk assump-
tion in our calculation.

In the other limiting case of k, — 0, that is when the pertur-
bation wavevector is purely radial, equations (25)—(26) govern-
ing the evolution of 6; with 7 reduce to the dispersion relation
for the two-fluid axisymmetric case obtained by JS1, as
expected—the details are given in the Appendix.

3. RESULTS

3.1. Solutions to the Perturbation Equations
3.1.1.Dimensionless Parameters

We define the set of five dimensionless parameters Q, Q,, €,
n,and X:

24
QsE s s gE ch , €= #0!1 s W=E
nGligs nG#Og (AuOy + Hos) Q,
and (30)
A
X =2,
A

crit

where }“cril = 4n2G(ﬂ0s + #Og)/’c2 .

Here Q, and Q, are the standard Q-factors (Toomre 1964) in
the axisymmetric, local stability criterion for a one-fluid disk—
for stars and gas, respectively. @ > 1 denotes stability and vice-
versa. € is the gas mass fraction in the galactic disk. 5 is the
logarithmic shearing rate (—[R,/Q,][dQ/dR],) in the galactic
disk. X is the wavelength of perturbation written in terms of
Aerit» the critical wavelength for growth of instabilities in a
one-fluid disk supported purely by rotation, with a surface
density equal to the total disk surface density. This choice of
Aerie 18 used because the maximum growth occurs at low | 7],
where the shear term dominates over the pressure term (egs.
[25]-[26]).

Thus, the ratio of the velocity dispersion in gas to that in the
stars is given by

c Q€
e ol-9 G

Since the gas is the colder component, this ratio is always
less than 1 in the present two-fluid analysis. This condition
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must be satisfied by any choice of values for Q,, Q,, and € that
are used to solve equations (25)—(26).

Note that the equation (30) defines a complete and single-
valued set of dimensionless parameters for the current
problem. This choice is suggested by the earlier work on the
two-fluid axisymmetric case (JS2), and the one-fluid non-
axisymmetric case (Toomre 1981). The above choice also facili-
tates a comparison of results from the present work with the
results from these earlier studies; see § 3.2 for details.

In terms of the set of parameters as defined in the equation
(30), the equations (25)—(26) describing evolution with 7 in 6,
reduce to

(&)-(2)5)
dr? dr J\1 + 2
2n—2) (1 +19)QX1 —e*&
+ OS[éz T+ ) 4x? ]
- 4; (1 +1)"2[0(1 — & + 6,€] (32)
(&) ()
dr? dr \1 + 2

2, 2n—2)  (1+13)07 6252]
* Hgl:é * n(1 + %) 4X2g

= 5—2 (1 + t)2[0,1 — €) + 0,€], (33)

where &2 = k%/44% = 2(2 — n)/n>.

We solve equations (32)—(33) for the special case when the
two-fluid system is stable against the growth of axisymmetric
perturbations; this is analogous to the condition that Q be > 1
as used for the one-fluid case by Toomre (1981). This
restriction allows us to obtain results for purely temporary
growth in the surface densities as given by swing amplification
(in the linear regime).

The condition that a two-fluid system is unstable to the
growth of an axisymmetric perturbation was given by JS1 (see
their eq. [22]). From this the condition for axisymmetric stabil-
ity, in terms of the parameters in equation (30), is

(1—e + €
X'{1+[QX1 —e*/4X*]} ~ X'[1+(Q; €*/4X%)]

where X' = A,/A, With 4, being the wavelength of the axisym-
metric perturbation.

For every set of parameters (eq. [30]) used to solve the
equatlons (32)—(33), we check that the above condition for sta-
bility is satisfied for all wavelengths (X’) between QZ¢/2 to
Q2%(1 — €)/2. These correspond to the most unstable wavenum-
bers for gas and stars, respectively, and the wavenumber corre-
sponding to the most unstable two-fluid perturbation lies in
this range (JS1). A complete analysis of the parameter range for
which a two-fluid system is stable against axisymmetric pertur-
bations will be presented elsewhere (Jog 1992.

3.1.2. Numerical Solutions

In this section, we describe the details involved in obtaining
numerical solutions of equations (32)—(33). These are two
coupled, second-order, linear differential equations in 6, and
0,. We solve these by treatlng them as four coupled, first- order
11near differential equations in 6,, d6,/dz, 6,, and d6,/dt. These

<1 (34)
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are solved numerically by the fourth-order Runge-Kutta
method with the given initial values at t;,;, the initial value of 1
(e.g., Press et al. 1986). The complete set of all possible initial
values for these four variables is (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1), analogous to the choice (1, 0) and (0, 1) for the
one-fluid case (GLB).

