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Liver Injury in Acute Fatty Liver of Pregnancy:
Possible Link to Placental Mitochondrial Dysfunction

and Oxidative Stress
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Acute fatty liver of pregnancy (AFLP) is a rare disorder which is fatal if not recognized and treated
early. Delivery of the feto-placental unit results in dramatic improvement in maternal liver function,
suggesting a role for the placenta. However, the mechanisms by which defects in the fetus or placenta
lead to maternal liver damage are not well understood and form the focus of this study. Placenta and
serum were obtained at delivery from patients with AFLP, and placental mitochondria and peroxi-
somes were isolated. Placental mitochondrial function, oxidative stress, and fatty acid composition as
wellas serumantioxidants,oxidativeandnitrosativestressmarkers,andfattyacidanalysiswerecarried
out. Hepatocytes in culture were used to evaluate cell death, mitochondrial function, and lipid accu-
mulation on exposure to fatty acids. Oxidative stress was evident in placental mitochondria and
peroxisomes of patients with AFLP, accompanied by compromised mitochondrial function. In-
creased levelsof arachidonic acidwerealso seen inAFLPplacentawhencompared tocontrol.Patients
with AFLP also had a significant increase in oxidative and nitrosative stress markers in serum, along
with decreased antioxidant levels and elevated levels of arachidonic acid. These levels of arachidonic
acid were capable of inducing oxidative stress in hepatocyte mitochondria accompanied by induction
of apoptosis. Exposure to arachidonic acid also resulted in increased lipid deposition in hepatocytes.
Conclusion: Oxidative stress in placental mitochondria and peroxisomes is accompanied by accumu-
lation of toxic mediators such as arachidonic acid, which may play a causative role in maternal liver
damage seen in AFLP. (HEPATOLOGY 2010;51:191–200.)

Acute fatty liver of pregnancy (AFLP) is an example
of a primary mitochondrial hepatopathy1 charac-
terized by hepatic microvesicular steatosis, hepatic

failure, and encephalopathy developing in the last trimes-

ter of pregnancy.2,3 Although the majority of primary
mitochondrial hepatopathies present in childhood, AFLP
presents in a previously asymptomatic woman in late
pregnancy. The disease is associated with defects in �-ox-
idation of fatty acids in mitochondria4 especially the mi-
tochondrial long-chain acyl coenzyme A dehydrogenase
(LCHAD)5,6 in the fetus, but it is now recognized that
AFLP can occur without a mutation in LCHAD.7,8 This
suggests that the metabolic basis of AFLP is more hetero-
geneous than believed earlier, but the mechanism by
which a fetal defect in lipid metabolism causes maternal
liver damage is not well understood. Interestingly, it has
been observed that patients with AFLP generally recover
from liver dysfunction subsequent to delivery of the fe-
tus,9 suggesting a causative role for the placenta, which is
expelled during delivery.

During gestation, the placenta is essential for fetal de-
velopment and utilizes fatty acids as a significant meta-
bolic fuel.10 The genetic composition of the placenta is
identical to that of the fetus, and all enzymes of the mito-
chondrial fatty acid �-oxidation pathway are expressed
and active in human placenta,11 with activities being max-
imum in the second trimester and decreasing with gesta-
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tional age in the third trimester.4 It is also recognized that
placental fatty acid metabolism can play a critical role in
guiding pregnancy and fetal outcome.12 Defects in trans-
port of fatty acids into the mitochondria or blocks at any
other steps of �-oxidation could lead to accumulation of
fatty acids and their metabolic products,13 which could be
toxic.

Oxidative stress has been implicated in a number of
liver diseases, and earlier work from our laboratory dem-
onstrated that experimental hepatic microvesicular ste-
atosis results in mitochondrial dysfunction and oxidative
stress in liver subcellular organelles.14 Oxidative stress has
been demonstrated in patients with preeclampsia,15 a
condition seen in 40% of patients with AFLP.16 Mito-
chondria are an important cellular source of free radicals,
and placental mitochondria have been implicated in free
radical generation in patients with preeclampsia.17 An-
other cellular source of free radicals in relation to fatty
acid oxidation would be peroxisomes, where �-oxidation
of fatty acids can result in generation of these active spe-
cies.18

Based on the dramatic improvement in maternal liver
function on delivery and the fact that the mother prefer-
entially uses fatty acids as the predominant energy source
in late pregnancy,19 we hypothesized that compromised
fatty acid metabolism in placental mitochondria of pa-
tients with AFLP would result in generation of oxidative
stress in mitochondria and peroxisomes with production
of toxic intermediates of fatty acid oxidation. These com-
pounds could then spill over into the maternal circulation
and result in hepatotoxicity. This hypothesis was tested by
evaluation of oxidative stress in serum as well as analysis of
placental mitochondria and peroxisomes from patients
with AFLP in comparison with controls.

