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Abstract

Most of the chemical reaction engineering optimization problems encoun-
ters more than one objective functions. A considerable amount of research has
been reported on the multiobjective optimization of various chemical reactors
using various non-dominated sorting genetic algorithms. This is reviewed in
this paper. The introduction of the topic is given at the beginning, followed by
the description of multi-objective optimization and Pareto set. We have then
discussed various non-dominated sorting genetic algorithms and its applications
in chemical reaction engineering. Some comments are also made on the future
research direction in this area.
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1. INTRODUCTION

Chemical engineering is associated with core competencies in several major areas. These include reaction
engineering, transport phenomena, separations science and computational and systems science. Chemical reaction
engineering plays a vitable in chemical engineering processes. Even though the cost of the reactors may not be a
significant fraction of the total plant cost, the downstream separation costs depend to quite an extent on the
composition of the reactor effluent, and the econoricthe entire plant often depends on the efficient operation of

the reactor. The modeling, optimization and control of reactors is, thus, quite important.

A considerable body of literature already exists on the modeling of reactors, and several compiessre
of industrial relevance have been modeled and tuned against plant data. The optimization of complex industrial
reactors has started receiving attention only in the last one or two decades. In searching for the optimum, the cost of
the reactor obviosly needs to be minimized. However, additional important aspects need to be optimized
simultaneously, e.g., process and product safety, minimization of waste generation, operability, control, etc. Indeed,
most of the problems in chemical reaction enginagrinvolve the optimization ofeveral objective functions
(multiobjective optimization) simultaneously. This forms the focus of the present paper.

Different optimization techniques have been used to solve problems of chemical engineering interest ever
since the late 1940s. Several excellent texts (Beveridge and Schechter, 1970; Bryson and Ho, 1969; Deb, 1995;
Edgar and Himmelblau, 2001; Gill et al., 1981; Lapidus and Luus, 1967; Ray and Szekely, 1973; Reklaitis et al.,
1983; Wilde, 1964) describe theseaiques, and provide relativegimpleexamples. In the last decade, the focus
has shifted to the multiobjective optimization of complardustrial systems, using a variety of mathematical
techniques and robust computational algorithms. The-dwmninatedsorting genetic algorithm (NSGA) and its
adaptations have become popular for solving such problems. This short review describes these techniques and
discusses their recent applications in the area of chemical reaction engineering. Some conjecturesegtaaton
level are presented thereafter.

2. MULTIOBJECTIVE OPTIMIZATION

Until about 1980, virtually all problems in chemical engineering were optimized simgle objective functions.

Often, the objective function (also called the cost function) ingdlthe economic efficiency, a scalar quantity. Most
realworld chemical reaction engineering problems require the simultaneous optimizatisevefal objectives
(multiobjective optimization) that are nesommensurate, and so cannot be combined into desimgeaningful

scalar objective function. Until a few years ago, these several objective functions were combined into a single scalar
objective function, using arbitrary weightage factors, so that the problem could become computationally tractable.
This ‘scalarization’ of a vector objective function suffers from several drawbacks. One is that the results are
sensitive to the values of the weighting factors used, which are difficult to assign ap@ori basis. What is even

more important is that there &risk of losing some optimal solutions (Chankong and Haimes, 1983; Haimes, 1977).
The desirability function approach (Derringer, 1980; Deming, 1991) is another most widely used methods in
industry for the optimization of multiple response processes.tased on the idea that the "quality” of a product or
process that has multiple quality characteristics, with one of them outside of some "desired"” limits, is completely
unacceptable. The method finds operating conditions that provide the "most desiesiglehse values. Harrington

first introduced the concept (Harrington, 1965).

The concept of multiobjective optimization is attributed to the economist, Pareto (1896). This has become
popular in engineering recently. Here, we focus on the multiobjectptéenization of reactor systems only. To the
best of our knowledge, the first published studies on multiobjective optimization in chemical reaction engineering
are those on copolymerization reactors (Butala et al., 1988; Fan et al., 1984; Farber, 1986sTa@l., 1982).

3.PARETO SET
A multiobjective optimization problem consists of several objective functions that are either to be minimized or

maximized. A number of constraints need to be satisfied simultaneously. A typicabljeotive function
minimization problem can, thus, be represented mathematically as
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Min | (x) = [ 11(X), 15(x)] (1a)
subject to (s.t.):
Model equations; (1b)
g(x)<0,j=12,..3 (1c)
h(x)=0, k=1,2,...,K; (1d)

In Eqg. 1,x represents a-gdimensionalector of p design odecisionvariables. It is found that the (feasible) solution

of Eqg. 1 often (butnot always) comprises ofeveraloptimal solutionsx, and is not necessarily a unique, single
point. These solutions correspond to different values$;aind b. Figure 1 shows the optimal solutions of Eq. 1
schematically. Each point in the ¥s. 1, plot in Figure 1 corresponds to an optimal solutigr(= [X1, Xz,..., X]), of

Eq. 1. The curve in Figure 1 is referred to as a Pareto set (Chankong ané41di883). If we consider two points,

A and B, on this set, we find that on moving from one to the other, one objective function improves (decreases)
while the other one worsens (increases). These points are equally gooddmimating or norinferior). More
formally and generally, norinferior points are those for which, on moving from one point to the other, an
improvement in any one objective function cannot be obtained without deterioratianl@astone of the other
objectives. Bints A and C are nodominating but C is an inferior point since B is superior to it. Graphical
representation of the Pareto points for three or more objectives is quite cumbersome (see Deb, 2001; Nayak and
Gupta, 2003, for methods to study these).

set

i Pareteoptimal
i / a

I I

Figure 1. Diagram of Pareto optimal set for a two objective function optimization problem.

Generating the Pareto set comprises the first or objective phase of a multiobjective optimization study and
narrows down the choices available to a decigimaker OM). Point, U, in Figure 1, is referred to as the utopia.
This is the point at which the two asymptotes of the Pareto set meet. The asymptote* = constant, can be
obtained by solving the single objective function optimization problem in which wénmize only 1;(X). It is clear
that point U is not a solution of Eq. 1 (else it would have dominated over all the points of the Pareto set), but
represents a useful reference or ideal point. Pareto sets where one objective function is to be minimi#dewnhil
other is to be maximized, or where both the objective functions are to be maximized, can be drawn in a manner
similar to Fig. 1. Most available codes (e.g., Deb, 1995, 2001) maxializthe objective functions. In case one
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needs to minimize any objéve function, }, one replaces it by the maximization ofimess functionF. A popular
transformation is F= 1/(1 + ).