The resulting values of (0,),,., and the MAFs depend sensi-
tively on the value of t,,;, since the arrival phase at t = 0 is set
by the choice for 7;,;. We thus optimize the value of 7;,; so as to
obtain the highest possible values for the MAFs. This is iden-
tical to the approach used by Toomre (1981) for the one-fluid
case. In a sense, therefore, the values of (0,),.,, and MAF
obtained in § 3.2 are stylized values. Using the optimal t;,; as
done here is probably reasonable for the local perturbations.
In the optimization process one assumes that all perturbations
with the above four sets of initial values are equally probable,
and for each of these, all values of t,,; are equally likely. Then
given this spectrum of allowed initial perturbations, only the
one showing the highest values of MAFs will dominate in a
real two-fluid galactic disk. For the global case (not treated
here), such an optimization cannot be assumed for all radial
and azimuthal locations in a disk. Instead, one then needs
to consider a wavepacket evolution as in Toomre (1969),
and Goldreich & Tremaine (1978) (S. Tremaine, private
communication).

In the local case presented in this paper, the optimal 7,
turns out to be the same for gas and stars. This is not sur-
prising, given the strong coupling between the two fluids at low
values of 7. This is fortunate as it allows us to treat coeval
perturbations in the two fluids.

We first check that for € — 0, we obtain a plot of MAF for
stars versus X for different values of Q, that agrees with the
corresponding plot (GLB with the Lin-Shu-Kalnajs reduction
factor) in Figure 7 of Toomre (1981). We get somewhat smaller
values of amplification since our choice of isothermal equation
of state is stiffer. This plot is not given here as it does not lead
to any new insight. Moreover, this agreement is expected from
the first limiting case considered in § 2.3.

3.2. Results for Swing Amplification in Stars and Gas

In this section we present the results for swing amplification
of nonaxisymmetric perturbations in the coupled stellar and
gaseous fluids in a differentially rotating galactic disk. A vast
range of values is available for the input parameters (eq. [30]).
We choose realistic values for Q, (Lewis & Freeman 1989), Q,,
and e, the gas fraction (e.g., JS1). These are based on the obser-
vations of the Galaxy, covering a range from ~ 5 kpc (the peak
of the molecular ring) to 8.5 kpc (the solar neighborhood)—see
Scoville & Sanders (1987) for a radial distribution of gas in the
Galaxy. These choices allow us to explore the two-fluid swing
amplification in dynamically distinct cases. The values of input
parameters are accurate only up to a factor of ~1 due to the
observational uncertainties, plus the reduction in the effective
surface density due to the finite disk height (e.g., JS1), and the
use of total disk surface density instead of pu,, by Lewis &
Freeman (1989) in their estimates of Q, values. However, we
believe that the values used do represent realistic trends seen in
the various regions of spiral galaxies.

We ensure that for each choice of Q,, Q,, and € used, the
condition of two-fluid axisymmetric stability (eq. [34]) is satis-
fied; and that the ratio c,/c, (eq. [31]) is <1. We assume a flat
rotation curve, as seen over the major portion of disks of most
spiral galaxies, e.g., Bosma (1978) or Rubin, Ford, & Thonnard
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(1978). Hence, set 7 = 1, and &2 = 2 in equations (32)—(33). The
variation with » is givenin § 3.2.3.
3.2.1. Dependenceon @, Q,, and e

We first consider the two-fluid results for various Q,, Q,, and
€ values. Due to the observed values of parameters used, this
also allows us to study the variation with radius in the Galaxy.

First, consider a typical case which illustrates the basic fea-
tures of two-fluid swing amplification. The parameters as
typical for the solar neighborhood are chosen. We set Q, = 1.5
(Lewis & Freeman 1989), Q, = 1.5, e = 0.1 (JS1, see their
Appendix A), and X = 1. Figure 1 shows the resulting varia-
tion with 7 in 6, and 0,, the dimensionless perturbation surface
densities in stars and gas, obtained using the procedure
described in § 3.1.2. The physical explanation for the schematic
behavior of ; versus T was given in § 2.2. The epoch of amplifi-
cation in the sheared frame corresponds to the pitch angle in
the uniformly rotating frame (§ 2.2). For the linear analysis
given here, 6; may be multiplied by an arbitrary scale factor «
such that the net amplitude af;is <1 at all .

