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ABSTRACT

Over a wide density range, the ground state of cold neutral matter in the absence of external
magnetic fields is a degenerate sea of electrons containing a lattice of nuclei. In certain density
regions, a phase composed of interpenetrating cubic lattices of different nuclides is preferable to a
body-centered cubic lattice of any single nuclide. The arguments supporting this result are first made
assuming the electrons to be a uniform background; the qualitative features remain when screening

and exchange effects are included.
Subject heading: dense matter

I. INTRODUCTION

The state of matter at densities from 10* g cm™3 to
about 10" g cm™? is of interest in the study of white
dwarfs and the crusts of neutron stars. As a first step in
describing this matter, it is convenient to consider the
ground-state properties of neutral matter in this density
range for zero magnetic field. Salpeter (1961) found a
succession of phases as the density increased, each a
body-centered cubic (bec) lattice of nuclei immersed in
a sea of degenerate electrons. Each phase was char-
acterized by the (Z, A) values of the nuclear species.
Baym, Pethick, and Sutherland (1971) improved on this
work by including the lattice energy in determining the
equilibrium nuclear species present in the ground state
phase, and they applied the results in discussing the
structure of neutron stars.

Dyson (1971) investigated the possibility of hetero-
nuclear compounds in cold matter. By investigating the
ratio of lattice energy of the compound to the lattice
energy of the individual lattice, he found that for certain
ratios of nuclear charges a compound would be pre-
ferred. One such possibility is the compound FeHe.
Witten (1974) has included zero-point and screening
effects in this calculation.

A further possibility exists, however. Baym, Pethick,
and Sutherland have not considered the possibility of
heteronuclear compounds at high density, and Dyson
and Witten have not allowed variations which can take
advantage of the nuclear binding energy. In the present
work, we pursue this possibility and find that between
almost all phases considered by Baym, Pethick, and
Sutherland there exists a phase composed of two inter-
penetrating cubic lattices. The nuclei at the lattice sites
differ substantially from those found by Dyson and
Witten, who were not considering nuclear equilibrium.

II. CALCULATIONS FOR THE MIXED PHASES

At a given pressure P, the ground state phase is the
phase with the lowest chemical potential p. In actual
calculations, it is more convenient to start with the
baryon number density, n,, and the Z and A4 values for
all nuclides to be considered. These determine directly
the lattice spacing. Charge neutrality determines the
electron density, which in turn gives the free electron
Fermi energy. From the total energy per baryon, E/B,
one then constructs P =n33(E/B)/dn, and p=E/B
+ P/n,. In these calculations, the nuclear mass energy
as a function of (Z,A) competes with the electron
Fermi energy and, in crystalline phases, with the
Coulomb lattice energy. The nuclear masses are known
or may be predicted, the free fermion equation of state
is well known, and the Coulomb lattice energies are
readily obtained. Zero-point motion, exchange, and
screening effects play a secondary role and will be
discussed later.

Baym, Pethick, and Sutherland found that at the low
end of the density range, > Fe, with the minimum energy
per nucleon, occupies bec lattice sites. As the density
increases, the electron Fermi energy increases rapidly
and soon rises enough so that 2Ni, even though its rest
mass per baryon is larger than that of *Fe, becomes a
more favorable tenant of the lattice sites. As the density
rises still further, the ®*Ni gives way to a whole sequence
of nuclei. In this progression, there is a delicate balance
between nuclear energies and Coulomb energies, and it
is this balance which may be exploited by a mixed
lattice.

Although Z and 4 must change discretely in going
from one phase to another, we might expect still further
phases if Z and A could be changed more continuously.
Since this cannot be done directly, we instead simulate
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this action by constructing a mixed lattice with nuclei
corresponding to both (Z, A) and (Z’, A). We consider
four mixed lattice structures: face-centered cubic (fcc)
with (Z, A) on the faces and (Z’, 4’) at the corners;
simple cubic (sc) with each (Z,A4) surrounded by
(Z’, A"); bee with (Z, 4) at the corners and (Z’, 4) in
the middle (interpenetrating cubic lattices); hexagonal
close-packed (hcp) with alternating layers of (Z, A) and
(Z’, 4’). In the last three cases, there is complete sym-
metry between (Z,A) and (Z’, 4’). The unscreened
Coulomb lattice energy per baryon may be written as:

E /B=—(e’ny’/4")
xClaz?+Bz?+(1-a—B)2ZY], (1)

where A4 is the mean A for the given structure, and the
coefficients C, a, and B were computed using the meth-
ods of Coldwell-Horsfall and Maradudin (1960) and are
given in Table 1. _
Starting with a homogeneous lattice of charge Z, the
Coulomb attraction of the lattice given in equation (1)
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will be increased if Z and Z’ are slowly changed, pro-
vided that their weighted average remain Z. This is
basically because the nearest neighbor repulsion is re-
duced by making the charges unequal. In general, this is
at the expense of the nuclear Coulomb energy, which is
of order e2Z%/R, where R is a nuclear radius. However,
it is possible that the other contributions to the nuclear
binding energy and the change in electron Fermi energy
can decrease enough to provide a more stable phase
with different charges Z and Z’. Such a circumstance is
likely to occur when the bec phases corresponding to
(Z,A) and (Z’, A’) are nearly in equilibrium.

We first treat the electrons as a uniform background,
neglecting exchange energies, atomic binding energies in
the nuclear masses, and screening energies. We then find
between almost every pair of phases given by Baym,
Pethick, and Sutherland a new mixed bee phase, which
is stable over a narrow pressure range. For each phase
characterized by (Z, 4; Z’, A’), the entries in Table 2
give the lowest pressure, P, at which the phase first
occurs and the pressure range, A P, over which it occurs.

