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ABSTRACT

In this paper we use the outer galactic H i scale height data as well as the observed rotation curve as constraints to
determine the halo density distribution of the Andromeda galaxy (M31). We model the galaxy as a gravitationally
coupled system of stars and gas, responding to the external force field of a knownHernquist bulge and the darkmatter
halo, the density profile of the latter being characterized by four free parameters. The parameter space of the halo is
optimized so as to match the observed H i thickness distribution as well as the rotation curve on an equal footing, un-
like the previous studies of M31which were based on rotation curves alone.We show that an oblate halo, with an iso-
thermal density profile, provides the best fit to the observed data. This gives a central density of 0.011M� pc�3, a core
radius of 21 kpc, and an axis ratio of 0.4. The main result from this work is the flattened dark matter halo for M31,
which is required to match the outer galactic H i scale height data. Interestingly, such flattened halos lie at the most
oblate end of the distribution of halo shapes found in recent cosmological simulations.

Subject headinggs: galaxies: halos — galaxies: ISM — galaxies: kinematics and dynamics — galaxies: spiral —
galaxies: structure

1. INTRODUCTION

It is well known that the dark matter halo plays an important
role in the dynamics of galaxies, especially in the outer regions
(Binney & Tremaine 1987). Since a galactic disk is rotationally
supported, the rotation curve serves as a useful tracer of the grav-
itational potential in the plane of the galaxy. The observed rota-
tion curve is routinely used to deduce the mass distribution in a
galaxy and, hence, its dark matter content (e.g., Begeman 1987;
Kent 1986, 1987; Geehan et al. 2006). The thickness of the gas
layer, on the other hand, depends on the vertical gravitational
force and traces the potential perpendicular to the midplane (e.g.,
Narayan & Jog 2002a). In this work we use the rotation curve as
well as the radial distribution of the thickness of the H i gas layer
in the outer galaxy to study the shape and density profile of the
dark matter halo in M31. In a disk plus bulge plus halo model
of an external galaxy, the disk and the bulge can be mostly stud-
ied observationally. Therefore, the rotation curve and the vertical
H i scale height data effectively complement each other to deter-
mine the dark matter halo distribution of a galaxy uniquely.

In the past, the idea of studying the darkmatter halo properties
by using the outer galactic H i flaring data has been used to ex-
plore the halos of NGC 4244 (Olling 1996), NGC 891 (Becquaert
& Combes 1997), and the Galaxy (Olling & Merrifield 2000,
2001). However, the H i scale height distribution was mainly
used to constrain the oblateness of the halo and not its other
parameters such as the power-law index. In some cases, the gas
gravity and even the stellar gravity were ignored (Becquaert
& Combes 1997) in determining the net galactic potential and,
hence, the gas scale height distribution.

These issues were taken care of in determining the Galactic
halo parameters by Narayan et al. (2005). Using the gravitation-
ally coupled, three-component Galactic disk model (Narayan &
Jog 2002b), various density profiles of the halowere investigated,
and an attempt was made to obtain the halo parameters, which
provided the best fit (in the least-square sense) to the observed
H i scale height distribution. Finally, conformity with the shape
of the observed rotation curve was used to remove the degen-

eracies in the best-fit values obtained by the first constraint. Also,
unlike some of the previous models, the self-gravity of the gas
was included in the analysis. From their study, Narayan et al.
(2005) concluded that a spherical halo, with a density falling off
more rapidly than an isothermal halo, provides the best fit to the
available data. This study was based on the H i scale height data
then available up to 24 kpc fromWouterloot et al. (1990). Kalberla
et al. (2007) have confirmed this by using their recent extended
H i scale height data up to 40 kpc and have also included a dark
matter ring which they claim is needed to explain the observed
H i scale height distribution in the Galaxy.
In this paper we apply the above approach to investigate the