The nonaxisymmetric perturbations show amplification
(MAF > 1 in both fluids) even when the two-fluid system is
stable to axisymmetric perturbations, as is indeed true of all
the figures shown here. This is analogous to the one-fluid result
by Toomre (1981).

The amplified spiral feature in gas shows a higher amplifica-
tion (MAF), and it is also more tightly wound (i.e. has a higher
pitch angle) than the stellar feature. Due to the lower gas veloc-
ity dispersion the pressure term allows growth in gas till a later
epoch (eq. [33]) than in stars (eq. [32]), which leads to the
above two results. The pitch angles at maximum growth for
stars and gas are given by 69° and 76°, respectively. The net
contrast, af_,.(<1), is higher in gas than in stars as observed
(e.g., Schweizer 1976; Young 1990). Some of the observed
higher contrast in gas, however, could be due to nonlinear
evolution of gas; we return to this issue in § 3.3. In order to
compare the pitch angles in stars and gas, high-resolution CO

30 T 1T T T T T T T L —
Qs=l-5,Qg=I-5
=0- = G
b € =01, X=1 i
10} B
) S
N
S ——
X N\
o
-10 -‘
-20 - n
-30 1 1 1 1 1 1 1 1 1 L 1
-6 -4 -2 o 2 4 6

FiG. 1—Variation in 6 = du/u,, the ratio of the perturbation surface
density to the unperturbed surface density, with 7, the dimensionless time
parameter in the sheared frame—for stars (curve S) and for gas (curve G). The
parameters used are @, = 1.5, 0, = 1.5, € = 0.1—as typical for the solar neigh-
borhood region, and X = 1. The swing amplification in each fluid occurs at
T > 0, as the perturbation swings past the radial position. The amplification is
higher in the colder fluid, that is, gas, and the amplified gas feature is more
tighly wound than the stellar feature. The net amplitude af; is <1 at all 7,
where a is a scale factor.
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maps of galaxies need to be obtained—see, for example, the
maps of M51 by Rand & Kulkarni (1990); and overlaid on the
photometric maps or CCD images especially at long wave-
lengths. In M51, the CO spiral features do lie inside of the red
continuum features representing arms in the old stellar popu-
lations (see Fig. 1b of Rand & Kulkarni 1990), as predicted
from our analysis.

Next, consider the restrictive case when both the fluids are
separately stable to the growth of nonaxisymmetric pertur-
bations, a sufficient condition for this is that their respective
Q-values be > 2 (Toomre 1981; Carlberg & Freedman 1985;
Larson 1988), while a smaller limit of Q > 32 = 1.7 is given
by Polyachenko (1989). Consider the set: Q; =2, Q, =2,
€ =0.1, and X = 1. For these values, the gas in the two-fluid
system shows amplification while the stars do not (the figure is
not shown here). Evidently, even the small contribution by the
hotter (stellar) component is sufficient to allow the colder com-
ponent (gas) to show growth, while the converse is not true.
This choice of parameters is typical for region around ~4 kpc,
just inside of the peak of the molecular ring—here Q =2
(Lewis & Freeman 1989), Q, = 2, and € = 0.1 (JS1). This value
of Q, is obtained assuming c, to be somewhat >5 km s™?,
because the gas velocity is robust and is expected to increase
only slightly in the inner regions of the Galaxy (Jog & Ostriker
1988).

Next, consider a higher gas fraction, € = 0.2, and set Q, = 2,
Q, =2,and X = 1 (Fig. 2). Here both the fluids in the two-fluid
system show small but finite amplification even when both of them
are separately stable to the growth of nonaxisymmetric
perturbations—this is possible because of the additional gravi-
tational coupling between the two fluids, and the high fraction
(20%) of disk mass in the cold fluid (gas). This is the non-
axisymmetric analog of the two-fluid axisymmetric result by
JS1 (see their Figs. 4a—4b).