The second, subjective phase involves the selection girigferredsolution from among the Pareto points.
One method is to hae several decision makers (DMs) rank the Pareto solutions using their judgement, and the
preferred solution, thus, decided upon. Alternatively, the surrogate worth-¢fhdethod (Haimes and Hall, 1974)
seems to be popular in chemical engineering (Nistiiet al., 1980; Sareen and Gupta, 1995; Wajge and Gupta,
1994) to obtain this preferred solution. This method uses the Lagrangian multipliers obtained while generating the
Pareto sets to analyze the traofés between the neanommensurate objectives. &lpreferred solution is usually the
one at which the improvement in one of the objective functions is equivalent to the degradation that results in the
other objectives.

4. ALGORITHMS FOR MULTIOBJECTIVE OPTIMIZATION

Extensive research has been reportadh® algorithms used for generating the fioferior Pareto solutions. These

are described in several textbooks (Carlos et al., 2002; Chankong and Haimes, 1983; Cohon, 1978; Deb 2001,
Goicoechea et al., 1982; Haimes and Hall, 1974; Haimes et al., 199@nd¢dland Masud, 1979; Steuer, 1986;
Zeleny, 1974, 1982) and research and review articles (Geoffrion, 186Gaoffrion et al., 1972, Hwang et al.

1980; Srinivas and Deb, 1995; Zionts and Wallenius, 1976, 1980). The algorithms include:exaitaated GA

(VEGA, Schaffer, 1984), vectewptimized evolution strategy (VOES; Kursawe, 1990), weigited GA (Hajela et

al., 1992), multipleobjective GA (Fonseca and Fleming, 1993), niched Pareto GA (Horn and Nafploitis, 1993),
distancebased Pareto GA (Osyczka akdindu, 1995), nordominated sorting GA (NSGA Srinivas and Deb,

1995), thermodynamical GA (Kita et al., 1996), randamighted GA (Murata, 1997), strength Pareto evolutionary
algorithm (SPEA,; Zitzler and Thiele, 1998), multiobjective messy GA (van Méldn, 1999), Paretarchived
evolution strategy (PAES; Knowles and Corne, 2000), NSG@®eb et al., 2002) and NSGMN-JG (Kasat and

Gupta, 2003). These have been extensively reviewed in the recent books of Deb (2001) and Carlos et al. (2002), and
the alvantages and disadvantages of the different algorithms have been pointed ousimgiegxamples. In the
present work, we focus attention only on the applications of NSGA and its two adaptations,-MNS@ANSGAI -

JG, since these have been used esitaty in chemical reaction engineering.

4.1 NSGA| AND ITS APPLICATIONS

In this section, we first descriddSGA-I (Srinivas and Deb, 1995). This algorithm builds upon the basic framework
provided by Holland (1975). In NSGA an initial population of everalchromosomess generated randomly. A
chromosome (or gene) is a string of numbers (often binaries), coding information about the decision variables. The
subsets (substrings) in any chromosome associated with the different decision variables, arappedinto real

and meaningful values lying between the corresponding specified bounds. A model for the process (reactor) is then
used to evaluate the values of the fitness functions. A set of the goodomimated chromosomes are identified.

This is daoe by testing each of the chromosomes in the population agalhgithers (paikwise comparison,
involving a large number of computational steps). As soon as a chromosome is found to be dominated, it is not
checked for dominance any further. After testelfjthe chromosomes in this manner, we are left with a-setbof

the bestnondominated chromosomes. This is assigned a front number of unity (Front No. = 1). The remaining
solutions are again compared as before, and the next set edaromated solutins is identified and assigned a

Front No. of 2. This procedure is repeated. Clearly, fronts having lower values of the front number are superior or
nortdominated sets when compared to those having a higher front number. Aithiggs valugassigned singl,

common value) is assigned arbitrarily &l the solutions of Front No. 1. The fithess values of individual
chromosomes in this front are then modified based on their “degree of crowding”. This is estimated using
information on the distance between gamf chromosomes, either in tikespace or in thé--space. A niche count (=
number of “nearest” neighbours) is evaluated &xch chromosome in Front No. 1. One could define a fixed
neighbourhood for a chromosome and count the neighbours lying in it. nAligely, we could use a suitable
decreasing function (sharing function) of the distance from a reference chromosome to evaluate this niche count of
“nearest” neighbours. In this latter approach, a neighbour that is farther contributes less to the miththazoone

that is closer to the reference chromosome. The common fithess value assigned earlier to all the members of this
front, is divided by the nicheount of any chromosome to evaluate stsaredfitness value. The common fithess

value assigned tall members of Front No. 2 should, obviously, be smaller (arbitrarily again) than the lowest shared
fithess value in Front No. 1. This procedure is continued till all the chromosomes in the population have been
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assigned shared fitness values. The useisfitocedure enables the spreading out of the chromosomes. This step is
followed by reproduction. The chromosomes are copied stochastically (best chromosome having a higher
probability) into a mating pool. There are numerous selection techniques, elgtteavheel, tournament selection
(popular), normalized geometric ranking, expected value and linear normalization (Deb, 2001). This copying
procedure exploits the Darwinian principle of survival of the fittest.

Crossover and mutation are now performedtioese copies to give daughter chromosomes (and complete a
generation). In crossover, chromosome information is exchanged between two individuals randomly selected from
the mating pool. For example, a pair of binary coded chromosomes, 101001 and 0Xédrl€rpasover at the third
(randomly selected) location, will give two chromosomes, 101110 and 010001. In mutation, each binary number in
every single chromosome is changed with a specified mutation probability, using a random number code. The
mutation pobability is small so as to avoid oscillatory behaviour. The above procedure is repeated several times
(generations) until a satisfactory set of Pareto optimal solutions are obtained in thpam@nbaving a reasonable
spread of points. The flowchart ddSGA-I is available in Mitra et al. (1995). Usdriendly codes of NSGA are
available atttp://www.iitk.ac.in/kangal

