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ABSTRACT
We study the self-consistent response of an axisymmetric galactic disk perturbed by a constant lop-

sided (m\ 1) halo potential and show that the disk self-gravity plays a crucial role in the determination
of the net lopsided distribution in the disk. First, the self-gravitational potential corresponding to the
nonaxisymmetric density response of the disk to the lopsided potential is calculated, by inversion of the
Poisson equation for a thin disk, and this is shown to be negative, that is, it opposes the lopsided halo
potential. Next, the net stellar disk response is obtained self-consistently so as to take account of the
e†ect of both the imposed lopsided potential and also the disk response potential. The magnitude of the
net lopsided potential in the galactic disk plane is shown to be always smaller than that of the pertur-
bation lopsided potential. The perturbation potential is reduced by a factor that is independent of the
strength of the perturbation potential. This factor has a minimum value of D0.5È0.7, which is insensitive
to the morphological type and size of the galaxy.

The net lopsided distribution in the disk is shown to be important only beyond a radius of 1.4 disk
scale lengths, and its magnitude increases with radius, indicating the increasing dynamical importance of
the halo over the disk at larger radii. This is a robust dynamical result and is independent of the
logarithmic slope of the rotation curve. This result is in exact agreement with the observations of stellar
disks by Rix & Zaritsky (1995). It also provides a natural explanation as to why lopsidedness in the
atomic hydrogen gas is observed mainly in the outer disk.
Subject headings : galaxies : halos È galaxies : kinematics and dynamics È galaxies : spiral È

galaxies : structure

1. INTRODUCTION

It is well known that spiral galaxies are not axisymmetric
in their global light distribution as seen for example in
M101 (NGC 5457) or in NGC 1637 (Sandage 1961). The
spatial extent of atomic hydrogen gas, H I, in the outer
regions in the two halves of some galaxies was shown to be
asymmetric by Baldwin, Lynden-Bell, & Sancisi (1980), who
termed such galaxies as lopsided. The asymmetry in mass
distribution is given by a cos r distribution, where / is the
azimuthal angle in the galactic disk plane. The mapping of
global H I proÐles of larger samples of galaxies show that
nearly 50% of the galaxies show such asymmetry (Richter &
Sancisi 1994 ; Haynes et al. 1998). Recently lopsidedness has
also been detected in the old stellar component at smaller
radii within the optical image in spiral galaxies via near-IR
observations (Block et al. 1994 ; Rix & Zaritsky 1995) and
via R-band photometry (Kornreich, Haynes, & Lovelace
1998). For example, 30% of the Ðeld spiral galaxies studied
show a 20% or larger fractional amplitude for the azi-
muthal m\ 1 Fourier component ; and the amplitude
increases with radius (Rix & Zaritsky 1995 ; Zaritsky & Rix
1997). Thus the lopsided disk distribution appears to be
common in spiral galaxies and is stronger at larger radii.

The physical origin of the lopsided disk distribution is
not yet understood, though tidal interactions between gal-
axies (Beale & Davies 1969) and a satellite galaxy accretion
(Walker, Mihos, & Hernquist 1996 ; Zaritsky & Rix 1997)
are strongly indicated as generating mechanisms for the
lopsided distribution. For the speciÐc case of the Galaxy,
Weinberg (1995) has shown that the tidal interaction
between the Galaxy and the LMC causes a global lopsided
distortion in the Galaxy halo, which then distorts the galac-
tic disk. Since galaxy interactions are now believed to be

extremely common (e.g., Wielen 1990 ; Schweizer 1999), we
assume this to be a general mechanism for creating a lop-
sided distribution in the halo.

In this paper, we study the dynamics of the response of an
axisymmetric galactic disk, perturbed by a lopsided halo
potential, and show that the disk self-gravity plays a crucial
role in determining the net lopsided distribution in the disk.
The self-gravitational potential corresponding to the non-
axisymmetric, self-consistent density response of the disk is
calculated and shown to oppose the perturbation potential.
The negative disk response decreases the magnitude of the
perturbation lopsided potential in a spiral galaxy and also
restricts its importance to radii beyond one and a half disk
scale lengthsÈin good agreement with observations. The
results are valid irrespective of the mechanism for the origin
of the lopsided perturbation.

In an earlier paper (Jog 1997) we had studied the
dynamics of orbits in an axisymmetric, exponential disk
perturbed by a lopsided halo potential, where it was shown
that the maximum of the e†ective disk density occurs along
the maximum of the lopsided potential. It was argued that,
qualitatively, this implies that the self-gravitational poten-
tial corresponding to this disk response would be anti-
correlated with the imposed lopsided halo potential. The
aim of this paper is to study this anticorrelation e†ect quan-
titatively and to treat the disk response self-consistently.