The parameters for Figure 2 may be typical of the outer
regions of the disks of Magellanic-type irregular galaxies,
which are characterized by k and y, that are smaller by a factor
of a few compared to a typical large spiral galaxy, while their
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F1G. 2.—Variation in 8 = du/u, with 7 in stars (curve S) and in gas (curve
G) for the parameters Q, = 2, @, = 2, € = 0.2, and X = 1. Even when both the
fluids are separately stable to the growth of nonaxisymmetric perturbations
(Q = 2), the joint two-fluid system does show small but finite amplification.
This is possible due to the gravitational interaction between the two fluids and
a large fraction (20%) of mass in a cold fluid (gas).
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F1G. 3.—Variation in 6 = dp/p, with 7 in stars (curve S) and in gas (curve
G) for the parameters 0, = 1.8, 0, = 1.2, € = 0.15, as typical for the peak of the
molecular ring region in the Galaxy, and X = 1. The high gas amplitude
mainly determines the stellar curve, via the star-gas gravitational coupling.
(The stellar pressure causes small oscillations about the positive mean, giving
rise to a scalloped appearance of the stellar curve.) Here the range of pitch
angles showing stellar growth is high. This results in the broad stellar spiral
arms, discovered by Schweizer (1976). The arms are broader in the inner,
gas-rich regions of a galaxy (compare with Fig. 1).

random velocities are similar to or even higher than in large
spirals, and their gas fractions are high ~20%-30% (e.g.,
Gallagher & Hunter 1984).

Next, we consider the other extreme case when the gas frac-
tion is high and the gas by itself is close to being unstable to
axisymmetric perturbations (Q, — 1), as for example is the case
at the peak of the molecular ring in our Galaxy, and perhaps
also for the central regions of other gas-rich galaxies. For this
region at r ~ 5 kpc, the observed value of Q, is =1.8 (Lewis &
Freeman 1989), Q, = 1.2, and € = 0.15 (JS1). We choose the
higher value in the range for Q, given by JS1 so that the
condition for two-fluid axisymmetric stability (eq. [34]) is satis-
fied. The results are plotted in Figure 3 for X = 1. The MAFs
are lower than in Figure 1. Because of the lower Q, value, and
the high gas fraction; the gas amplitude and hence the gas
contribution to the self-gravity term is strong (see the right-
hand sides of egs. [32]-[33]). Hence, both stars and gas show
fairly strong amplification in this case even though Q; is high.
Further, due to the lower Q, ¢, the epoch of highest gas amplifi-
cation occurs later than in Figures 1-2 (see the pressure term in
eq. [33]). Hence, the gas feature is slightly more tightly wound,
with a pitch angle of 79°.

In Figures 1-3, the stellar curve does oscillate at large 7 as
expected (§ 2.2), but it does so around a nonzero value, thus
resulting in a scalloped appearance. This is a genuine physical
effect and is due to the fact that when 6,, the gas amplitude,
and hence the gas contribution is high, it mainly determines
the stellar curve via the star-gas coupling. Note that the mean
of the scalloped distribution does mimic the gas curve. The
stellar pressure term causes small oscillations around the mean
positive value of 6,, thus giving rise to the scalloping. The peak
in 6, though not sharply defined does occur earlier than for gas.

When the gas contribution is high, it increases the range of ©
values (pitch angles) over which the stellar amplification can
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occur. Our two-fluid scheme can, therefore, explain the origin
of the broad spiral arms/patterns in the underlying old stellar
populations as discovered by Schweizer (1976), and later seen
in a larger sample by Elmegreen (1981) and Elmegreen &
Elmegreen (1984). This is a major result from the present work.
Note that, Schweizer’s sample consists mainly of grand-design
spiral galaxies; however, these also exhibit many local spiral
features that may be explained as material arms as in our
analysis. Elmegreen’s sample contains many galaxies with a
patchy, irregular spiral structure, for which our analysis is par-
ticularly applicable (§ 1).

We find that the stellar arms are broader in the inner, gas-
rich regions of a typical spiral galaxy like the Galaxy (compare
Figs. 1 and 3). We also predict the arms to be broader in
gas-rich spiral galaxies. This is in fact seen for example in M33,
NGC 6946, and NGC 2403 (see the I-band images in Elmeg-
reen 1981)—these have very high gas fractions ~25% (e.g.,
Young 1990).

The narrowness of the blue arms (representing young stars)
superposed on the broader, redder arms (representing older
stars) as observed by Schweizer (1976) and Elmegreen (1981)
could probably be explained by further nonlinear evolution of
gas. Note that, in view of the dust extinction, far-infrared emis-
sion rather than the blue band emission or the Ho emission,
may be a better tracer of the young, massive stars (e.g., Young
et al. 1989).