NSGA-l has been applied extensively in chemical engineering. These have been revesgetlyr by
Bhaskar et al. (2000a). In this paper, however, only those applications that relate to reactors are presented (and
updated). The first application of NSGIAn chemical reaction engineering was for an industrial nylon 6 dsatch
reactor (Mitraet al.,, 1998). In fact, this work was the first to extend NSG4Srinivas and Deb, 1995) to
multiobjective optimization problems involving variables that eoatinuous functionsThe two objective functions
used were to minimize (i) the total reactiame, § (subscript, f, indicates final), and (ii) the concentration,]{Cof
the undesirable cyclic dimer (hyroduct) in the product. Equality constraints were imposed on the monomer
conversion, %y, in the product stream, as well as on the numberagerchain lengthy, s, of the product so as to
obtain product having the design valugg and, 4 respectively. The decision variables used in this study were (i)
the rate of release,\t), of the vapor from the senfiatch reactor (&unctionof time, t) that influences the pressure
history, p(t), in the reactor, and (ii) the jacket fluid temperaturg(arscalar). The continuous functiony (), was
descritizedinto several, equspaced (in time) scalar values;y i =1, 2, ..., Q, and the valuef V1; was
constrained to lie (randomly) within a small range of greviousvalue, \t 4, i.e., the permissible range offYwas
much larger than those of the subsequent. rhis enabled ¥Y(t) to be implementable. Paretptimal solutions
were obténed. Mitra et al. found that the solutions obtained by NSGB#ere superior to these of Sareen and Gupta
(1995), who had introduced artificial constraints by parameterizing the decision variables. They used Pontryagin’s
minimum principle. Interestingly, ansiderable improvement in the operation of the reactor has been achieved
industrially.

Gupta and Gupta (1999) extended this work and considered the fractional opening of the control valve as one of
the decision variables (aunction of time), insteadof the rate of release of vapor from the reactor. The second
decision variable was the temperature of the jacket fluid, a svalae The Pareto optimal solutions obtained for
this systemwere worse than those obtained by Mitra et al. because the apeddtthe control valve excluded some
V+(t). Itis clear that for industrial systems, the optimization of the ergiretemis more valuable than that of its
major parts (Aatmeeyata and Gupta, 1998).

Garg and Gupta (1999) applied NSGAo the multiobjetive optimization of free radical bulk polymerization
reactors, wherein diffusional effects (the Trommsdorff, cage and glass effects) are manifested. The two objective
functions used were the minimization of (i) the total reaction tirpeartd (ii) the lydispersity index, @ of the
product. The manufacture of polymethyl methacrylate (PMMA) in a batch reactor was chosen as the example
system. Equality constraints were used on the value of the number average chain |igpgtind the monomer
conversim, Xy in the final product. Optimal temperature histories, T(t), were generated for a given initiator
concentration in the feed. Interestingly, a unique optimal solution was obtainedll fthe cases studied. This
inference was of considerable importansince a controversy had existed on this point for several years, based on
earlier optimization studies that used a scalar objective function comprising of a weighted sum of the two objectives.

Another application of considerable industrial importamcéhe optimization of the continuous casting of
polymethyl methacrylate (PMMA) films. In this process, a prepolymer is first produced in an isothermal plug flow
tubular reactor (PFTR). The product from this reactor flows as a thin film through a furiiheetemperature,
Tw(z), of the upper and lower surfaces of the polymer film varies with the axial location, z, in the furnace. The two
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objective functions (Zhou et al., 2000) used are (i) the maximization of the cross seaetcage value of the
monomerconversion at the end of the furnacg,% and (ii) the minimization of the length;,zof the furnace. The
endpoint constraint used was that the sectaerage value of the number average chain length in the product,
Mn.avs Should be equal to aedired valuep, ¢ In addition, the temperature ahy point in the film must be below a

safe upper value, to prevent degradation (discoloration) of the polymer film. The decision variables used were the
temperature of the isothermal PFTR, concentratibthe initiator in the feed to the PFTR, monomer conversion at

the end of the PFTR, film thickness (adtalarg, and the temperature programming,(7), in the furnace (a
continuousfunctior). In order to simplify the problem, the temperature of the atef of the film, T,(z), was
parameterized using cubic functions of z.

Bhaskar et al. (2000b) solved a multiobjective optimization problem for an industrial, third stage- wiped
film reactor used to produce polyethylene terephthalate (PET). The objeatieidns used were to minimize the
concentrations of two undesirable side products in the polymer, namely, the acid end group and the vinyl end group.
An equality constraint was imposed on the degree of polymerizatiop,,[@®the product (DB, = DPy). The acid
end group concentration in the product was further restricted to lie below a certain value (an inequality constraint),
while the concentration of the diethylene glycol end group in the product was restricted to lie in a spacifed
(two inequdity constraints), in accordance with industrial practice. The solution of the problem was found to be a
unique point. Bhaskar et al. (2001) found that when the temperature was included in the set of decision variables, a
unique optimal point was always t#ined. In contrast, when the temperature was specified and was not a decision
variable, Pareto optimal solutions were obtained. Interestingly, these workers found that the optimal solutions
depend on the value used for one of the computational paran{esedom seed). Pareto solutions were actually
generated usingeveral computational runwith different values of the random seed. This represents a failure of
NSGA.

Rajesh et al. (1999) carried out the multiobjective optimization of an industriafisetesteam reformer reactor
(Elnashaie and Elshishini, 1993, 1996), the first reactor in a steam reforming plant, using-N3$@®# objective
functions were considered: (i) minimization of the methane feed rate (input to the reforragr), Fequiredfor a
specified rate of production of hydrogen, ., from the industrial unit, and (ii) maximization of the rate of
production of export steam (which was equivalent to maximization of the flow Fatg,,, of CO in the syngas).

The optimization prolem was solved using a firgrinciples model (tuned on industrial data). The rate of
production of hydrogen was equated to a desired value, and an upper cap was imposed on the maximum wall
temperature of the reformer tubes. This is crucial since evenKairdcrease in the maximum wall temperature
beyond a critical limit of 1200 K of the reformer tube material can lead to a significant (several years) reduction in
the working life of the reformer tubes. The decision variables used were: the temperatheegafstmixture at the
reformer inlet, pressure at the inlet of the reformer, steam to carbon (in the formpfr&td in the feed, hydrogen
(recycled B) to carbon (as Ckj ratio in the feed, the total molar flow rate of the feed, and the temperatutesof
furnace gas. Pareto optimal solutions were obtained. These workers found that several of the randomly generated
chromosomes in the early generations, failed to converge. This problem was taken care of lhrmingsome