Since the disk response tends to damp the imposed halo
potential, it may seem surprising that the phenomenon of
lopsidedness is observed with such a high frequency in
spiral galaxies and that the magnitude of the observed disk
lopsidedness is fairly high. Note, however, that the halo
becomes dynamically more important than the disk at large
radii. Thus the damping due to the disk response will be less

661



662 JOG Vol. 522

important at large radii ; therefore, we can expect that the
net lopsided distribution would be stronger in the outer
regions of disks. Thus we provide a dynamical explanation
for the well-known observation that lopsided distribution in
disks is stronger at larger radii.

In ° 2 the self-gravitational potential corresponding to
the nonaxisymmetric disk response is obtained Ðrst for a
general azimuthal wavenumber m, and then its value is
evaluated for the lopsided (m\ 1) case. A self-consistent
calculation yields the net lopsidedness in a galaxy (° 3), and
this is shown to be important only beyond a radius of 1.4
disk scale lengths, in exact agreement with the observations
of stellar disks by Rix & Zaritsky (1995). The net reduction
in the perturbation potential is obtained, for typical giant
spiral galaxies and also for dwarf spiral galaxies, and thus it
is checked which galaxies are more likely to display a net
lopsided behavior. These results are shown to compare well
with the observations of lopsided galaxies. A few general
points are discussed in ° 4, and the results from this paper
are summarized in ° 5.

A similar anticorrelation between the disk response and
the imposed perturbation potential has been mentioned for
the m\ 2 case by Rix (1996) and by Rix & Zaritsky (1995),
though they do not work out the details. The anti-
correlation in the surface density response (though not
potential) for the closed loop orbits for a general even m
Fourier component for a disk of logarithmic potential has
been shown by Kuijken (1993). The decrease in ellipticity of
the potential due to the disk response to the m\ 2 pertur-
bation potential has been discussed by Binney (1996). In a
future paper, we will study the detailed, self-consistent anti-
correlation problem for the m\ 2 case, analogous to the
m\ 1 case studied here.

2. POTENTIAL CORRESPONDING TO THE DISK RESPONSE

Next, the self-gravitational potential corresponding to
the density response of an axisymmetric galactic disk per-
turbed by a small lopsided halo potential is calculated,
using the inversion techniques for the Poisson equation for
a thin disk.

2.1. Density Response in a L opsided Potential
First, we summarize the main results from Jog (1997) for

the density response of closed loop orbits in an azimuthally
symmetric galactic disk perturbed by a lopsided halo poten-
tial and their relation to the isophotal shapes in an expo-
nential disk.

The unperturbed potential for the axisymmetric galactic
disk at a given radius R is chosen to be a logarithmict0,potential of the form

t0(R)\ V
c
2 ln R , (1)

where R is measured from the axis of the cylindrical coordi-
nate system. This is applicable for a region of Ñat rotation,
with being the constant rotational velocity. The case of aV

cgeneralized rotation curve is discussed in ° 2.1.1.
The perturbation lopsided halo potential is chosentlopto be nonrotating and equal to

tlop(R)\ V
c
2 vlop cos / , (2)

where is a small constant perturbation parameter, andvlop/ is the azimuthal angle in the disk plane in the cylindrical
coordinate system.

The unperturbed mass surface density, of the stellarkun,disk is assumed to have an exponential distribution in
radius as observed in a typical galactic disk (Freeman
1970) :

kun(R) \ k0 exp [[(R/Rexp)] , (3)

where is the central extrapolated surface density, andk0is the scale length of the exponential disk. The e†ectiveRexpsurface density for an exponential disk with perturbed
orbits in a lopsided potential is obtained as (Jog 1997) :

k(R, /) \ k0 exp
C

[ R
Rexp

A
1 [ viso

2
cos /

BD
, (4)

where is the ellipticity of an isophote at R. Further, thevisofollowing useful relations are obtained (Jog 1997) between
the fractional amplitude of the m\1 azimuthalviso ; A1/A0,Fourier component of the disk surface brightness ; and vlop :

A1
A0

\ viso
2

R
Rexp

; (5)

vlop \ A1/A0
2(1/2 ] R/Rexp)

. (6)

Thus, the change in the surface density, resultingkresponse,from the response of the disk to the lopsided potential, is
given by subtracting the unperturbed surface densitykun,(eq. [3]) from equation (4). Since is a small quantity, wevisoobtain :

kresponse(R, /) \ kun(R)
A R
Rexp

viso
2

cos /
B

. (7)

Using equation (5), this reduces to

kresponse(R, /) \ kun(R)
AA1
A0

cos /
B

. (8)

Thus, the response density is maximum along /\ 0¡, along
which the lopsided halo potential is also a maximum. This
dependence would be true for any self-gravitating, centrally
concentrated disk.

2.1.1. Orbits in a General Rotation Curve

Recall the results obtained by Jog (1997) for a general
power law rotation curve of the form:

V \ V
c
(R/R0)a , (9)

where is the circular velocity at and a is a non-zeroV
c

R0,small number (\1) and is the logarithmic slope of the rota-
tion curve. The corresponding unperturbed potential, t0,is :

t0(R) \ (V
c
2/2a)(R/R0)2a . (10)

The perturbation potential in this case is assumed to be

tlop(R) \ V 2vlop cos / , (11)

where V is deÐned by equation (9). The relation between vlopand in this case isA1/A0

vlop\ A1/A0
2[(1/2[ a) ] (R/Rexp)(1[ a)]

. (12)
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The response surface density is again given by equa-
tion (8).