In the extreme case when the gas contribution totally domi-
nates, say for very high €(>0.2), or very low Q,(<1.2), or when
X is low; then the perturbations in gas and stars are found to
remain in phase at all 7. Such cases are expected to be impor-
tant in the early dynamical evolution of galaxies.

From Figures 1-3, and the discussion in this section, we
conclude that strong amplification in (and coupling between)
stars and gas will occur for moderate/small values of the
Q-parameters (< 1.5), and for high gas fraction (~0.15-0.2).
For our Galaxy, this corresponds to a range r ~ 5-8.5 kpc;
and these parameters are probably typical of the intermediate
radial regions of any spiral galaxy. The amplification is highest
at the larger r values in this range, for both the stars and the
gas. For a constant initial amplitude, (6;);,;( < 1), this implies a
radial increase of arm contrast, o(0;),..(<1). This agrees with
conclusions of Schweizer (1976) that the “fractional amplitudes
of stellar patterns” [a(f,),., in our notation], and the strength
of star formation following gas amplification, both increase
with radius. Schweizer’s conclusions were based on the obser-
vations of radially increasing arm strengths (ratio of arm to
disk intensity) in all wavelength bands. This trend has also
been noted, though to a lesser degree, in the study by Elmeg-
reen & Elmegreen (1984).

It is interesting that our linear analysis has allowed this
comparison of our galaxy which has a ring distribution of gas,
with results for Schweizer’s sample—none of which show a
ring distribution of gas (e.g., Young 1990; Kenney & Young
1989). If a lower and more realistic value of Q, were to be used
in the inner (ring) region, then the amplification would prob-
ably be strongest at the peak of the molecular ring and not in
the outer region.

Finally, note that the Q-values are probably self-regulated,
so that very large (>2) or small (<1.5) values of Q, are not
expected in a real spiral galaxy (GLB; Sellwood & Carlberg
1984). The observed values of Q, for the Galaxy and for the few
external galaxies for which data are available, do lie in the
range of 1.5-2, except in the inner ~ 2 kpc region where higher
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values of Q, are seen (Lewis & Freeman 1989; Kormendy 1984;
van der Kruit & Freeman 1986; and Bottema 1989). Thus
an upper bound of 2 for the Q; values as used here seems
reasonable.

3.2.2. Dependence on X

We next discuss the variation in results with X. Consider a
lower X value = 0.5, for the solar neighborhood region, so that
Q,= 15,0, = 1.5, € = 0.1 (Fig. 4). Here the relative amplifica-
tion in gas to that in the stars is higher than for X = 1 (see Fig.
1). The stellar curve again shows the scalloping effect indicat-
ing the dominance of gas contribution. The frequency of scal-
loping, which is set by the stellar pressure term (eq. [32]), is
higher for the lower X value (compare Figs. 1 and 4), and also
it is higher for a higher Q, value for the same X (compare Figs.
1 and 3). Figure 4 shows that the two-fluid perturbations with
X <1 show significant growth unlike in the one-fluid case
(Toomre 1981, Fig. 7). This is because of the amplification in
gas for small X, which also affects the stars due to the gravita-
tional coupling between the two fluids. Due to this coupling,
AX, the range of wavelengths over which swing amplification
occurs is extended for both gas and stars, to cover the purely
gaseous case (low X) to purely stellar case (high X). This is
analogous to the large range of unstable wavelengths seen for
the two-fluid axisymmetric case, when € is high and when
Q, ~ 1 (JS1, Figs. 4c-4d). The low-X modes would be domi-
nant in gas-rich (late-type) galaxies.

Next, consider a larger X, say X = 2, and with the param-
eters as for the solar neighborhood (the figure is not shown
here). Here the ratio of (6,)y,y t0 (6,)m.x is high ~1/3, as com-
pared to ~1/8 for Figure 1. Interestingly, in this case, because
of the higher relative 6, and hence the higher stellar contribu-
tion (see eqs. [32]-[33]), it is the gas curve that shows modula-
tion due to the stellar curve. This behavior would also be seen
when Q; ~ 1, except that such low values of Q, are not realistic
for galaxies at the present epoch. A detailed variation of two-
fluid results with X will be presented in a future paper.