specific bound®f the decisionvariables, these being decided based on experience with simulation runs. Rajesh et
al. (2001) subsequently extended this work on the first reactor to the entire hydrogen plant (steam reformer reactor +
two shift converters, etc.). Simultaneous maximizataf the product hydrogen and export steam flow rates were
considered as the two objective functions for a fixed flow rate of methane to the industrial unit. The inequality
constraint on the maximum wall temperature was also used. Pareto optimal solgi@sbtained. Oh et al. (2001)
improved upon this work by adding a third objective function, viz., minimization of the reformer duty. They
replaced the flue gas temperature by the heat flux profile as a decision variable. Results obtained were observed to
be better than those obtained in the earlier study of Rajesh et al. (2001). Oh et al. (2002a) recently optimized an
existing industrial hydrogen plant using refinery -gfis as the feed. The feed stream is a mixture of liquefied
petroleum gas and offases from a membrane separation unit in a petroleum refinery. For a fixed feed rate of the
off-gas to the unit, three objective functions were studied. These were the maximization of the (i) product hydrogen
and the (ii) export steam flow rates, and (iii) thenimization of the heat duty supplied to the steam reformer. The
optimal heat flux profile in the steam reformer was found to be different from that obtained with methane feed both
for operation stage (Oh et al., 2001) and design stage (Oh et al., 20p&imization. These workers found that the
optimal solutions led to an improvement of the current operation of the industrial unit.

Yee et al. (2003) carried out the multiobjective optimization of two kinds of industrial styrene reactors: (i)
an adiabat and (ii) a steaninjected reactor. Several twand threeobjective functions were considered from
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among (a) the production, (b) yield, and (c) the selectivity of styrene. The decision variables used for the adiabatic
reactor were: the feed temperatarfeethyl benzene, the inlet pressure, the molar ratio of steam to ethyl benzene, and
the initial flow rate of ethyl benzene. Two additional decision variables (total of six) were selected for the
optimization of the stearimjected reactor. These were thradtion,s, of steam used at the reactor inlet, and the-non
dimensional location), of the injector port for the remaining steam. Three inequality constraints were imposed on
the total steam flow rate, the temperature of the ethyl bengtrsn mixture eering the reactor inlet, and the
temperature at z L. For the adiabatic reactor, only the first two constraints were imposed. Pareto optimal
solutions were obtained. Later Li et al. (2003) extended the optimization study for an existing styrenetoetieor
design stage. They determined optimal diameter and optimal length to diameter and found improved results over
existing reactor systems.

Ziyang et al. (2001) optimized a simulated countercurrent moving bed chromatographic reactor (SCMCR)
for the synthesis of methyl tertiary butyl ether (MTBE). Three different multiobjective optimization problems
having practical relevance were studied in this work, namely, (a) the simultaneous maximization of the purity and
the yield of MTBE; (b) the simultaneous xiaization of the purity and yield of MTBE, together with the
minimization of the total amount of adsorbent/catalyst required; and (c) the maximization of the purity of MTBE
with the simultaneous minimization of the eluent consumption. Pareto optimalos@wrere obtained in all. Chen
et al. (2003) obtained optimal Pareto solution for oxidative coupling of methane to ethane and ethylene in SCMCR.
They maximized conversion and selectivity of valuable(i@termediate) products over complete conversion@® C
and CQ products. Recently, Yu et al. (2003) optimized modified SCMCR systems, namely Varicol process (which
is based on non synchronous switching) for synthesis of methyl acetate ester. They reported much improved optimal
solution over traditional SCMCR

4.2 NSGAI

Experience with NSGA indicates that this algorithm has some disadvantages. The sharing function used to
evaluate niche count of any chromosome requires the values of two parameters, which are difficult t@-assign
priori. The totalcomplexityof NSGA- | is MN,°, where M is the number of objective functions, ang il the
number of chromosomes in the population. In addition, NSG#ses not use any elipreserving operator and so,
good parents may get lost. Deb et al. (2002) haveendg developed an elitist netlominated sorting genetic
algorithm (NSGAII) to overcome these limitations. We describe below the two major departures of NIS&var
NSGA-| (see the early part of the flow chart in Fig. 2):

(i) In NSGA-II, the initial N, parent chromosomes (in box P) are classified into fronts based on non
domination using a different procedure. A new box, P’ is created, having sjzé\ thromosome (starting from the
first) in box P is removed and compared with all the solutions alrgmdgent in box P’Any chromosome is P’ that
is dominated over by this latest chromosome under consideration, is removed from P’ and put back into its original
place in P. If, however, no such chromosome is found, P’ is adwninated solution, and is kem P’. This is
repeated with all ) chromosomes in P, sequentially. At the end, the best set ofdominated chromosomes (a
subset of those originally in P) is present in P’. This subset constitutes the first front-bosuybavingsize< Np) of
nondominated chromosomes, and is assigned a Rank N@,,df 1. Subsequent fronts are created asisokes of
P’ using the chromosomegmainingin P. Rank numbers, 2, 3, ..., are assigned to these fronts. In the present
procedure, a comparison of the chromes is carried oubnly with the members present in the current $ux.

This reduces the numerical complexity of the frassigning step tdvIN ,23 operations.

The chromosomes in each of the fronts in P’ are then arranged in ascemdargobthe values o&ny one
of their fitness functions. The largest-Mmensional cuboid (rectangle for two fitness functions) is drawn around
any chromosome that just touches its nearest neighbours ifr-gmace. The crowding distance;s) for this
chromosome is taken to be half the sum of all the sides of this cuboid. The boundary solutions in any front are
assigned arbitrarily large crowding distances (so as to give them considerable weight).

Two chromosomes are now picked randomly from all thecNromosomes in P’, and the better of these
two (having a smaller value of,l or, if |, are identical, having a larger value qfy) is copied into a new box,
P”, having N, positions. This procedure is repeated till P” hagriembers. Clearly, mitiple copies (or no copy) of
any chromosome in P’ may be present in P”.

http://lwww.bepress.com/ijcre/vol1/R2



Nandasana et al.: Applications of NSGA in CRE 7
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Box P (Np): Geneate N, parents randomly

Box P’ (Np): Classify the chromosomes into
fronts; assign .. Evaluate §i;for each
chromosome

'

Box P” (Np): Copy the best jfrom P’,
using a tweat-a-time comparison

l

Box D (Np): Do crossover and mutation
chromosomes in P”

I

Box D (Np): Do jumping genes (JG) 16
operation

# ............................................

Box PD (2 Ny): Combine P” and D

'

Box PD’ (2 Np): Put PD into fronts Elitism

v

Box P (Np): Select best pfrom PD’

v

Ngen= Ngen+ 1

P” > P

Figure 2. Flow chart for NSGAl and NSGAII-JG Kasat and Gupta, 2003).
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Chromosomes in P” are copied to a new box, D, havingld¢ations again. Crossover and mutation are
carried out on the climosomes in D. This giveslaughter chromosomes.