2.2. Disk Response Potential : General Nonaxisymmetric
Case

The self-gravitational potential t(R, /, z) is derived for a
general, nonaxisymmetric, thin disk with a surface density
k(R, /), where the galactic cylindrical coordinate system is
used. This is obtained by solving the Poisson equation
using the inversion technique involving the Hankel trans-
forms of the potential-density pairs. This is a generalization
of the method studied earlier for the axisymmetric case by
Toomre (1963) (also see Binney & Tremaine [1987]).

For a thin disk, the potential t satisÐes LaplaceÏs equa-
tion everywhere except in the plane of the disk, that is, at
z\ 0. Hence, we Ðrst obtain the solution to LaplaceÏs equa-
tion. Using the technique of separation of variables, this
solution in cylindrical coordinates is given (e.g., Arfken
1970) as follows :

t(R, /, z)\ ;
m/~=

=
exp (im/) exp (^kz)J

m
(kR) , (13)

where is the cylindrical Bessel function of the ÐrstJ
m
(kR)

kind, of order m. The other linearly independent solution is
not considered here since it is proportional to theY

m
(kR),

cylindrical Bessel function of the second kind, of order m,
which does not remain Ðnite at R\ 0 and hence is not a
physically meaningful solution.

At the plane z\ 0, the potential gradient is not zero, and
the solution for t must satisfy the Poisson equation. DeÐne
the function

t
k,m(R, /, z)4 exp (im/) exp ([k o z o )J

m
(kR) . (14)

It can be shown that this satisÐes the Poisson equation if
the corresponding surface density of the thin disk is
(Clutton-Brock 1972) :

k
k,m(R, /)\ [ k

2nG
exp (im/)J

m
(kR) . (15)

Thus, and constitute a potential-t
k,m(R, /, z) k

k,m(R, /)
density pair for a nonaxisymmetric thin disk.

Now, assume that a function can be obtained suchS
m
(k)

that the total disk surface density k(R, /) could be rep-
resented as

k(R, /)\ ;
m/~=

= P
0

=
S
m
(k)k

k,m(R, /)dk . (16)

Using equation (15), this reduces to

k(R, /)\ [ 1
2nG

;
m/~=

=
exp (im/)

P
0

=
S
m
(k)J

m
(kR)kdk .

(17)

Therefore, using the property of the potential-density
pairs (eqs. [14] and [15]) and the fact that the Poisson
equation is linear, the net potential in the disk can be
written as

t(R, /, z)\ ;
m/~=

=
exp (im/)

]
P
0

=
S
m
(k)J

m
(kR) exp ([k o z o )dk . (18)

From equation (17) it can be seen that ([Gk) is the Hankel
(or Fourier-Bessel) transform of (1/2n) £

m/~==
(e.g., Arfken 1970). We obtain an expres-[exp (im/)S

m
(k)]

sion for the latter in terms of k(R, /), using the general idea
of the inversion of integral transforms :

1
2n

;
m/~=

=
exp (im/)S

m
(k)

\ [ ;
m@/~=

=
G
P
0

=
J
m{(kR)k(R, /)RdR . (19)

Multiplying both sides by exp ([im@/) and integrating over
/\ 0 to 2n, we get

d
m,m{ ;

m/~=

=
S
m
(k) \ [ ;

m@/~=

=
G
P
0

=
J
m{(kR)RdR

]
P
Õ/0

2n k(R, /) exp ([im@/)d/ . (20)

Therefore,

S
m
(k) \ [G

P
0

=
J
m
(kR)RdR

P
Õ/0

2n k(R, /) exp ([im/)d/ .

(21)

Substituting this in equation (18), we obtain the expression
for the nonaxisymmetric potential for the thin disk to be

t(R, /, z) \ [G ;
m/~=

=
exp (im/)

]
P
0

=
J
m
(kR) exp ([k o z o ) dk

]
P
0

=
J
m
(kR@)R@ dR@

]
P
0

2nk(R@, /@) exp ([im/@)d/@ . (22)

2.3. Disk Response Potential : om o\ 1 Case
The general result for the potential for the non-

axisymmetric case (eq. [22]) is applied to the case of the
surface density response, (eq. [8]) of an axisym-kresponsemetric, exponential disk to a lopsided potential. The
resulting potential deÐnes the disk response potential,

Consider the potential in the plane of the disk sotresponse.that z\ 0. Since is proportional to cos /@,kresponse(R@, /@)
only the values of m\ ^1 need to be kept in the integral
over /@ on the right-hand side of equation (22), because only
these will leave this integral non-zero. Further, since cos /@
is an even function of /@, and since theJ~1(kR) \ [J1(kR) ;
terms for m\ 1 and m\ [1 contribute equally to tresponse.On substituting for from equation (6), the expressionA1/A0for the response potential, is obtained to be :tresponse,

tresponse(R, /) \ [2nGk0 cos /
P
0

=
J1(kR)dk

]
P
0

=
J1(kR@)R@ exp

A
[ R@

Rexp

B

] [vlop(1] 2R@/Rexp)] dR@ . (23)