Patients and Methods
Adenosine diphosphate; dimethyl sulfoxide; 3-(4,5-di-

methyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT); 1,1�, 3,3�-tetramethoxy propane, Tris(hy-
droxymethyl) aminomethane (Tris); thiobarbituric acid;
dithio-bis-(2-nitrobenzoic acid); 2,4-dinitrophenyl hydr-
azine; arsenazo III; succinic acid; 2-(p-iodophenyl)-3-(p-
nitrophenyl)-5-phenyl tetrazolium; bovine serum albumin;
arachidonic acid; caspase-3 substrate (AC-DEVD-pNA); di-
thiothreitol; dihydrorhodamine (DHR); Nile red; and para-
nitrophenyl phosphate were obtained from Sigma Chemical
Co. (St. Louis, MO). All other chemicals and solvents used
were of analytical grade.

Patients. Seven patients with AFLP diagnosed as per
clinical diagnostic criteria20 were recruited for the study,
after obtaining informed consent. Five of these patients
underwent liver biopsy and had hepatic microvesicular

steatosis (Fig. 1), which confirmed the diagnosis of AFLP
in these patients. All seven patients had negative hepatitis
A, B, C, and E serology. None of the AFLP patients were
obese. Controls were 10 mothers matched for gestational
age, who underwent normal delivery at the hospital. Both
controls and AFLP patients were from the lower socioeco-
nomic category. This study was approved by the Institu-
tional Experimentation Ethics Committee.

Isolation of Subcellular Organelles. Human pla-
centas were processed within 30 minutes of delivery. The
blood was drained and placental tissue was minced and
washed three times with a buffer containing 250 mM
sucrose, 1 mM Tris, and 1 mM ethylene diamine tetraace-
tic acid (EDTA; pH 7.4). The washed mince was filtered
through two layers of surgical gauze and homogenized
with four volumes of buffer containing 250 mM sucrose,
1 mM Tris, 1 mM EDTA, pH 7.4. The homogenate was
centrifuged at 1500g for 15 minutes and mitochondria
were pelleted at 16,000g for 10 minutes and washed twice
with mitochondrial suspension buffer containing 250
mM sucrose, 1 mM Tris HCl (pH 7.4).21 Postmitochon-
drial supernatant was then centrifuged at 39,000g for 10
minutes to isolate the fraction including peroxisomes,
which was resuspended in 250 mM sucrose containing 1
mM EDTA and 1 mM Tris HCl (pH 7.4). This suspen-
sion was again centrifuged at 16,000g for 10 minutes to
remove mitochondrial contamination and the superna-
tant was then centrifuged at 39,000g for obtaining perox-
isomal fraction. Purity of the isolated mitochondria and
peroxisomes was checked by enrichment of marker en-
zymes succinate dehydrogenase and catalase,14 respec-
tively.