dark matter halo properties of the Andromeda galaxy (M31 or
NGC 224). Here we use both the rotation curve and the H i scale
height data as rigorous constraints simultaneously and scan the
entire parameter space systematically so as to obtain the best-fit
halo parameters. In addition to the various density profiles, we
also try to fit various shapes of the halo, which was not done by
Narayan et al. (2005). Earlier studies onM31 (Widrow et al. 2003;
Widrow & Dubinski 2005; Geehan et al. 2006; Seigar et al. 2008;
Tamm et al. 2007) were mostly aimed at developing a complete
massmodel (disk plus bulge plus halo), based on comparisonsmade
with the available structural and kinematical data (surface brightness
profiles, bulge-velocity dispersion relations, rotation curves), which
assumed a spherical-shaped halo. On the other hand, we have
studied the dark matter halo profile and show it to be flattened.
In x 2 we describe our model and, in x 3, discuss the numerical

calculations involved and the input parameters used. In x 4 we
present the results and analysis of the numerical results, followed
by the discussion and conclusions in xx 5 and 6, respectively.

2. DETAILS OF THE MODEL

2.1. Gravitationally Coupled, Three-Component,
Galactic Disk Model

A galaxy is modeled as a thick stellar disk, coplanar with the
interstellar medium of atomic and molecular hydrogen gas, all
three components being gravitationally coupled to each other
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and embedded in the dark matter halo (Narayan & Jog 2002b).
The bulge and the darkmatter halo are taken to be rigid and non-
responsive, and act as external forces on the three-component
disk system. Also, it is assumed that the components are in hy-
drostatic equilibrium in the vertical direction. Therefore, the den-
sity distribution of each component will be jointly determined by
the Poisson equation and the corresponding equation for pres-
sure equilibrium perpendicular to the midplane.

The Poisson equation for an axisymmetric galactic system in
terms of the galactic cylindrical coordinates (R; �; z) is given by
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where �i with i ¼ 1Y3 denotes the mass density for each disk
component, �h and �b denote the same for the halo and the bulge,
respectively, and �tot denotes the net potential due to the disk,
halo, and the bulge. For a flat or gently falling rotation curve, the
radial term can be neglected, as its contribution to the determi-
nation of the H i scale height is less than 10% as noted by earlier
calculations (Narayan et al. 2005). So, the above equation reduces
to
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The equation for hydrostatic equilibrium in the z-direction is given
by (Rohlfs 1977)
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where h(v2z )ii is the mean square random velocity along the
z-direction for the component i. We further assume each com-
ponent to be isothermal for simplicity, so that the velocity term
is constant with z.

Eliminating �tot between equation (2) and equation (3) and
assuming an isothermal case, we get
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which represents a set of three coupled, second-order differential
equations, one for each component of the disk. From the above
equation, it is evident that although there is a common gravita-
tional potential, the response of each component will be different
due to the difference in their random velocity dispersions.

2.2. Bulge

We model the bulge of M31 as a spherically symmetric mass
distribution represented by a Hernquist profile (Hernquist 1990),
where Mb is the total mass of the bulge and rb is its core radius.
The mass profile and density corresponding to this distribution
are given by

Mbul(R) ¼
MbR

2

(rb þ R)2
; ð5Þ

�bul(R) ¼
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2�r 3b

� �
1

(R=rb)(1þ R=rb)
3
; ð6Þ

respectively. Since M31 is an Sb type galaxy, the bulge contri-
bution is important and plays a role in determining the rotation
curve even in regions outside the bulge.

2.3. Dark Matter Halo

We use the four-parameter dark matter halo model (de Zeeuw
& Pfenniger 1988; Becquaert & Combes 1997) with the density
profile given by

�(R; z) ¼ �0

1þ m2=R2
c

� �p ; ð7Þ

where m2 ¼ R2 þ (z2/q2), �0 is the central core density of the
halo, Rc is the core radius, p is the density index, and q is the
vertical-to-planar axis ratio of the halo (spherical: q ¼ 1; oblate:
q < 1; prolate: q > 1).