In order to ensure elitism (carrying forward the better parents to the next generation), allldkstiparents
(in P”) and all the N, daughters (in D) are copied into a new box, PD, having sizg ZNese chromosomes are
reclassified (and placed in PD’) usiraply the criterion of nordomination. The best Nparents are selected and
placed in box, P’". This completes one generation and ensures the elite parents to be presdrienddgcodes of
NSGA-II are available ahttp://www.iitk.ac.in/kangal

Kasat et al. (2002) optimized an industrial fluidizedd catalytic cracking (FCC) unit to obtain optimal
operating conditions. This is a computationaliyteinsive problem, since it involves an iterative solution of the
equations describing the two connected reactors: themésator and the regenerator. NS@Avas used to solve a
threeobjective function problem. The objective functions used were: maxsiticn of the gasoline yield,
minimization of the air flow rate to the regenerator, and minimization of thecpat CO in the flue gas coming out
of the regenerator. A fixed feed (gas oil) flow rate was used. The decision variables used weatgerperature
of the feed to the riser reactor, air pneat temperature, circulation rate of the catalyst, and the flow rate of air.
Pareto optimal solutions were obtained. These correspond to the unstable,-lsaddlmiddle steady states
(Elnashaie and Yasg 1973; Elnashaie and Elbialy, 1980). It was found (Kasat et al., 2002; Kasat and Gupta, 2003)
that the sequential quadratic programming (SQP) technique usingdbestraint method, failed to converge to the
correct solutions, even though excellent stay guesses (near those provided by NSIBAvere used.

Nandasana et al. (2003) optimized the industrial steam reformer reactor of Rajesh et al. (1999)] but under
dynamicconditions, using NSGAI. Two problems were studied to obtain the optimal opetconditions. A
disturbance (in the form of a rectangular pulse) was introduced in the feed rate of natural gas (Problem 1) and in the
inlet feed temperature (Problem 2). The decision variables used in Problem 1 were the furnace gas temperature, the
stean-to-carbon ratio and the hydrogéo-carbon ratio in the feed, while, in Problem 2, two additional decision
variables were used: the time at the onset of the control action and the time at the cessation of the control action.
Two objective functions weresed in this work: the minimization of theumulativedeviations (over time) in the
flow rates of (i) hydrogen and (ii) carbon monoxide (indirectly, of steam). An upper cap was imposed on the outer
wall temperature of the reformer tube, as in the steside optimization study (Rajesh et al., 1999). A Pareto set of
optimal solutions was obtained, once again. Again, this problem is extremely comfarsive, and faster
algorithms than NSGAI are useful.

4.3 NSGAII-JG

Kasat and Gupta (2003) recentlytioduced a modified mutation operator, borrowing from the concept of jumping
genes (JG) in natural genetics. This algorithm is being called as NIBG@&. This is a macrmacro mutation and
counteracts the decrease in the diversity created by elitism.

Figure 3 (box indicated as JG) shows that the jumping genes operation is carried out after crossover and
normal mutation in NSGAI. A fraction, By, of chromosomeséselected randomly) in the population, are modified
by the jumping genes operator. gart of the binary strings in the selected chromosomes is replaced with a newly
(randomly) generated binary strireg the same lengthThe two ends of the set of binary digits to be replaced are
generated using random numbers. The replacement (jumping} geagenerated using the same procedure as used
for generating the members of the initial population. Only a single jumping gene was assumed to replace part of any
selected chromosome. This, and the fact that the length of this jumping gene was iderttieabriginal substring,
are artifacts of the algorithm, and are different than the more general phenomenon in nature (which may be exploited
in the future).

Kasat and Gupta (2003) used NS@HAJG to solve a two objective function optimization probleon the
industrial FCC unit studied by them earlier (Kasat et al., 2002). The two objective functions used were (i) the
maximization of the yield of gasoline and (ii) the minimization of the coke formed on the catalyst during the
cracking of heavy compound$o minimize catalyst decay and so, to reduce the production of CO). The decision
variables were the same as used in their previous study. Fig. 3 shows the Pareto sets obtained using bdth NSGA
and NSGAII-JG. It can be noticed (Fig 3b) that the resultshe 18' generation using NSGM-JG are as good as
the results at the Dgeneration using NSGA (Fig 3a). This helps save considerable amounts of the computation
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time and is important for compuiatense multiobjective problems like that of the E@nits. In fact, these workers

also found that NSGAI-JG obtained the correct globaptimal Pareto set for a test problem having-tktision
variables (Zitzler et al. 2002) in which 21ocal Pareto optimal sets exist (NSGKfailed to obtain the glohlly-

optimal Pareto solution). So the introduction of the improved JG operator not only improves the speed of
convergence, but, at times, gives correct solutions which are missed by other algorithms. Recently, Lee et al. (2003)
optimized an existing (andtdhe design stage) of an industrial ethylene reactor using NEG¥WSGA-II and
NSGA-11-JG. They found that solutions for both NS@And NSGAIl are scattered even after 200 generations.
Moreover, solutions from NSGA have a tendency to move towards theds of the Pareto while for solutions from
NSGA-|l tend to move towards center with the increase of generation. However, NS@A resulted in more
smoothed Pareto solutions evenly distributed. In addition, Pareto converged in 100 generations comp@ded to
generations required for both NS@4and NSGAII.
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Figure 3.Comparison of the optimal solutions obtained for an FCCU by NSG#Hd NSGAII-JG
(Kasat and Gupta, 2003).

44 NON-DOMINATED SORTIN G SIMULATED ANNEALIN G (NSSA)

Simulated annealing (SA) is another emerging -trawlitional algorithm (Kirpatrick et al., 1983; Aarts and Korst,
1989) which has been used for solving optimization problems in engineering. We expect I&kdme quite
popular as newer developments take place. SA mimics the cooling of molten metals in its search procedure. The
procedure begins with the selection of an initial solution (a point). A neighbouring point is then created and
compared with the cuent point. The probabilistic algorithm of Metropolis et al. (1953) is used to determine
whether the new point is accepted or not. This technique, thus, works with a single point at a time, and a new point
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Figure 4. Flow chart for NSSA (Aatmeeyata and Gupta, 2003).
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is created at each iteration exploiting the Boltzmann probability distribution. The method is found to be effective in
finding unique, global optimal solutions when a slow cooling procedsinesed (Deb, 1995). Adaptations can be
made in SA to solve multiobjective optimization problems using the concept eflominance, somewhat along the

lines of NSGA. We expect these adaptations of SA to compete with NSGA in terms of speed of convarggnce
robustness. The flow chart of the ndominated sorting simulated annealing (NSSA, Aatmeeyata and Gupta, 2003)

is given in Fig. 4, and is being tested for speed of convergence and spread of the Pareto points for some of the
computationally intensive ahindustrially significant problems.