Assessment of Placental Mitochondrial Function.
Mitochondrial function was assessed by measuring oxy-
gen uptake, mitochondrial swelling, MTT reduction, and
calcium flux measurements. Oxygen uptake was deter-
mined polarographically using a Clark-type electrode in 3
mL respiration medium (150 mM sucrose, 1 mM
KH2PO4, 10 mM Tris, 5 mM MgCl2, 20 mM KCl [pH
7.4]) containing 5 mM succinate as respiratory substrate.
A mitochondrial protein of 1-2 mg/mL was used. Oxygen
uptake during both state 3 (in presence of adenosine
diphosphate and succinate) and state 4 (in presence of
succinate alone) respiration were measured and the ratio
of state 3/state 4 respiratory rate was used to calculate the
respiratory control ratio.22 A mitochondrial protein cor-
responding to 100-200 �g in suspension buffer was used
to determine mitochondrial swelling by measuring the
decrease in absorbance at 540 nm up to 7 minutes. To
determine the exclusive effect of AFLP on placental mi-
tochondrial swelling without additional stimuli, no exter-
nal inducers such as calcium or oxidative stress were
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applied in these experiments. The data is expressed as
change in absorbance per minute per mg protein.23 The
MTT reduction assay was performed using a microplate
reader as described.24 Calcium flux measurement was
done by quantitation of changes in the absorption spec-
trum of Arsenazo III at 675/685 nm. Arsenazo III is an
impermeable dye that indicates calcium concentration
outside mitochondria. On addition of exogenous calcium
to a suspension of mitochondria, there is an initial in-
crease in absorbance due to binding of calcium to the dye.
However, this is a dynamic process, and as the mitochon-
dria take up calcium through the uniporter, there is a
decrease in external concentrations of calcium, reflected
in a decrease in absorbance. Mitochondria were sus-
pended in a medium containing 230 mM mannitol, 70
mM sucrose, 5 mM HEPES, 5 mM succinate, and 40 �M
Arsenazo III (pH 7.4). A concentration of 10 �M calcium
was added to the reaction medium to initiate the flux
studies.25

Measurement of Oxidative Stress Markers. Mal-
ondialdehyde was measured using the thiobarbituric acid
method.26 For conjugated diene measurements, total lip-
ids were extracted, dissolved in 1 mL heptane, read at 233
nm and expressed as nmoles per milligram protein using a
molar absorption coefficient of 2.52 � 104. Protein car-
bonyl content formed was measured using 2,4-dinitro-
phenyl hydrazine and calculated using an extinction
coefficient of 22 mM�1 cm�1.27 Protein thiol and total
thiol content were measured using dithio-bis-(2-nitro-
benzoic acid) and expressed as nanomoles per milligram
protein.28 Protein was estimated by Lowry’s method us-
ing bovine serum albumin as a standard.29

Enzyme Assays. Catalase activity was estimated by
measuring the change in absorbance at 240 nm using
hydrogen peroxide as substrate and expressed as units per
milligram protein30 (units are expressed as micromoles
per minute). Succinate dehydrogenase activity was as-
sayed using 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phe-
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Fig. 1. (A) Liver biopsy showing
microvesicular steatosis in the perive-
nular region. (B-E) Mitochondrial func-
tion in placenta. (B) Respiratory
control ratio, (C) mitochondrial swell-
ing, (D) MTT reduction, (E) a represen-
tative trace from calcium flux
measurements, and (F) quantitative
assessment of calcium efflux in pla-
cental mitochondria isolated from pa-
tients with AFLP (n � 7), when
compared with healthy pregnant con-
trols (n � 10). The assays were done
as described in the text. Each value
represents mean � SD. * P � 0.05,
when compared to control.
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nyl tetrazolium as an electron acceptor, which forms
formazan crystals on reduction. Data is expressed as units
per milligram protein.31

Serum Retinol and Tocopherol Extraction and
Quantitation by High-Performance Liquid Chroma-
tography. For analysis, 0.5 mL serum was mixed with
equal volume of ethanol and hexane. Retinol and tocoph-
erol were extracted three times by a triple volume of hex-
ane. Extracted fractions were dried under nitrogen and
reconstituted in methanol:diethyl ether (3:1), followed by
separation and quantitation by high-performance liquid
chromatography.32 The recovery of retinol and tocoph-
erol by this method was around 95%.

Measurement of Free Fatty Acids. Serum and pla-
cental homogenate lipids were extracted by the Bligh and
Dyer method33 and the lower organic phase was concen-
trated using nitrogen, resuspended in a small volume of
chloroform:methanol (2:1), and used for lipid analysis.
Neutral lipids were separated on silica gel G plates using
the solvent system hexane:diethyl ether:acetic acid (80:
20:1, vol/vol). Spots corresponding to the standard were
identified by iodine exposure and eluted. Fatty acid con-
tent was quantitated using gas chromatography as de-
scribed.34

Cell Culture and Arachidonic Acid Treatment.
The Chang hepatocyte cell line is a well-differentiated
nonmalignant liver epithelial cell line of human ori-
gin.35,36 Cells were maintained (37°C, 5% CO2) in a
growth medium (Dulbecco’s modified Eagle medium;
Gibco) containing 10% fetal bovine serum (Gibco), pen-
icillin (100 units/mL), streptomycin (100 �g/mL), and
amphotericin-B (250 �g/mL; Gibco). For experiments
measuring reactive oxygen species and apoptosis with ar-
achidonic acid, confluent cells were treated with various
concentrations of arachidonic acid (20-100 �M) for 3
hours.