3. NUMERICAL CALCULATIONS

3.1. Solution of Equations

For a given bulge and halo density profile, the equation to be
solved to obtain the vertical density distribution at any radius
for any component (stars, H i, and H2) is given by equation (4),
which simplifies to
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This represents three coupled, second-order, ordinary differential
equations in �s, �H i, and �H2

which denote the mass densities for
stars, H i, and H2, respectively. This problem is solved in an iter-
ative fashion, as an initial value problem, using a fourth-order,
Runge-Kutta method of integration, with the following two ini-
tial conditions at the midplane, i.e., z ¼ 0 for each component,

�i ¼ (�0)i;
d�i
dz

¼ 0: ð9Þ

However, the modified midplane density (�0)i for each compo-
nent is not known a priori. Instead, the net surface density �i(R),
given by twice the area under the curve of �i(z) versus z, is used
as the second boundary condition, since this is known observa-
tionally. Hence, the required value of (�i)0 can be determined by
trial and error, which eventually fixes the �i(z) distribution. We
find that four iterations are adequate to give convergence with
an accuracy to the second decimal place. For a three-component
disk, the vertical distribution is steeper than a sech2 distribution
close to the midplane (Banerjee & Jog 2007), but at large-z val-
ues, it is close to a sech2 distribution. Here we use the half-width
at half-maximum of the resulting model vertical distribution to
define the scale height as was done in Narayan & Jog (2002a,
2002b).

3.2. Input Parameters for M31

Themodel described so far is general; nowwe apply it toM31.
For that, we require the surface density and the vertical velocity
dispersion for each component to solve the coupled set of equa-
tions at each radius. The observed values are used for the gas,
whereas for the bulge and the stellar component the values derived
from the mass model are used except for the vertical dispersion
velocity of the stars.
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The radial distribution of the H i surface density is taken from
Sofue & Kato (1981), while the surface density for the H2 gas,
being an order of magnitude smaller and confined to the inner re-
gion (Koper 1993), was taken to be zero. The vertical dispersion
velocity of the H i gas, (vz)H i

, is taken to be 8 km s�1, as given by
the observations of a large sample of about 200 external galaxies
(Lewis 1984).

For the stars, we assume an exponential disk with a central
surface density of 460 M� pc�2 and an exponential disk scale
length Rd of 5.4 kpc, after Geehan et al. (2006). The disk scale
length matches with the R-band scale length of Widrow et al.
(2003), whereas Koper (1993) gives a value of 5.1 kpc. Also,
themaximum diskmass of 8 ; 1010 M� predicted by theWidrow
et al. (2003) model sets the central disk surface density value to
440 M� pc�2 for Rd ¼ 5:4 kpc. So the difference between the
values used in our work with other values in the literature is of
the order of a few percent.

The bulge is taken to have a Hernquist profile as described
above, with a total massMb of 3:3 ; 1010 M� and a core radius
rb of 0.61 kpc, as given by the samemodel (Geehan et al. 2006).
Kerins et al. (2001) give a mass Mb of 4 ; 1010 M�, whereas
Widrow et al. (2003) give a mass of 2:5 ; 1010 M�. As expected,
the bulge becomes progressively less important as we move ra-
dially outward in the galaxy, and so is not important in the de-
termination of the rotation curve or the H i scale height in the
outer parts, which is our region of interest. However, it does af-
fect the determination of the rotation curve in the intermediate
range; hence, the bulge has to be included for a correct treatment
of the problem.

The stellar radial velocity dispersion is assumed to fall off
exponentially with a scale length of 2Rd , as is observed in the
Galaxy (Lewis & Freeman 1989); for M31, this gives a value of
10.8 kpc. Also, the ratio of the vertical to the radial stellar veloc-
ity dispersion is taken to be 0.5 at all radii, equal to its observed
value in the solar neighborhood (Binney & Merrifield 1998).
Based on these, the central value of 126 km s�1 for the radial dis-
persion is deduced from the observed value at 2Rd for M31 by
Tamm et al. (2007).