TABLE 1
CouLOMB LATTICE ENERGY PARAMETERS

Lattice C B (1—a—p)
bec........ 1.444231 0.389821 0.389821 0.220358
fec ........ 1.444141 0.654710 0.154710 0.190580
hep ....... 1.444083 0.345284 0.345284 0.309433
SC eennnn. 1.418649 0.403981 0.403981 0.192037

TABLE 2

PRESSURE P AND PRESSURE RANGE A P FOR DIFFERENT PHASES

z A z A P(dyn cm™2) AP(dyn cm™2?)
26 56 26 56

26 56 28 62 5.5x10% 1.5x10"°
28 62 28 62 5.5%10% 6.9%x10%
28 62 28 64 6.9%x10% 2.7x10"7
28 64 28 64 6.9%X10% 45x10%
28 64 34 84 5.2x10% 3.2X10%
34 84 34 84 52x10% 5.2x10%
34 84 32 82 5.8x10% 8.8%x10%
32 82 32 82 5.8%10%7 1.5%x10%8
32 82 30 80 2.1x10%8 3.6x10%3
30 80 30 80 2.1x10%8 3.6X10%8
30 80 28 78 5.7x10%8 1.1x10%
28 78 28 78 5.7x10%8 2.1x10%
28 78 26 76 2.7%10% 5.4X10%
26 76 26 76 2.7%X10% 2.0x10%8
42 124 4 124 2.9%x10% 6.1x10%7
42 124 40 122 2.9%10%° 2.1x10%
40 122 40 122 2.9%10%° 1.6x10%
40 122 38 120 45x10% 3.9%10%
38 120 38 120 45%x10% 22x10%
38 120 36 118 6.8x10% 6.8x10%
36 118 36 118 6.8x10%

NotEe.—For each phase characterized by (Z, 4; Z’, A’), the entries give
the lowest pressure P at which the phase first occurs and the pressure range

A P over which it occurs.
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Typically, the pressure range, A P, for a mixed bcc phase
is about a hundredth of a percent of the pressure at
which the transition occurs. This range is small because
the advantage obtained in the mixed phase is a fraction
of the Coulomb lattice energy, which in turn is only part
of the total energy. The other possible mixed lattice
structures never arise in the ground state. This is obvi-
ous for the fourth structure (see Table 1) since its
Coulomb energy is already rather repulsive compared
with the others.

Since small terms in the energy appear to be im-
portant in determining the phase, the other small terms
should not be neglected. We include the atomic binding,
screening, exchange, and zero-point motion corrections
estimated by Salpeter in our final calculations. Qualita-
tively, the results are unchanged. The same phases ap-
pear, but at different pressures. The complete set of
phases found and the corresponding pressures are given
in Table 2. These numbers are based on the nuclear
binding energies given by Myers and Swiatecki (1965)
and used by Baym, Pethick, and Sutherland. Using the
tables of Garvey et al. (1969), we find that the (26,76)
phase is replaced by a (44,126) phase and that there is
an extra (36,86) phase after (34,84). In addition, the
(28,62; 28,64) phase disappears and a small (42,126;
44,126) phase appears. The existence of the mixed phases
is insensitive to the nuclear data, although the details are
rather sensitive to it. Note that the (28,62; 28,64) phase
does not follow from the arguments given above, since
Z=2Z'. The appearance of this phase depends not on
the Coulomb lattice energy but on the other contribu-
tions to the energy. It is interesting to note that its range
of pressures is about 10™* that which would be expected
for a phase benefiting from the mixed-phase Coulomb
lattice energy. This aspect of this phase reflects the
relatively minor role played in a mixed-phase state by
the other small corrections to the energy.

III. DISCUSSION

At this stage, we should stress that we are investigat-
ing a bulk effect and not the interface formed between
two slabs of different composition. That surface prob-
lem would be appreciably more difficult. Whether the
thickness of the new phase is large or small compared
with a reasonable number of lattice spacings will depend
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on the density gradient in a star. It should also be
pointed out that these phases are completely different
from normal alloys because there are no core electrons.

Do these phases exist and play any important role in
real stars? First, consider white dwarfs. The maximum
density in a white dwarf, as found by Baym, Pethick,
and Sutherland, is about 1.4X10° g cm 3. Such a star
could have a noticeable fraction of its mass tied up in
such a phase if the phase occurred near the center of the
star. It is doubtful that normal evolution would result in
a star in complete nuclear equilibrium. However, by
considering a more restricted set of nuclei, those actually
expected to be present in such a star, one would expect
to obtain similar mixed phases. These mixed phases are
likely to exist in white dwarfs.

In neutron stars, these phases again play a minor role
in the structure of a star, because the equation of state is
not sensitive to the phase of the matter. For the more
massive stars, say above 1.3 M, the fraction of mass
tied up in the outer crust is small and the density
gradient there is large. A typical thickness of one of
these phases would be about a millimeter. While small
on the stellar scale, this still represents a large number of
interparticle spacings. Another hope for observing a
mixed phase would be if similar phases occurred in the
inner crust, where the electron sea around nuclei is
joined by a sea of neutrons. The Z values must change
discretely in this region too, and magic Z values seem
favored. Hence there is a possibility that a mixed phase
will be present in this region as well. The chief problem
in the inner crust is the strong competition between the
Coulomb lattice energy and the neutron sea—nucleus
surface energy, and it is substantially harder to de-
termine in this case what a change in the lattice struc-
ture would do to the total energy. Assuming that such a
phase did exist, it would be most likely to be noticeable
in a low-mass star with appreciable crust or even a 1.3
M., star with a stiff equation of state. The existence of
three nearly degenerate phases of matter could result in
crustal regions with very large impurity levels, which
might be reflected in the critical angle for stresses in the
region. On the whole, it is unlikely that these phases will
be directly observed.
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