Caspase Assay. For detection of caspase-3 activity,
hepatocytes were lysed in buffer (0.15 M NaCl, 5 mM
EDTA, 1% Triton X, 10 mM Tris HCl [pH 7.4]).
Caspase-3 activity was detected in cell lysates by measur-
ing the proteolytic cleavage of the colorimetric substrate
acetyl-Asp-Glu-Val-Asp (DEVD)-pNA in assay buffer
(100 mM HEPES, 10% sucrose, 0.1% CHAPS [{3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfon-
ate}; pH 7.5], 1 mM phenylmethylsulfonyl fluoride and
10 mM dithiothreitol) using the absorbance of released
para-nitroanilide at a wavelength of 405 nm.

Measurement of Mitochondrial Reactive Oxygen
Species Generation in Hepatocytes. Mitochondrial re-
active oxygen species generation in cultured cells was mea-
sured by oxidation of DHR 123 to rhodamine 123. For
live-cell microscopy, cells were grown in 96-well plates

and incubated with various concentrations of arachidonic
acid for 3 hours in the presence of 10 �M DHR. At the
end of incubation, cells were washed with phosphate-
buffered saline and imaged on an inverted fluorescent
microscope (Zeiss Axiovert 200M) using a rhodamine
filter. Quantitation of rhodamine fluorescence was carried
out in parallel experiments, where cells were lysed with
lysis buffer (0.15 M NaCl, 5 mM EDTA, 1% Triton X,
10 mM Tris HCl [pH 7.4]) after incubation with arachi-
donic acid. Rhodamine 123 fluorescence was then mea-
sured at an excitation of 500 nm and emission of 536 nm
on a spectrophotometer. The measured fluorescence
value was expressed as a fold change compared to that of
untreated control.

Measurement of Lipid Accumulation in Hepato-
cytes. Lipid staining with the benzophenoxazone dye
Nile red was performed as follows: A stock solution of
Nile red (1 mg/mL in dimethyl sulfoxide) was prepared
and 1:1000 working dilution was used for staining cells.
Hepatocytes in culture were treated with 20 and 40 �M
arachidonic acid for 3 days, following which cells were
treated with Nile red for 90 minutes. Cell nuclei was
stained with Hoechst 33258, and imaged on an inverted
fluorescent microscope using the rhodamine filter.

Statistical Analysis. Data are expressed as mean �
standard deviation (SD). Statistical analysis was per-
formed with the nonparametric Mann-Whitney test.
Standard calculations were performed using SPSS soft-
ware (version 9.0).

Results
Clinical details for patients enrolled in the study are

shown in Table 1. No differences were noted in the mean
age between the two groups. Significant increase in total
and direct bilirubin as well as aspartate aminotransferase,
alanine aminotransferase, alkaline phosphatase, and pro-
thrombin time, accompanied by a decrease in serum al-
bumin were noted in patients with AFLP. Microvesicular

Table 1. Clinical Details of the Patients and Controls

Details Control (n � 10) AFLP (n � 7)

Age 25 � 3 29 � 4
Gestational age (weeks) 39 � 1 34 � 1
Total bilirubin (mg%) 0.5 � 0.2 12 � 6*
Direct bilirubin (mg%) 0.2 � 0.07 10.5 � 5.7*
Total protein (g%) 6.3 � 1 5.4 � 1
Albumin (g%) 3.2 � 0.6 2.4 � 0.2*
AST (U/L) 17.2 � 4.2 166 � 66*
ALT (U/L) 12.3 � 3 131 � 71*
ALP (U/L) 177 � 67 454 � 266*
Prothrombin time-INR 0.92 � 0.04 2.25 � 0.6*

*P � 0.001, when compared to controls.

194 NATARAJAN ET AL. HEPATOLOGY, January 2010



steatosis in the perivenular region was also evident on liver
biopsy (Fig. 1A).