The Ðrst integral over R@ is solved, using relation (6.623.1)
from Gradshteyn & Ryzhik (1980), to be
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FIG. 1.ÈMagnitude of the dimensionless disk response potential c vs.
dimensionless radius for di†erent logarithmic slopes (a) of the rota-R/Rexption curve ; a \ 0, a [ 0, a \ 0 denote Ñat, increasing, and decreasing rota-
tion curves, respectively. The maximum occurs at a radius of 1.4 disk scale
lengths, and this radius is nearly independent of the slope of the rotation
curve.

P
0

=
J1(kR@)R@ exp

A
[ R@

Rexp

B
dR@\ k

(k2] 1/Rexp2 )3@2 . (24)

The second integral over R@ is solved using relation
(6.623.2) from Gradshteyn & Ryzhik (1980), to be

P
0

=
J1(kR@)R@2 exp

A
[ R@

Rexp

B
dR@\ 3k

Rexp(k2] 1/Rexp2 )5@2 .

(25)

On substituting equations (24) and (25) in equation (23), it
reduces to

tresponse(R, /)\ [
G
(2nGk0Rexp)vlop cos /

A R
Rexp

B

]
P
0

= J1(x)xdx
[x2] (R/Rexp)2](3@2)

H

[
G
(2nGk0Rexp)vlop cos / 6

A R
Rexp

B3

]
P
0

= J1(x)xdx
[x2] (R/Rexp)2](5@2)

H
. (26)

Note that has a sign opposite to the perturbationtresponsepotential (eq. [2]), thus the disk response potential istlopnegative, and in the linear regime studied here it has a
magnitude proportional to the perturbation parametervlop,in and cos /. A similar negative disk response wouldtlop,be obtained for any self-gravitating disk. denotestresponsethe disk response potential induced by the imposed lop-
sided potential alone. Here we have not taken account of
further e†ect on the disk of this response potential, whereas
in ° 3.1 we obtain the net disk response self-consistently.

Next, deÐne a dimensionless quantity, g, to be the ratio of
the magnitude of the response potential (eq. [26]) and the
lopsided potential (eq. [2]) :

g 4 otresponse o /tlop . (27)

Note that g is independent of the strength of the lopsided
perturbation, and at a given radius it depends linearlyvlop,on This property of g will be used in obtainingk0 Rexp/V c

2.
the self-consistent disk response in ° 3.1.

For a general rotation curve, the relation between A1/A0and is given by equation (12) ; on substituting this intovlopequation (22), a result for is obtained that is similartresponseto equation (26) with the same integrals over x, except that
now the Ðrst and the second terms on the right-hand side of
equation (26) are multiplied by (1[ 2a) and (1[ a) respec-
tively. Using these, an expression similar to g (eq. [27]) is
obtained for the general case.

The integrals in equation (26) are solved numerically
using the standard numerical procedure for calculating J1,
the cylindrical Bessel function of the Ðrst kind, of order 1
(Press et al. 1986).1 The radial variation in the magnitude of
the disk response potential can be illustrated in terms of a
dimensionless response potential, c, deÐned as g (eq. [27])
times a constant V

c
2/2nGk0Rexp :

c\ otresponse o
tlop

V
c
2

2nGk0Rexp
. (28)

In Figure 1, c vs is plotted for a Ñat rotation curveR/Rexpwith the slope a \ 0 and also for an increasing and a
decreasing rotation curve with a \ 0.1 and [0.1 respec-
tively. The maximum occurs at radii of 1.38, 1.40, and
1.42 respectively, for the slopes a \ [0.1, 0.0, and 0.1 ;Rexp,that is, at a typical radius of 1.4 disk scale lengths. This
value is robust and is nearly independent of the slope of the
rotation curve. Even for slopes of a \ [0.2 and 0.2 (not
shown in the Ðgure), which occur less often, the maximum
occurs at a radius of and respectively.1.37Rexp 1.45Rexp,The observational consequences of this result will be dis-
cussed in ° 3.2. The value of c is lower for the disk with an
increasing rotation curve.