4. RESULTS AND ANALYSIS

4.1. Halo Density Profiles: The Three-dimensional Grid

We scan the allowed values for the entire parameter space for
the dark matter halo, to obtain the best fits to the data for the ro-
tation curve and the H i scale heights in the outer parts of M31.
We vary the halo density index p between 1, 1.5, and 2. Here
p ¼ 1 corresponds to the isothermal and p ¼ 1:5 to the NFW
(Navarro et al. 1996) halo density profile at large radii. These
two profiles are routinely used in galactic mass modeling and
other studies. Narayan et al. (2005) found that a steeper than
NFWprofile ( p ¼ 2) best conformswith the H i scale height data
in the outer regions of our Galaxy, suggesting evidence of finite-
sized halos. So, we study each of the above three cases indi-
vidually. For each value of p, a realistic range of �0 and Rc for
the spherical case is chosen to form a grid of (�0;Rc) pairs. The
central core density of the halo �0 is varied between 0.001 and
0.15 M� pc�3 in steps of 0.002 M� pc�3, and Rc is varied be-
tween 1 and 35 kpc in steps of 0.5 kpc. At first, we use a spherical
halo for simplicity. Although it gives the correct rotation curve, it
fails to match the outer galactic H i scale height data within the
error bars. Figure 1 shows that the outer galactic H i scale height
distribution obtained by using the best-fit values for a spherical
isothermal halo ( p ¼ 1) flares far above the observed data, giv-

ing a poor fit. The same is found to be true for the other density
profiles ( p ¼ 1:5 and 2) as well.
This naturally called for the use of an oblate (flattened) halo,

because the midplane surface density increases with the flatten-
ing of the halo, thus resulting in a higher vertical constraining
force. The effect, as expected, is exactly the opposite of the case
of a prolate halo. The latter would therefore give an even poorer
fit than the spherical case and, hence, is not tried here. There-
fore, in addition to the above parameters, the axis ratio q is varied
as well between 0.1 and 0.9 in steps of 0.1. This gives a total of
47,250 grid points to be scanned for each value of p. We first
thoroughly scan this grid to locate the region of minimum �2.
In retrospect, Narayan et al. (2005) had pinned the rotation

curve at a single point only (i.e., the solar point with R ¼ 8:5 kpc)
using the local Oort constants A and B, for which the values are
available for the Galaxy. This effectively fixed the rotation curve
locally, with respect to the shape as well. Also, the global trends
exhibited by the observed curve were used as the final criterion
to choose the best-fit density index ( p ¼ 2). Here, on the other
hand, we apply a more rigorous treatment by pinning the rotation
curve at all the observed points. This, in fact, was imperative
since the Oort A and B constants for M31 are not known.

4.2. The Rotation Curve Constraint

For each of the above grid points, we evaluate the galactic
rotation curve using our (disk plus bulge plus halo) model as
follows. For an exponential disk, the rotation velocity vdisk(R)
is given by (Binney & Tremaine 1987)

v2disk(R) ¼ 4�G�0Rdy
2½I0( y)K0( y)� I1( y)K1( y)�; ð10Þ

where �0 is the disk central surface density, Rd the disk scale
length, y ¼ R/2Rd , R being the galactocentric radius, and In and
Kn (where n ¼ 0 and 1) are the modified Bessel functions of the
first and second kinds, respectively. The above relation is for an
infinitesimally thin disk which we use here for simplicity. For a
thick disk, a separate result has to be used (as given in Becquaert
& Combes 1997), which we check gives a value within <1% of

Fig. 1.—Plot of the H i scale height (in pc) with the galactocentric radius
(in kpc) for the best-fit case for the spherical shape (q ¼ 1) halo for the density
law p ¼ 1 (isothermal). Clearly, the model curve rises way above the observed
distribution in the outer galaxy which is the region of interest. Thus, a spherical
halo is ruled out.
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the value given by equation (10); hence, we are justified in using
the above simpler form.

For the spherical bulge, the rotation velocity vbul(R) is given
by

v 2bul(R) ¼
GMbul(R)

R
; ð11Þ

whereMbul(R), the mass enclosed within a sphere of radius R for
a Hernquist bulge, is given by the right-hand side of equation (5).