Impaired fatty acid metabolism has been suggested to
play a role in the etiology of the disease and because mi-
tochondria play a central role in fatty acid metabolism,
initial experiments examined functional parameters in the
placental mitochondria and the role of oxidative stress. A
decrease in respiratory control ratio (Fig. 1B), along with
increased mitochondrial swelling (Fig. 1C) and MTT re-
duction (Fig. 1D) as well as altered calcium flux (Fig.
1E,F), were seen in placental mitochondria isolated from
AFLP patients as compared to controls. The calcium flux
measurement shown in Fig. 1E is a representative exper-
iment done in triplicate. Examination of oxidative stress
parameters revealed a significant increase in malondialde-
hyde levels (Fig. 2A), conjugated diene (Fig. 2B), and

protein carbonyl concentration (Fig. 2C) along with a
decrease in thiol content (Fig. 2D) in placental mitochon-
dria isolated from patients with AFLP, suggesting oxida-
tive stress.

Compromised mitochondrial function can lead to shunt-
ing of fatty acids to peroxisomal �-oxidation, and concomi-
tant generation of reactive oxygen species.18 To determine if
this resulted in oxidative stress in peroxisomes, these were
isolated from placenta in patients with AFLP and markers of
oxidative stress were examined. An increase in malondialde-
hyde, conjugated diene, and protein carbonyl levels accom-
panied by a decrease in thiol content is evident in placental
peroxisomes isolated from patients with AFLP when com-
pared to pregnant controls (Fig. 3).

Impaired fatty acid oxidation could lead to an accumu-
lation of fatty acids in the placenta. To determine if this
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with AFLP (n � 7), when compared with
healthy pregnant controls (n � 10). The assays
were done as described in the text. Each value
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was occurring, the levels of various fatty acids in placental
tissue from patients with AFLP were analyzed. A signifi-
cant increase in arachidonic, palmitic, oleic, and myristic
acids was seen in placenta from patients with AFLP as
compared to controls (Fig. 4).

The next series of experiments evaluated the levels of
serum antioxidants and oxidative and nitrosative stress
markers in maternal systemic circulation. Analysis of ox-
idative stress parameters in the serum from patients with
AFLP demonstrated a significant increase in malondial-
dehyde and protein carbonyl content when compared to
controls, indicating extensive lipid peroxidation and pro-
tein oxidation (Fig. 5A,B). This increase in oxidative
stress markers was associated with a concomitant decrease
in protein thiols (Fig. 5C). A significant increase in the
levels of serum nitrate (Fig. 5D), the stable end product of
nitric oxide, was also evident in serum from patients with
AFLP, indicating nitrosative stress as well. These changes

were accompanied by a decrease in antioxidants such as
retinol and tocopherol (Fig. 5E,F). Fatty acid analysis
in serum demonstrated a significant increase in arachi-
donic acid and palmitic acid in patients with AFLP
(Fig. 6A,B).

It has been demonstrated earlier that exposure to ara-
chidonic acid can induce apoptosis in Hep G2 hepato-
cytes37 by a mechanism dependent on oxidative stress.38

The next series of experiments were carried out to evaluate
if the arachidonic acid concentrations detected in serum
of patients with AFLP could influence hepatocyte func-
tion. For these, Chang liver cells, which had been used
earlier to study oxidative stress39 were used as a model.
Treatment of hepatocytes with various concentrations of
arachidonic acid from 20-100 �M did not result in lactate
dehydrogenase release (data not shown), suggesting the
absence of necrotic cell death. However, arachidonic acid
induced an increase in caspase-3 activity in a dose-depen-
dent manner (Fig. 6C) in hepatocytes, indicative of in-
duction of apoptosis. Caspase-3 activity in the presence of
80 �M arachidonic acid (the concentration seen in AFLP
patient serum) was significantly increased from that at 20
�M (the concentration seen in pregnant controls), sug-
gesting that the concentration of arachidonic acid seen in
serum from patients with AFLP is capable of inducing
apoptosis in hepatocytes.

Mitochondrial damage has been suggested to play an
important role in arachidonic acid induced toxicity,40 and
mitochondrial free radical generation has been implicated
in the apoptotic cascade. To determine if mitochondria
played a role in apoptosis in hepatocytes induced by ara-
chidonic acid, experiments were conducted with di-
hydrorhodamine, which has been used to detect mito-
chondrial free radical generation.41 Treatment of Chang
liver cells with arachidonic acid resulted in a dose-depen-
dent increase in DHR fluorescence which was punctate,
indicating a mitochondrial origin (Fig. 7A). Again, spec-
trofluorimetric quantitation indicated that exposure to 80
�M arachidonic acid resulted in a significant increase in
DHR fluorescence when compared to exposure to 20 �M
(Fig. 7B).