3. RESULTS

3.1. Net L opsided Potential : Self-consistent Calculation
In this section, we obtain the net nonaxisymmetric

(lopsided) potential, in the disk plane using a self-tnet,consistent treatment. In ° 2.3 the results were presented for
the potential corresponding to the disk response (eq. [26])
to the perturbation lopsided potential (eq. [2]) alone.
Clearly, a particle in the disk will be a†ected by both the
imposed potential and the potential corresponding to the
stellar disk response to it. However, the net lopsided poten-
tial cannot be obtained by simply adding these twotnetlinearly. Instead, for a self-consistent treatment, musttnetbe deÐned as follows :

tnet \ tlop] t@ , (29)

1 If the Ðrst integral is solved analytically using relation (6.565.8) from
Gradshteyn & Ryzhik (1980), it results in the magnitude of the tresponseincreasing monotonically with radiusÈwhich is unphysical since the
response of an exponential disk should fall o† at large radii. This error
comes about because the range of exponents for the validity of the above
relation are given incorrectly in Gradshteyn & Ryzhik (1980) ; see Watson
(1944), p. 434 for the correct range.
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where t@ is the self-gravitational potential corresponding to
the net, self-consistent change in the disk surface density,

which is obtained as a response to the net poten-kresponse{,tial, This self-consistent approach is similar to thetnet.treatment of the stellar disk response to an imposed cloud
potential studied by Julian & Toomre (1966).

The above equation can be solved in a straightforward
way because even though t@ or are not known akresponse{,priori, both would nonetheless be proportional to cos / (°
2.3). Hence t@ would have a form similar to equation (26),
and it would oppose In particular, the ratio of t@ totnet.would be given identically by the ratio [ g (eq. [27]),tnetwhich was obtained for the disk response to the imposed
potential alone. Thus we get :

t@\ [tnet g . (30)

On substituting this into equation (29), we get :

tnet \
tlop

1 ] g
\ tlop d , (31)

where d(¹ 1) is deÐned to be the reduction factor by which
the magnitude of is reduced due to the self-consistent,tlopnegative disk response. Note that d \ 1 corresponds to no
reduction e†ect. Since g is a positive deÐnite quantity (see
eq. [27]), therefore, the magnitude of the net lopsided
potential in the plane of the galactic disk is always smaller
than that of the perturbation lopsided halo potential. Check
that for g \ 0, corresponding to zero disk response, tnet \is obtained, as expected physically. Note that the nettlopdisk response potential, t@, is smaller in magnitude by a
factor (1] g) than the disk response to the imposed poten-
tial alone (see eq. [27]).

From equation (31), the reduction factor, d, is deÐned as

d 4
1

1 ] g
, (32)

where g is deÐned by equation (27). Thus g and hence the
reduction factor d at a given radius are independentR/Rexpof the strength of the lopsided perturbation and dvlop,depends inversely on (see ° 2.3). Similarly, usingk0Rexp/V c

2
g for the general rotation curve see ° 2.3), a similar(a D 0 ;
expression for d is obtained for the general case. Recall from
Figure 1 that g times a constant (\V

c
2/2nGk0Rexp)decreases monotonically with radius beyond 1.4 disk scale

lengths, hence d increases steadily beyond this radius. The
actual values of d are presented in ° 3.3.

In analogy with the deÐnition of we now deÐnetlop, tnetin terms of a small perturbation parameter as follows :vnet
tnet 4 V

c
2 vnet cos / . (33)

Substituting this, and equation (2) for into equationtlop,(31), we obtain :

vnet\ vlop d . (34)

Thus, the parameter denoting the strength of the netvnet,lopsided potential in the galactic disk, is reduced in com-
parison with the parameter denoting the halo lopsidedvlop,potential, by the reduction factor d.

In the self-consistent approach used here, the force equa-
tion and the continuity equation would involve (eq.tnet[29]). Hence, the surface density change obtained from
these two equations for the halo-alone case earlier (eq. [6])
would now be modiÐed by taking account of the negative

disk response, and can be shown to be

vnet \
A1/A0

2(1/2 ] R/Rexp)
. (35)

Thus, the observations of the fractional amplitudeA1/A0,of the m\ 1 azimuthal Fourier component of the surface
brightness, will measure Formally, the net densityvnet.response, will still be given by equation (8), exceptkresponse{,that is now deÐned by equation (35) for the self-A1/A0consistent treatment. Similarly, for a general rotation curve,

will now be equal to the right-hand side of equationvnet(12).
The net observed lopsided amplitude in the disk (A1/A0)may be used as a diagnostic to obtain an estimate of the

true halo lopsidedness (see eqs. [35] and [34]) if thevlopvalue of d is known. The typical minimum value of d is
D0.5È0.7 (° 3.3), say D0.6. Thus the values of the true lop-
sided parameter are obtained to be D0.03È0.05 for thevloptypical observed values of (Rix &A1/A0\ 0.14È0.20
Zaritsky 1995). Note that these are higher by a factor
1/d D 1.6 compared with the values of obtained usingvlopequation (6) by Jog (1997). That is, for a given observed

the magnitude of the true halo lopsidedness requiredA1/A0,to produce this despite the negative disk response is higher,
by a factor of D1.6, compared with a disk without self-
gravity.

The kinematical study of lopsided distribution in individ-
ual galaxies (e.g., Schoenmakers, Franx, & de Zeeuw 1997)
also yields a value of the lopsided halo potential. The results
in the present paper show that the true halo lopsidedness in
those cases would be higher by a factor of D1.6 than the
value deduced by the authors.