Finally, we check that for realistic values of parameters in
spiral galaxies, the values of X in Figures 1-4 are in fact > the
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F1G. 4—Variation in § = du/u, with t in stars (curve S) and in gas (curve
G) for the same parameters as in Fig. 1, except now X = 0.5. The ratio of the
amplification in gas to that in stars is higher than in Fig. 1. Note that, due to
the coupling between the two fluids, both gas and stars show amplification
even when X is <1.
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stellar scale height/A_,;, (see eq. [30]), as required for the thin
disk approximation to be valid (§ 2.1).

3.2.3. Dependence onn

For a smaller shearing rate (1) than for a flat rotation curve
as used here; the pressure term stops further growth at an
earlier epoch (see egs. [32]-[33])—thus resulting in more open
features. This was pointed out by GLB and was verified
numerically by Sellwood & Carlberg (1984) for Sc galaxies.
Note that, this would also apply for the Magellanic-type dwarf
irregulars since most of these show a slowly rising rotation
curve in the outer regions (Casertano & Van Gorkom 1991).
Conversely, a higher shearing rate—as is perhaps applicable
for the early-type galaxies since they have a higher central
concentration of mass (e.g., Bosma 1978), or the bright galaxies
with falling rotation curves (Casertano & Van Gorkom
1991)—would lead to more tightly wound arms, as is seen for
the early-type spiral galaxies.

The variation with gas fraction alone would tend to give an
opposite trend, namely the mostly gas-rich, late-type galaxies
would show more tightly wound arms. Clearly, the net varia-
tions in pitch angles depends on the combination of both these
trends.

3.3. Discussion

In § 3.2, we could not explore the cases of the most virulent
two-fluid amplification, say, when both Q-values are very low
(< 1.2) and/or the gas fraction is very high, € > 0.2, since the
values of parameters used were restricted so as to satisfy equa-
tion (34) representing two-fluid axisymmetric stability. Such
cases would be important for studying the early evolution of
galaxies, or when a galaxy undergoes gas infall from outside
which results in the lowering of Q, values (Carlberg & Freed-
man 1985; Toomre 1990). These cases will be followed up in a
future nonlinear analysis. Note that only a nonlinear analysis
would yield values of (0., and (6,)ma, (With a scale factor
o = 1) that may be directly compared with the observations of
surface density contrasts in spiral features in stars (Schweizer
1976) and in gas (e.g., Young 1990). Further, the recurrent
formation of spiral features as sheared material arms following
a nonlinear evolution, as proposed by GLB, is possible only in
a two-fluid system. A nonlinear analysis may require the use of
a collisionless representation of stars, since an isothermal fluid
representation would give unrealistically large values of 6, at
large t (Julian & Toomre 1966; also § 2.1). In a future paper,
we will also discuss the global case.

In the present work, it has been assumed that all pertur-
bations are equally probable (§ 3.1.2). In a real galaxy, and
especially for the global case, the initial spectrum of pertur-
bations may be decided by the presence of massive clouds in
the galactic disk (Julian & Toomre 1966; Byrd, Smith, &
Miller 1984; Toomre 1990), or by gas infall onto the galactic
plane (Carlberg & Freedman 1985; Toomre 1990), or by a tidal
interaction between galaxies. These would require a self-
consistent treatment, not given here, for the perturber and the
response to it (which in turn produces the perturber, ie., a
cloud, via nonlinear evolution).

It is observed that the arm contrast is smaller in galaxies
with a patchy spiral structure than in the grand-design spiral
galaxies (Elmegreen & Elmegreen 1984); the reason for this
difference is not known. The global spiral patterns seen in the
latter may be explained as density waves (Lin & Shu 1964; also
see Binney & Tremaine 1987); however, in view of the high
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observed arm contrasts for these, the simple linear density
wave picture is probably not applicable (Strom, Jenkins, &
Strom 1976; Rand & Kulkarni 1990). Further, a galaxy may
appear to be multiple-armed like M 101 in the blue band, while
it may appear as a grand-design spiral with a high arm contrast
in the near-infrared (~ 1-2 um), as seen in NGC 309 (Block &
Wainscoat 1991). Even here, the local features seen in the blue
band could be arising as material arms (§ 3.2) which could have
a much lower contrast in red than the global pattern. Further
high-sensitivity, multiband data are necessary to delineate this
problem in more detail.