Acute fatty liver of pregnancy is characterized by mi-
crovesicular steatosis in the mother’s liver, and we next
examined if the increased arachidonic acid in serum could
result in steatosis. Nile red staining of lipids has been used
as an indicator of steatosis in cell culture,42 and exposure
of hepatocytes to 40 �M arachidonic acid for 72 hours
resulted in a significant increase in Nile red staining when
compared to controls (Fig. 7C). The lipid accumulation
was also punctate, with cell nuclei in the center, similar to
accumulation seen in microvesicular steatosis.
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Fig. 4. Measurement of free fatty acids in placenta. (A) Arachidonic
acid, (B) palmitic acid, (C) oleic acid, and (D) myristic acid from patients
with AFLP (n � 7), when compared with healthy pregnant controls (n �
10). The assays were done as described in the text. Each value repre-
sents mean � SD. *P � 0.05, when compared to controls
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Discussion
Acute fatty liver of pregnancy is a sudden catastrophic

illness occurring almost exclusively in the third trimester;
the disorder carries significant perinatal and maternal
mortality and requires early diagnosis and intervention to
prevent maternal and fetal death.43 Early recognition of
AFLP and immediate termination of pregnancy is the key
to improving maternal survival in this devastating dis-
ease.44 This then led to us focusing on the role of the
placenta in development of maternal liver disease. Placen-
tal mitochondria have been shown to be a source of oxy-
gen free radicals in patients with preeclampsia,17 a
condition which has been suggested to be a component of
the spectrum of AFLP.16 Our data demonstrates that pla-
cental mitochondrial function is compromised in patients
with AFLP, accompanied by oxidative stress in the or-
ganelle. In support of our findings, studies have shown
that placental mitochondrial generation of superoxide
could be an important source of oxidative stress in pre-
eclampsia, leading to increased lipid peroxidation in mi-
tochondria.17,45

In the event of compromised mitochondrial function,
oxidation of fatty acids is channeled to peroxisomal �-ox-
idation, which, unlike mitochondrial fatty acid oxidation,
generates hydrogen peroxide.18 In addition, omega oxida-

tion of fatty acids in microsomes form long-chain dicar-
boxylic acids which are also a substrate for peroxisomal
fatty acyl coenzyme A oxidase.46 The dicarboxylic acids
formed can result in increased production of hydrogen
peroxide,47 which can undergo the Fenton’s reaction in
the presence of heavy metals to form the highly reactive
hydroxyl radicals and result in oxidative tissue damage.
This seems to be occurring in placenta from patients with
AFLP, because oxidative stress was evident in peroxisomes
in addition to mitochondria. A reduced thiol content and
decrease in antioxidant enzymes accompanied by in-
creased lipid peroxidation has been shown in placentas
from patients with preeclampsia.48 The increased levels of
arachidonic acid and other fatty acids seen in placenta
from patients with AFLP raise the possibility that these
changes could be due to compromised fatty acid oxida-
tion, but further experiments will be needed to confirm
this.

So how do these changes in the placenta affect the
maternal liver? The data indicates significant increase in
oxidative and nitrosative stress parameters in the serum
and decrease in antioxidant levels. Nitric oxide is now
recognized as an important molecule with wide-ranging
physiological functions. The simultaneous presence of ox-
ygen free radicals and nitric oxide can result in formation
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Fig. 5. Oxidative and nitrosative stress pa-
rameters and antioxidant status in serum. (A)
Malondialdehyde, (B) protein carbonyl content,
(C) protein thiol, (D) nitrate, (E) retinol, and (F)
tocopherol from patients with AFLP (n � 7) as
compared with healthy pregnant controls (n �
10). The assays were done as described in the
text. Each value represents mean � SD. *P �
0.05, when compared to control.
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of reactive nitrogen species such as peroxynitrite,49 which
are highly damaging. Supplementation with antioxidants
such as vitamin C and E has been shown to be beneficial
in the prevention of preeclampsia,50 suggesting that this is
probably a global phenomenon.