For an oblate halo of axis ratio q and density index p, the cir-
cular speed vhalo is obtained by differentiating the expression for
the potential from Sackett & Sparke (1990) and Becquaert &
Combes (1997) to be

v2halo(R)¼ 4�G�0q

Z 1=q

0

R2x2 1þ R2x2= R2
c(1þ �2x2)

� �� ��p

(1þ �2x2)2
dx;

ð12Þ

where � ¼ (1� q2)1/2. We obtain the value of the integral nu-
merically in each case. So, the total rotation velocity v(R) at any
galactic radius R is given by adding the contributions for the
three components in quadrature as

v2(R) ¼ v2disk(R)þ v 2bul(R)þ v 2halo(R): ð13Þ

Next, we performed the �2 analysis of the calculated distribu-
tions with respect to the observed one for each of the p ¼ 1,
1.5, and 2 cases. The galactic rotation curve for M31 is given
by Widrow et al. (2003) and Carignan et al. (2006). We choose
the rotation curve from Widrow et al. (2003) for our analysis,
following Geehan et al. (2006) for reasons of internal consis-
tency, as we have used the bulge and the stellar parameters from
their mass model. We find that the calculated rotation curves do
not depend significantly on the shape of the halo, i.e., q. Also, all
three density indices (p ¼ 1, 1.5, and 2) give a reasonably good
fit to the observed rotation curve, in that they lie well within the
error bars of the observed curve in the radial range of 2Y30 kpc.
However, in terms of the�2 analysis, p ¼ 1 (the isothermal case)
is the most favored.

4.3. The H i Scale Height Constraint

Now, for each of the above three cases ( p ¼ 1, 1.5, and 2),
we considered only those grid points for H i scale height deter-
mination whose �2 values were less than 11, which is the total
number of data points in the observed rotation curve. Elemen-
tary statistics suggests that a model distribution can be taken to
be a reasonably good fit if its �2 value with respect to the ob-
served distribution is of the order of the number of data points
in the observed distribution (Bevington 1969). Also, for these
given sets of grid points, we have checked that the rotation
curve lies well within the error bars in the region of interest, i.e.,
the outer galactic region. For p ¼ 1, there were 3684 such grid
points, 4910 for p ¼ 1:5 and 5799 for p ¼ 2.

For the set of grid points chosen above, we calculated the H i

scale height in the outer galactic region, i.e., beyond three disk
scale lengths (R ¼ 16:2 kpc), following the analysis done for the
Galaxy case (Narayan et al. 2005), and obtained the �2 with re-
spect to the observed scale height data (Braun 1991). The dark
matter halo is expected to be more important in the outer parts,
and hence, the scale height values in this range are used as a con-
straint to obtain the halo parameters.

4.4. Resulting Best-Fit Halo Parameters

We find that a flattened, isothermal halo ( p ¼ 1, q ¼ 0:4)
with a small central density (0.011 M� pc�3) and a core radius
of 21 kpc provides the best fit to both the observed rotation
curve and the H i scale height data. The other density profiles
( p ¼ 1:5 and 2) give higher values for the �2 minimum and,
hence, are not favored; however, the dependence on the power-
law index p is weak. Interestingly, these also give q ¼ 0:4 as the
preferred shape and the same central density but with a higher
core radius of 27 kpc and 34 kpc, respectively.

In Figure 2 we compare our best-fit rotation curve with the
observed one in the outer regions, although the fit was done over
the entire radial range of 2Y30 kpc (x 4.2). Similarly, Figure 3
depicts the best-fit scale height distribution in the outer disk re-
gion. In Figure 4 we compare the resulting scale height distribu-
tions for the various values of q ¼ 0:2Y1 in steps of 0.2, obtained
using the best-fit values for �0 and Rc in each case. It shows that

Fig. 2.—Plot of the rotation velocity (in km s�1) vs. radius (in kpc) for the
best-fit case of an isothermal halo of oblate shape with an axis ratio q ¼ 0:4. Our
model rotation curve matches well with the observed data (Widrow et al. 2003)
within the error bars.