4. CONCLUSIONS

In summary, we have presented a study of the growth of
local, nonaxisymmetric, linear perturbations in the coupled
stars and gas in a differentially rotating galactic disk. We study
the physical effects of inclusion of a low velocity dispersion com-
ponent (gas) on the growth of perturbations in both stars and
gas in a spiral galaxy.

The main results from this work are summarized below:

1. The amplification is higher in gas than in stars and the
amplified gas spiral features are slightly more tightly wound
than the stellar features. These results are due to the lower gas
velocity dispersion, which allows a growth in gas till a later
epoch in the sheared frame.

2. When the gas contribution is high, the stellar amplifica-
tion and the range of pitch angles over which it can occur is
also increased due to the gravitational coupling between the
two fluids. Thus, the two-fluid scheme can explain the origin
of the broad stellar spiral arms in the underlying old stellar
populations of galaxies as observed by Schweizer (1976) and
Elmegreen & Elmegreen (1984). This is a major result from the
present work. The stellar arms are predicted to be broader in
gas-rich galaxies, as is indeed seen for example in M33.

3. The input parameters as observed for the inner Galaxy
(4-8.5 kpc) result in radially increasing arm contrasts in old
stars and gas, which agrees with Schweizer’s data (1976) for
external galaxies. Our linear analysis has allowed this compari-
son of the Galaxy which has a ring distribution of gas, with the
galaxies without rings as studied by Schweizer. If a lower Q,
value were to be used (which would require a nonlinear
analysis), the amplification would then probably be highest at
the ring region.

The above three results would be of even greater significance
in future as the high spatial and spectral resolution photo-
metric data from large single-dish telescopes and from optical
and infrared interferometry become available for a large
number of galaxies.

4. A real galaxy consisting of stars and gas may show
growth of nonaxisymmetric perturbations even when it is
stable against axisymmetric perturbations, and/or when either
fluid is stable against nonaxisymmetric perturbations. The
two-fluid system shows higher growth values than either fluid
by itself, and also, the growth occurs over a larger range of
wavelengths.

5. The two-fluid amplification process is expected to be
important in the early dynamical evolution of galaxies, when
the gas fraction would be much higher than at the present
epoch. Here the two fluids evolve in phase at all times. This will
be followed up in a future nonlinear analysis.

6. The analysis presented here, and the formulation of the
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problem in terms of the five dimensionless parameters, is
general and could be applied to other two-fluid disk systems—
such as for example, the two-fluid accretion disks in active
galactic nuclei (see Shlosman & Begelman 1989).

APPENDIX
THE TWO-FLUID NONAXISYMMETRIC CASE IN THE LIMIT OF k,—0

We show that in the limit of k,, the tangential wavenumber — 0, that is when the perturbation wavevector is purely radial,
equations (25)-(26) describing the evolution of two-fluid, nonaxisymmetric perturbations do reduce to the dispersion relation for the
two-fluid axisymmetric case obtained by JS1.

We start with the general expression for 7 (eq. [13]) and consider a general case when both the radial and the tangential
wavenumbers k,, k, # 0. In the limit of k, — 0, the various functions of 7 in equations (25)—(26) take on the following values:
(1 + ) = 0,2t/ + 1% = 0,and, k(1 + 132 = k.

Next, from the definition of 7 it follows that for an arbitrary ¢:

d d

24— =—. 35
dv dt 39
Thus in the limit of k, — 0, equations (25)—(26) simplify to the following
2
b,

i + 04(x* + k2 c? — 2nGk, Ko, = 0,2nGk, o, (36)

d20 2 2.2
—5 + 0,0 + k22 — 2nGk, po,) = 0,2nGk, o - (37

dt?

These equations have no terms with coefficients involving time ¢ and hence they can be Fourier-analyzed in time, say with a trial
solution 6, = O,[exp (iwt)], and 0, = 0,,[exp (iwt)], where w is the frequency of the perturbation. With this trial solution, equations

(36)—(37) combine to give the following

(@* — K% — kZ ¢} + 2nGk, po@® — k? — ki ¢} + 2nGk, po,) — (2nGk, 1o, )21 Gl pro,) = 0.

(38)

This is indeed identical to the dispersion relation obtained for a purely radial perturbation for the two-fluid axisymmetric case by

JS1 (see their eq. [17]).
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