3.2. Radial Dependence : Comparison with Observations
We study the radial dependence of the net lopsided dis-

tribution and show that the results compare well with
observations of lopsided galaxies.

The observed measure of disk lopsidedness is A1/A0,which is shown to be proportional to (eq. [35]), hence itvnetis proportional to and the reduction factor, d (eq. [34]).vlopAs shown in ° 3.1, d increases monotonically beyond a
radius of 1.4 disk scale lengths. The values of are notvlopcalculated here, but it is either a constant, as assumed here
for simplicity (eq. [2]), or more likely, it increases with
radius if it is of tidal origin. Thus, both andvnet A1/A0increase monotonically beyond the radius of 1.4 disk scale
lengths for a constant This radial dependence is robustvlop.and is independent of the slope of the rotation curve.

This radial dependence of is valid even if wereA1/A0 vlopto increase with radius, because d is independent of (°vlop3.1) and has a minimum at as shown above. Hence,1.4Rexpin this case, the quantitative increase in beyond thisvnetradius would be even higher. Only a future systematic study
via numerical simulations can give the quantitative values
of and its radial variation.vlopThus we show that the net lopsided distribution in a
galactic disk would only be detectable at large radii, beyond
a radius of 1.4 disk scale lengths, and its amplitude would
increase with radius beyond that. This is in exact agreement
with the observations of stellar disks made by Rix &
Zaritsky (1995), who found that the values of areA1/A0small over 1È2 disk scale lengths and increase beyond these
radii. They give the value at a radius of as an indica-2.5Rexp
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tor of the lopsidedness, since that is the highest radius at
which the near-IR measurement of the average surface
density can be done. Zaritsky & Rix (1997) have conÐrmed
this radial dependence for a larger sample of galaxies, and
they give an average value of between 1.5 andA1/A0 2.5Rexpas an indicator of lopsidedness in a galactic disk.

The results for the dynamics of orbits (° 2.1) are equally
applicable for the gas in the disk, as shown by Jog (1997).
The gas would also experience the net lopsided potential
(eq. [31]) in the disk plane. The above radial dependence of
d therefore provides a natural explanation as to why lop-
sided distribution in the atomic hydrogen gas is observed
mainly in the outer disk (e.g., Baldwin et al. 1980). We
further predict that the amplitude of lopsidedness would be
stronger in the H I gas than in the stars, since H I extends
much farther out than the optical (stellar) disk, typically up
to 1.5 Holmberg radii (Giovanelli & Haynes 1988). In order
to check this, we need to have quantitative measurements of
asymmetry in H I and its radial dependence analogous to
the values for the stellar disks. This would also allowA1/A0one to estimate the lopsided halo distribution (see ° 3.1) in
the outer disk.

3.3. Reduction Factor
The value of the reduction or scaling factor d (deÐned by

eq. [31]) is calculated numerically and its variation is
studied with the galaxy morphological type, the galaxy size,
and radius in the galactic disk. The aim is to see which
galaxies have a large d and hence are most likely to display
a net lopsided disk distribution. As shown in ° 3.1, the value
of d depends inversely on The typical values of dk0Rexp/V c

2.
are obtained separately for the classical large or giant spiral
galaxies (as deÐned, for example, by Mihalas & Binney
1981) and for the dwarf galaxies. The parameters used here
pertain to the high surface brightness galaxies. In this paper,
we do not treat the case of the low surface brightness gal-
axies (Bothun, Impey & McGaugh 1997).

3.3.1. Giant Spiral Galaxies

First consider the giant spirals. The value of can bek0obtained by combining the observed central extrapolated
surface intensity and the mass-to-light ratio for the disk.
The value of the central surface intensity is known to be
remarkably constant with galaxy type for the giant spirals
(Freeman 1970). This has been conÐrmed for a much larger
sample by Van der Kruit (1987), who has also shown that
this is not the result of observational selection e†ects. Since
the mass to light ratio is known to be constant to within a
factor of 2, Van der Kruit (1987) obtains the typical central
surface density to be \450 pc~2.k0 M

_The other two parameters, and show a substan-Rexp V
c
,

tial variation with morphological type and further with size
for a given type. The values of the maximum rotation veloc-
ity lie in the range 200È300 km s~1 (Binney & TremaineV

c1987). In fact, decreases with type, with the median valuesV
cfor Sa, Sb, and Sc type galaxies being equal to 299, 222, and

175 km s~1, respectively (Rubin et al. 1985). These agree
with the values of we calculated for the median of theV

csample from Roberts & Haynes (1994). Hence, we consider
equal to 200, 250, and 300 km s~1 as three typical valuesV

cto span the range of for typical giant spiral galaxies.V
cThe exponential disk scale length, shows a variationRexp,from 1 to 5 kpc, with no clear dependence on type ; and the

larger galaxies show a larger scale length (Freeman 1970 ;

Van der Kruit 1987). The typical representative scale length
is 3 kpc (Binney & Tremaine 1987) ; therefore, kpcRexp\ 3
was used. Note that we could equally have taken a typical

km s~1 and taken the range of 1È5 kpc for toV
c
\ 250 Rexpe†ectively span the entire parameter space.
Figure 2 contains a plot of the reduction factor d, the

factor by which the halo lopsided potential is reduced due
to the negative response of the disk (eq. [32]), versus R/Rexpfor kpc, and for the values of 250, andRexp\ 3 V

c
\ 200,

300 km s~1 for a Ñat rotation curve. Note that in each case
d is a minimum at and increases thereafter, as1.4Rexpexplained in ° 3.1. The typical minimum value of d lies in the
range 0.5È0.7, and at a given radius, d is larger for galaxies
with a larger value of V

c
.