5. FUTURE DIRECTIONS

The three evolutionary algorithms, NSGANSGA-II and NSGAII JG, are quite robust for generating nirierior
solutions for largescale complex problems of industrial significance. In the sexeral years, even more complex
problems in which the constraints are not known in a vgrycisemanner (as discussed in this review), will be
solved. In fact, one could easily envisage a situation where a DM looks at two Pareto sets simultaneousty, a Pa
between the objective functions, and another Pareto betweesxtéetsof constraintviolation, to decide upon the
preferred solution. Obviously, NSGAl will need adaptations to solve such problems, by classifying chromosomes
into finer subfronts. The only conclusion we can make is that the future holds exciting promises.
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NOMENCLATURE

[CJ] Cyclic dimer concentration in nylon 6 manufacture, mol/kg

DP Degree of polymerization (g,)

Fchain Flow rate of methane in the input stream of a steam reformer, kg/hr
Fco,out Flow rate of CO in the exit stream of the first reacin the reformer plant (in the syngas), kg/hr
Frz,unit Flow rate of H in the exit stream from the reformer plant, kg/hr

a(x) Vector of inequality constraints;(g)

h(x) Vector of equality constraints;(t)

I Vector of objective functions; |

| gist Cowding distance

lrank Rank of any chromosome

L Total length of the reactor

Np Number of chromosomes in the population in GA

p Pressure

Q Polydispersity index of polymer

t Time

T Temperature

Vi Rate of release of vapor mixture from nylon 6 reactor throlghcontrol valve, mol/hr
X Vector of decision variables; x

Xm Monomer conversion

z Axial position in furnace reactor

SUBSCRIPTS / SUPERSRIPTS

av Crosssectional average value
d Desired or design value

f, out Final, outlet value

J Jackeffluid value

ref Reference value

w Wall or surface value
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GREEK SYMBOLS

) fraction of steam used at the reactor inlet

A location of the injector port for the injection of steam
Mn Number average chain length of polymer

REFERENCES

Aarts, E. and Korst, J., “Simulatechaealing and Boltzmann machines: A stochastic approach to combinatorial
optimization and neural computing”, Chichester, UK: Wiley (1989).

Aatmeeyata, and Gupta, S.K., “Simulation and optimization of an industrial nylon 6 reactor: a review”, Polymer
Plastts Technology Engineering, Vol. 37, p2@39 (1998).

Aatmeeyata, and Gupta, S.K., “N@ominated sorting simulated annealing (NSSA)”, In preparation, (2003)
Beveridge, G.S.G. and Schechter, R.S., “Optimization: Theory and Practice”, New York: McGrad/aill).

Bhaskar, V., Gupta, S.K. and Ray, A.K., “Multiobjective optimization of an industrial wiped film PET reactor”,
AIChE J., Vol. 46, p1046L058 (2000a).

Bhaskar, V., Gupta, S.K. anRay, A.K, “Applications of multiobjective optimization in chemical engineering”,
Reviews in Chemical Engineeringpl. 16, p2-54 (2000b).

Bhaskar, V., Gupta, S.K. and Ray, A.K.Multiobjective optimization of an industrial wiped film poly(ethylene
terephthalte) reactor: some further insight€Zomputers and Chemical Engineering, Vol, p391407 (2001).

Bryson, A.E. and Ho, Y.C., “Applied Optimal Control”, Waltham, MA: Blaisdell (1969).

Butala, D., Choi, K.Y. and Fan, M.K.H., “Multiobjective dynamic optzation of a semibatch freedical ce
polymerization process with interactive CAD tools”, Computers and Chemical Enginestohd?2, p11151127
(1988).

Carlos, A.C.C., van Veldhuizen, D.A. and Lamont, G.BEvblutionary algorithms for solving multhbjective
problems, New York: Kluwer Academic (2002).

Chankong, V. and Haimes, Y.Y., “Multiobjective Decision MakirgTheory and Methodology”, New York:
Elsevier (1983).

Chen, S., Hidajat, K. and Ray, A. K., “Modeling, simulation and multiobjective opation of oxidative coupling

of methane in simulated countercurrent moving bed chromatographic reactor”, Submitted to Journal of Chemical
Engineering Research Design, (2003).

Cohon, J.L., “Multiobjective Programming and Planning”, New York: Academic (1978)

Deb, K., “Optimization for Engineering Design: Algorithms and Examples”, New Delhi, India: Prentice Hall of
India (1995).

Deb, K., “Evolutionary algorithms for mukgriterion optimization in engineering design. Evolutionary algorithms in
engineering ad computer science”, in Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary
Programming, Genetic Programming and Industrial Applications. Miettinen K, Neittaanmaki P, Makela MM,
Périaux, J. (Eds.), New York: Wiley, pp.13%1 (1999).

Deb, K., “Multi-objective Optimization using Evolutionary Algorithin€hichester, UK: Wiley 2001)

Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A., “Fast and elitist multiobjective genetic algorithm: NSGA
IEEE Trans Evolutionary Computiny,ol. 6, p182197 (2002).

http://lwww.bepress.com/ijcre/vol1/R2



Nandasana et al.: Applications of NSGA in CRE

Deming, S. N., “MultipleCriteria optimization”, Journal of Chromatography, Vol. 550, {28(1991).
Derringer, G., Journal of Quality Control, Vol. 12, p214 (1980).

Edgar, T.F. and Himmelblau, D.M., “Optimization of ChemicabBesses”, New York: McGraw Hill,” edition
(2001).

Elnashaie, S.S.E.H. and Elshishini, S.S., “Modeling, Simulation and Optimization of Industrial Catalytic Fixed Bed
Reactors”, Amsterdam, Netherlands: Gordon and Breach (1993).

Elnashaie, S.S.E.H. andidhishini, S.S., “Dynamic Modelling, Bifurcation and Chaotic Behaviour of -SaBd
Catalytic Reactors”, Amsterdam, Netherlands: Gordon and Breach (1996).