In parallel to increased oxidative stress in serum, levels
of fatty acids such as arachidonic acid were also found to
be increased. Although none of the patients with AFLP
were obese and all were from the same socioeconomic
status, we cannot rule out the role of nutrition in modu-
lating fatty acid levels. However, the increased levels of
free fatty acids in the liver of AFLP patients has been
suggested to be a mechanism of toxicity,51 and it has also
been demonstrated that exposure of hepatocytes to ara-
chidonic acid or other polyunsaturated fatty acids results
in lipid peroxidation and cellular toxicity.37,52 In that
case, could the elevated levels of arachidonic acid in ma-
ternal serum play a role in compromising hepatocyte

function? Arachidonic acid can induce production of re-
active oxygen species from mitochondria,53 and has been
shown to decrease mitochondrial membrane potential,
increase lipid peroxidation, and decrease cell viability in
HepG2 cells.54 This toxicity appears to be apoptotic in
nature and was prevented by overexpression of bcl-2.37

Our data with hepatocytes in culture clearly indicate that
levels of arachidonic acid in patient serum can induce
mitochondrial reactive oxygen species production and ap-
optotic cell death in hepatocytes, resulting in apoptosis.
This then suggests that increased arachidonic acid and
oxidative stress in serum due to placental mitochondrial
dysfunction may perhaps cause hepatocyte damage in the
maternal liver in patients with AFLP.

Fig. 7. (A,B) Mitochondrial reactive oxygen species generation in
hepatocytes in response to arachidonic acid. Cells were treated with
varying concentrations of arachidonic acid for 3 hours, following which
cells were (A) subjected to live-cell imaging or (B) lysed and fluorescence
measured on a spectrofluorimeter. The inset in (A) depicts the field at a
higher magnification to show punctate nature of staining. In (B), data is
expressed as mean � SD (n � 3). *P � 0.05, when compared to
control; #P � 0.05, when compared to 20 �M. (C) Lipid accumulation
in hepatocytes after exposure to arachidonic acid: Hepatocytes in culture
were treated with 20 and 40 �M arachidonic acid for 72 hours, following
which cells were stained with Nile red and subjected to live-cell imaging
as mentioned in the Patients and Methods section (n � 3).

Fig. 6. Measurement of free fatty acids in serum. (A) Arachidonic acid
and (B) palmitic acid from patients with AFLP (n � 7) as compared with
healthy pregnant controls (n � 10). The assays were done as described
in the text. Each value represents mean � SD. *P � 0.05, when
compared to control. (C) Caspase-3 activity in hepatocytes treated with
arachidonic acid. Confluent cells were treated with varying concentrations
of arachidonic acid for 3 hours, after which cells were lysed and
caspase-3 activity was determined (n � 3). Data is expressed as
mean � SD. *P � 0.05, when compared to control; #P � 0.05, when
compared to 20 �M.
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A distinctive histological feature in the liver of patients
with AFLP is microvesicular steatosis, where accumula-
tion of triglyceride occurs as small, uniform fat droplets
dispersed throughout the hepatocyte.55 The data so far
indicate that concentrations of arachidonic acid seen in
serum from AFLP patients could induce hepatocyte dam-
age; and the data from Nile red staining, which detects
triglycerides,56 suggest that exposure to arachidonic acid
concentrations lower than those seen in patients with
AFLP over 3 days can result in an increased lipid accumu-
lation in hepatocytes in culture similar to microvesicular
steatosis in the liver.

In conclusion, this study has shown that in placenta of
patients with AFLP, compromised mitochondrial func-
tion probably results in shunting of fatty acid oxidation to
peroxisomes and generation of oxidative stress in these
organelles. Free radical production and accumulation of
fatty acids in the placenta is accompanied by oxidative
stress in serum along with elevated levels of free fatty acids
such as arachidonic acid. Exposure of maternal hepato-
cytes to this milieu probably plays an important role in
mitochondrial dysfunction leading to acute liver failure.
Experiments to confirm compromised fatty acid oxida-
tion in placental mitochondria of AFLP patients and to
determine levels of fatty acids in patient serum after de-
livery are currently underway.

Acknowledgment: S.K.N. is a Senior Research Fellow
of the Indian Council of Medical Research.
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