It is interesting to obtain the e†ect of negative disk
response in the case of the Milky Way. We assume a Ñat
rotation curve with km s~1, kpcV

c
\ 220 Rexp\ 3.5

(Binney & Tremaine 1987) ; and pc~2 as dis-k0\ 450 M
_cussed above for the giant galaxies ; and obtain the plot of d

versus as given in Figure 3. Note that this is similarR/Rexpto the plot for a typical giant spiral galaxy (see Fig. 2), and
that the minimum value of d is 0.53, and it occurs at a radius
of Thus, if the halo of our Galaxy has a lopsided1.4Rexp.distortion, say due to perturbation via galaxy interaction,
the disk response would reduce this potential by a factor of
more than 0.53. The net disk lopsidedness would only be
important beyond a radius of (see ° 3.2), that is,1.4Rexpbeyond 4.9 kpc.

3.3.2. Dwarf Spiral Galaxies

The spiral galaxies of type Scd and later (SdÈIm) are
physically di†erent in that they are smaller, with a smaller
disk scale length kpc (Freeman 1970), and are lessRexp¹ 1
luminous. These are far more numerous than the giant
spirals (e.g., Mihalas & Binney 1981), hence it is important

FIG. 2.ÈReduction factor d for the lopsided potential due to the nega-
tive disk response vs. radius for giant spiral galaxies, with a ÑatR/Rexp,rotation curve with velocity 250, and 300 km s~1, andV

c
\ 200, Rexp \ 3

kpc. The minimum reduction factor lies in the range of 0.5È0.7 ; for each
case it occurs at and d increases steadily beyond this radius.R/Rexp \ 1.4,
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FIG. 3.ÈReduction factor d vs. radius for the Milky Way, withR/Rexp,a Ñat rotation curve with velocity km s~1 and kpc. TheV
c
\ 220 Rexp \ 3.5

minimum reduction factor is 0.53, similar to that for typical giant spiral
galaxies (see Fig. 2).

to obtain d for them. Van der Kruit (1987) calls these mor-
phological dwarfs and obtains for them a smaller k0\ 200

pc~2 and kpc ; here these values have beenM
_

Rexp\ 1
used to obtain the reduction factor for the dwarfs. Roberts
& Haynes (1994) have also stressed that these galaxies form
a di†erent class, and from their H I data, we obtain the
median value of km s~1 for these galaxies. TheV

c
\ 100

dwarf galaxies typically show rising rotation curves, and for
this velocity the typical observed value of aÈthe slope of
the rotation curve (eq. [9])Èis 0.1 (Casertano & Van
Gorkom 1991). In Figure 4 the reduction factor d is plotted
for the general case of a \ 0.1 (see ° 3.1) versus forR/Rexppc~2, kpc, and km s~1.k0\ 200 M

_
Rexp\ 1 V

c
\ 100

The minimum reduction factor of 0.68 and also the radius
at which it occurs, are similar to those for the\ 1.42Rexpgiant spiral galaxies (see Fig. 2).

3.3.3. Comparison with Observations

At a given radius, d depends inversely on (seek0Rexp/V c
2

eq. [32]), and when this term is smaller, d is closer to 1,
indicating less reduction (see ° 3.1). Thus, galaxies with a
large value of and small disk scale length will have aV

c
Rexphigher value of d and hence show a higher net disk lopsided-

ness (eq. [34]). This agrees well with the observations of a
prototypical lopsided galaxy, such as NGC 2841 with a
small kpc (e.g., Casertano & Van Gorkom 1991) ;Rexp\ 2.5
and also for the strongly lopsided galaxies in the sample by
Rix & Zaritsky (1995). We calculated using the infor-Rexpmation on angular sizes in Rix & Zaritsky (1995), and the
spatial distances in Zaritsky & Rix (1997), and found that
all the six out of the 18 galaxies in the Rix & Zaritsky (1995)
sample showing a signiÐcant net disk lopsidedness

have small disk scale lengths ; in fact, three of(A1/A0º 0.2),
these have values of kpc.Rexp\ 2

FIG. 4.ÈReduction factor d vs. radius for dwarf spiral galaxies,R/Rexp,with km s~1, and an increasing rotation curve with a slopeV
c
\ 100

a \ 0.1, and kpc. The minimum reduction factor is 0.68, and itRexp\ 1
occurs at similar to that for typical giant spiral galaxies (seeR/Rexp \ 1.42,
Fig. 2).