Elnashaie, S. and Yates, J.G., “Multiplicity of the steady states in fluidised bed re#ctBteag-state
considerations”, Chemical Engineering Science, Vol. 28, g54®, (1973).

Elnashaie, S.S.E.H. and Elbialy, S.H., “Multiplicity of the steady states in fluidised bed re&ttole effect of
catalyst decay”, Chemical Engineering Science, Vol. 83571365 (1980).

Fan, L.T., Landis, C.S. and Patel, S.A., in “Frontiers in Chemical Reaction Engineering’, Doraiswamy, L.K. and
Mashelkar, R.A., (Eds). New Delhi, India: Wiley Eastern, p@¥3 (1984).

Farber, J.N., “Steady state multiobjective omtiation of continuous c@olymerization reactors” Polymer
Engineering Science, Vol. 26, p4%®7 (1986).

Fonseca, C.M. and Fleming, P.J., “Genetic algorithms for multiobjective optimization: Formulation, discussion and
generalization”, inProceedings othe Fifth International Conference on Genetic Algorithr@an Mateo, CA:
Morgan Kaufmann, p41823 (1993).

Garg, S. and Gupta, S.K., “Multiobjective optimization of a free radical bulk polymerization reactor using genetic
algorithm”, Macromolecular Theorgnd Simulation, Vol8, p4653 (1999).

Geoffrion, A.M., “Strictly concave parametric programming, Parttbasic theory”, Management Science, Vol. 13,
p244253 (1967a).

Geoffrion, A.M., “Strictly concave parametric programming, Part-ladditional thery and computational
considerations”, Msnagement Science, Vol. 13, p330 (1967b).

Geoffrion, A.M., “Solving bicriterion mathematical programs”, Operation Research, Vol. 1554392967c).

Geoffrion, A. M., Dyer, J.S. and Feinberg, A., “An interagiapproach for muHcriterion optimization, with an
application to the operation of an academic department” Management Science, Vol. 136838D72).

Gill, P.E., Murray, W. and Wright, M.H., “Practical Optimization”, New York: Academic (1981).

Goicoechea, A., Hansen, D.R. and Duckstein, L., “Multiobjective Decision Analysis with Engineering and Business
Applications”, New York: Wiley (1982).

Goldberg, D.E., “Genetic Algorithms in Search, Optimization and Machine Learning”, MA: Addislesley,
Readng (1989).

Gupta, R.R. and Gupta, S.K., “Multiobjective optimization of an industrial nylon 6 semibatch reactor system using
genetic algorithm”, Journal of Applied Polymer Science, Vi, p729739 (1999).

13

Produced by The Berkeley Electronic Press, 2003



14

International Journal of Chemical Reactor Engineering Vol. 1 [2003], Review R2

Haimes, Y.Y., “Hierarchical Analyses of WateResources Systems: Modeling and OptimizationLafgescale
Systems”, New York: McGraw Hill (1977).

Haimes, Y.Y., Tarvainen, K., Shima, T. and Thadathil, J., “Hierarchical Multiobjective Analysis of iswaje
System¥ New York: Hemisphere (1990).

Haimes, Y.Y., Hall, W.A., “Multiobjectives in water resources systems analysis: The surrogate wortlotfade
method”, Water Resources Reseai¢bl. 10, p615624 (1974).

Hajela, P., Lee, E. and Lin, C.Y., “Genetic algorithms in structural topology optimizaith Proceedings of the
NATO Advanced Research Workshop on Topology Design of Structu&esSimbra, Portugal: Kluwer Academic,
p117-134 (1992)

Harrington, E. C., Industrial Quality Control, Vol. 21, p4498 (1965).

Holland, J.H., “Adaptation in Natat and Artificial Systems”, Ann Arbor, MI: University of Michigan Press (1975).

Horn, J. and Nafploitis, N., ‘Multiobjective optimization using the niched Pareto genetic algorithechnical
Report 93005I1lliIGAL, University of Illinois, UrbanaChampaigr(1993).

Hwang, C.L. and Masud, A.S.M., “Multiple Objective Decision MakirgMethods and Applications”, Lecture
notes in economics and mathematical systems, No. 164, Berlin, Germany: Springer (1979).

Hwang, C.L., Paidy, S.R., Yoon, K. and Masud, A.S.MJathematical programming with multiple objectives: a
tutorial”, Computational Operation Research, Vol. 7;315(1980).

Kasat, R.B., Kunzru, D., Saraf ,D.N. and Gupta, S.K., “Multiobjective optimization of industrial FCC unit using
elitist nondominatedsorting genetic algorithm”|ndustrial and Engineering Chemistry Research Vol. g4765
4776 (2002).

Kasat, R.B. and Gupta, S.K., “Multiobjective optimization of industrial FCC units using an improved adaptation of
genetic algorithm (GA)”, Computers drChemical Engineering, submitted (2003).

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., “Optimization with simulated annealing”, Science, Vol. 220, p671
680 (1983).

Kita, H., Yabumoto, Y., Mori, N. and Nishikawa, Y., “Mulbbjective optimization by mans of thermodynamical
genetic algorithm”, in HanMichael Voigt, Werner Ebeling, Ingo Rechenberg, and Haasl Schwefel, Eds., in
Processing of Parallel Problem Solving from Nature IV (PASN Berlin, Germany: Springeverlag. p504512
(1996).

Kleinbaum, D.G., “Logistic Regression: a S&farning Text,; New York: Springer (1994).

Knowles, J.D. and Corne, D.W., “Approximating the adominated front using the Pareto archived evolution
strategy”,Evolutionary Computingyol. 8, p142172 (2000).

Kursawe, F. A, “Variant of evolution strategies for vector optimizationParallel Problem Solving From Nature”,
I, H.-P. Schwefel and R. Manner, Eds., Berlin, Germany: Springer,{18331990).

Lapidus, L. and Luus, R., “Optimal Control of Engineering €&sses”, Blaisdell, MA: Waltham (1967).

Lee, Y. M., Ray, A. K., Rangaiah, G.P., “Multiobjective optimization of industrial ethylene reactor”, in preparation,
(2003).

Li, Y., Rangaiah, G.P. and Ray, A.K., “Optimization of styrene reactor design for tjecties using a genetic
algorithm”, International Journal of Chemical Reactor Engineering, Vol. 1, A13 (2003).

http://lwww.bepress.com/ijcre/vol1/R2



Nandasana et al.: Applications of NSGA in CRE

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., “Equation of state calculations by fast
computing machines”, J. Chemld2hysics, Vol. 21, p10871092 (1953).