Further, the weak dependence of d on galaxy type and
size (Figs. 2È4) means that, in general, whether a particular
type of galaxy is more likely to show net lopsidedness is
decided not only by the reduction factor but mainly by the
magnitude of the initial lopsided potential (see eq.tlop[34]). Since the halo is more dominant in late-type giant
spirals and in the dwarf galaxies (e.g., Broeils 1992), these
will have a stronger halo lopsidedness and hence are more
likely to display a net disk lopsided distribution. This is in
agreement with the observations that a large fraction of
late-type spirals and dwarfs display lopsidedness.

Alternatively, for the dwarf galaxies, the kinematical
model of long-term maintenance of the pattern in the large
halo core (Levine & Sparke 1998) may be applicable. In the
dwarfs, the center of the outer parts is often shifted com-
pared with that of the central parts (e.g., the model by
Levine & Sparke 1998) ; however, this does not describe the
distribution in the giant lopsided spirals, where the center is
common but a variation in density distribution along the
orbits is deduced from the H I velocity Ðelds (Binney &
MerriÐeld 1998).

4. DISCUSSION

A few general points regarding this study are given
below:

1. The origin of the halo lopsided perturbation is most
likely of galactic tidal origin (° 1). We propose that such
perturbations of the halo would be long-lived, since the halo
is collisionless and is supported by random motion, hence
the relaxation time would be much larger than the dynami-
cal timescaleÈthis will be studied in a future paper. Thus,
the e†ects of tidal interaction may be retained in terms of
the halo distortion and hence disk lopsidedness long after



668 JOG

the galactic tidal encounter. Consequently, the resulting
lopsided galaxy may not even have a close companion at
the present epoch. This may explain why a large fraction of
the sample studied by Zaritsky & Rix (1997), as well as such
galaxies as M101 or NGC 628, which do not appear to have
nearby companions at the present epoch, can still display a
lopsided distribution. In fact, Zaritsky & Rix (1997)
mention a long-term survival of lopsidedness after the
encounter as a possible reason for this observation.

2. The perturbation is assumed to be due to halo, hence
(eq. [2]) is assumed to be entirely due to the halo. This isV

c
2

strictly correct at large radii and the halo may be([ 4Rexp),the dominant contributor to the rotation even at 2È3 Rexp(Broeils 1992). At smaller radii, the halo contribution to the
rotation is smaller, however, taking account of this will only
decrease the magnitude of and without a†ectingtlop tnetthe radial variation in d.

3. It is interesting that for the observed range of the
parameters and for typical galaxies, theRexp, k0, V

cresulting reduction factor is º0.5È0.7. That is, in real gal-
axies, the negative disk response due to the disk self-gravity
cannot be ignored ; hence, the disk cannot be treated as a
collection of massless test particles.

5. CONCLUSIONS

We have studied the self-consistent response of an
axisymmetric, exponential galactic disk perturbed by a con-
stant lopsided halo potential. The main results from this
paper are :

1. The self-gravitational potential of the non-
axisymmetric disk response to the perturbation lopsided
potential is obtained, by inversion of Poisson equation for a
thin disk using the Hankel transforms of the potential-
density pairs. The result is obtained Ðrst for a general azi-
muthal wavenumber m and then applied to the lopsided

case (m\ 1). The response potential in the disk plane is
shown to oppose the perturbation halo potential.

2. From a self-consistent calculation, the magnitude of
the net lopsided potential is shown to be always smaller
than the magnitude of the imposed lopsided potential.
Further, the net lopsided distribution in the disk is shown to
be important only beyond a radius of 1.4 disk scale lengths,
and its magnitude increases with radius, indicating the
increasing dynamical importance of the halo over the disk
at larger radii. This is a robust dynamical result and is
independent of the logarithmic slope of the rotation curve.

3. This result agrees well with the observations of radial
dependence of lopsidedness of stellar disks by Rix &
Zaritsky (1995). It also provides a natural explanation as to
why lopsided distribution in the atomic hydrogen gas is
observed mainly in the outer disk. In the Galaxy, the disk
lopsidedness is predicted to be important only beyond 5
kpc.

4. The negative disk response reduces the magnitude of
the perturbation potential by a reduction factor d that is
independent of the strength of the perturbation potential.
The typical minimum value of d is D0.5È0.7 and is insensi-
tive to the galaxy morphological type and size. Thus, in real
galaxies, the reduction in perturbation potential due to
negative disk response is always signiÐcant.

5. Using the typical observed lopsided amplitude in the
disk as a diagnostic, and the calculated value of d,(A1/A0)the estimated typical, true halo lopsidedness parameter vlopis D0.03È0.05.

It would be useful to have quantitative measurements of
asymmetry in H I analogous to the values for theA1/A0stellar disks, since it would enable us to estimate the lop-
sided halo distribution in the outer disk.

I would like to thank the anonymous referee and Monica
Valluri for useful comments on the manuscript.
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