Mitra, K., Deb, K. and Gupta, S.K., “Multiobjective dynamic optimization of an industrial nylon 6 semibatch reactor
using genetic algorithm'Journal of Applied Polymer Science, Vol. 69, p89 (1998).

Murata, T., ‘Genetic algorithms for mukbbjective optimization”, Ph. D Thesis, Osaka, Japan: Osaka Prefecture
University (1997).

Nandasana, A., Ray, A.K. and Gupta, S.K., “Dynamic model of an industrial steam reformer and its use for
multiobjective optimization”Jndustrial and Engineering Chemistry Researotpress, (2003).

Nayak, A. and Gupta, S.K., Mulbbjective optimization of serthatch copolymerization reactors using adaptations
of genetic algorithm (GA)”, Journal of Applied Polymer Science, submitted)320

Nishitani, H.Y., Kunugita, O.E. and Fan, L.T., “Multiobjective optimization of an aeration vessel for waste water
treatment” Chemical Engineering Communication, Vol. 5, piB%7 (1980).

Oh, P.P., Ray. A.K. and Rangaiah, G.P., “Triple objectiverojtation of an industrial hydrogen plant” Journal of
Chemical Engineering Japan, Vol. 34, p134355 (2001).

Oh, P.P., Rangaiah, G.P. and Ray, A.K., ‘Simulation and multiobjective optimization of an industrial hydrogen plant
based on refinery offias”, Irdustrial and Engineering Chemistry Research, Vol. 41, p222@&l (2002).

Oh, P.P., Ray, A.K. and Rangaiah, G.P., “Optimal design and operation of an industrial hydrogen plant for multiple
objectives”, In Recent Developments in Optimization and Optimalt@bin Chemical Engineering, Edited by R.
Luss, Research Signpost, p2896 (2002).

Osyczka, A. and Kundu, S. A., “New method to solve generalized multicriteria optimization problems using the
simple genetic algorithm'Structural Optimizationyol.10, 94-99 (1995).

Pareto, V., “Cours d'economie politiqué’ausanne, Switzerlané:. Rouge(1896).

Rajesh, J.K, Gupta, S.K, Rangaiah, G.P. and Ray, A.K., “Multiobjective optimization of steam reformer
performance using genetic algorithm”, Industrial and iBegring Chemistry Research, Vol. 39, p7D89 (2000).

Rajesh, J. K., Gupta, S. K., Rangaiah, G. P. and Ray, A. K., “Multiobjective optimization of industrial hydrogen
plants”, Chemical Engineering Science, Vol. 56, p49a.0 (2001).

Ray, W.H. and SzedMy, J., “Process Optimization, with Applications in Metallurgy and Chemical Engineering”,
New York: Wiley (1973).

Reklaitis, G.V., Ravindran, A. and Ragsdell, K.M., “Engineering Optimization”, New York: Wiley (1983).

Sareen, R. and Gupta, S.K., “Multigetive optimization of an industrial semibatch nylon 6 reactor”, Journal of
Applied Polymer Science, Vol. 58, p2352371 (1995).

Schaffer, J.D., “Some experiments in machine learning using vector evaluated genetic algorithms”, Ph D. Thesis,
Nashville, TN: Vanderbilt University (1984).

Srinivas, N. and Deb, K., “Multiobjective function optimization using ralmminated sorting genetic algorithms”,
Evolutionary Computing, Vol. 2, p22248 (1995).

Steuer, R.E., “Multiple Criteria Optimization: Theory, Couatation and Application”, New York: Wiley (1986).

15

Produced by The Berkeley Electronic Press, 2003



16

International Journal of Chemical Reactor Engineering Vol. 1 [2003], Review R2

Tsoukas, A., Tirrell, M. V. and Stephanopoulos G., “Multiobjective dynamic optimization of semibatch co
polymerization reactors”, Chemical Engineering Science, Vol. 37, pl785 (1982).

Van VeldhuizenD., “Multiobjective evolutionary algorithms: Classifications, analyses and new innovation”, Ph D.
Thesis, WPAFB, OH: Air Force Institute of Technology (1999).

Wajge, R.M. and Gupta, S.K., “Multiobjective dynamic optimization of a-waporizing nylon 6 bech reactor”,
Polymer Engineering Science, V@4, 11611172 (1994).

Wilde, D.J., “Optimum Seeking Methods”, Englewood Cliffs, NJ: Prentice Hall (1964).

Yee, A. K. Y., Ray, A. K. and Rangaiah, G. P., “Multiobjective optimization of an industrial styreaetor’,
Computers and Chemical Engineering, Vol. 27, p1BD (2003).

Yu, W., Hidajat, K. and Ray, A.K., ‘Optimal operation of reactive simulated moving bed and varicol system”,
Journal of Chemical Technology and Biotechnology, Vol. 78, p283 (2003)

Zeleny, M., “Linear Multiobjective Programming”, Lecture notes in economics and mathematical systems series.
New York: Springer (1974).

Zeleny, M., “Multiple Criteria Decision Making”, New York: McGraw Hill (1982).

Zhou, F., Gupta, S.K. and Ray, A K*Multiobjective optimization of the continuous casting process for poly
(methyl methacrylate) using adapted genetic algorithm”, Journal of Applied Polymer Science, Vol. 78;145839
(2000).

Zionts, S. and Wallenius, J., “An interactive programmingtime for solving the multiple criteria problem”,
Management Science, Vol. 22, p6683 (1976).

Zionts, S. and Wallenius, J., “ldentifying efficient vectors: some theory and computational results”, Operation
Research, Vol. 24, p78893 (1980).

Zitzler, E, Deb, K. and Thiele, L., “Comparison of multiobjective evolutionary algorithms: Empirical results”,
Evolutionary Computing, VolI8, p173195 (2000).

Zitzler, E. and Thiele, L., “An evolutionary algorithm for multiobjective optimization: The strength t®are
approach”,Technical Report 43urich, Switzerland: Swiss Federal Institute of Technology, (1998).

Ziyang, Z., Hidajat, K. and Ray, A.K., “Multiobjective optimization of simulated countercurrent moving bed

chromatographic reactor (SCMCR) for MTBErgkesis”, Industrial and Engineering Chemistry Research, Vol. 41,
p32133232 (2002).

http://lwww.bepress.com/ijcre/vol1/R2