Fig. 3.—Plot of H i scale height (in pc) vs. the radius (in kpc) for the best-fit
case of an isothermal halo of oblate shapewith an axis ratio q ¼ 0:4. The flattened
halo of our best-fit model predicts a H i scale height distribution that agrees well
with observations (Braun 1991) within the error bars.
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although the �2 analysis selects q ¼ 0:4 to be the best fit, a range
of q values between 0.4 and 0.6 gives fits to the observed data
within the error bars—but the departure of the calculated dis-
tribution from the real data points increases with increasing q.
This is further illustrated in Figure 5, where we plot the �2 value
for the best-fit case for each axis ratio versus the axis ratio, q. The
�2 shows a clear minimum at q ¼ 0:4, which is thus the axis ratio
that best explains the observations. In particular, a flattened halo
(q ¼ 0:4) is clearly distinguished from and preferred over the
spherical case (q ¼ 1).

Interestingly, such flattened halos lie at the most oblate end
of the distribution of halo shapes obtained in recent �CDM

cosmological simulations (e.g., Bailin & Steinmetz 2005, see
their Fig. 2; Bett et al. 2007, see their Fig. 13)—the axis ratio q
used in the present paper is equal to the ratio of the semimajor
axes c/a in these papers. Thus, either M31 is an unusual galaxy,
or the simulations need to include additional physics, such as
the effect of baryons, that could affect the shape of the halo.
Further, a moderate variation in the H i gas dispersion results in
a less flattened halo as shown in x 5.3.

5. DISCUSSION

5.1. H i Scale Height Data in Outer Disk

The H i scale height constraint as applied in this paper is ide-
ally suited for application to gas-rich, late-type spiral galaxies
with an extended H i disk. In order to be useful as a constraint,
the H i scale height data should be available beyond 3RdY4Rd

and even farther out in the galaxy. This is where the disk grav-
itational force begins to drop out and the dark matter halo takes
over. We note that obtaining the H i scale height data is an
observationally challenging task (Sancisi & Allen 1979), and
therein lies the main difficulty in using this method. As far as our
work is concerned, the observational data (Braun 1991) gives
only three data points beyond R ¼ 3Rd . We consider the region
only beyond R ¼ 3Rd following the Galaxy case (Narayan et al.
2005). Also, the irregularity or the scatter in the observed data
in the inner region suggests the presence of a bar or spiral arm
or some unknown structure and is therefore excluded from the
analysis.
In Figure 6 we illustrate the above point by plotting the halo

surface density within the H i scale height, as well as the cor-
responding values for the bulge, stars, and H i gas versus the
radius. For using the H i scale height constraint, the vertical
force close to the galactic midplane is needed; this is why the
surface density of the halo within the H i scale height is included.
This figure shows that the halo surface density just begins to take
over the stellar density at the point beyond which we do not
have any observed data. Availability of more data points in the
outer parts, with lower error bars, is thus clearly desirable and
would yield a tighter constraint on the halo shape and the density
profile.

Fig. 4.—Plot of the H i scale height (in pc) vs. radius (in kpc) for an isothermal
density profile and for different values of flattening: q ¼ 0:2, 0.4, 0.6, 0.8, and 1,
for the best-fit values of �0 and Rc in each case. This shows that a range of values
between q ¼ 0:4 and 0.6 gives fits to the observed data within the error bars, but
the �2 analysis identifies q ¼ 0:4 as the best-fit case.

Fig. 5.—Plot of �2 for the best-fit case for a given axis ratio vs. the axis ra-
tio, q, of the dark matter halo. The �2 shows a clear minimum at q ¼ 0:4 which
is thus the axis ratio that best explains the observations. Note that a flattened
halo (q ¼ 0:4) is clearly distinguished from and preferred over the spherical case
(q ¼ 1).

Fig. 6.—Plot of stellar, gaseous, bulge, and halo surface densities within the
H i scale height in units of M� pc�2 vs. radius in kpc. It shows that the stellar sur-
face density is comparable to the halo surface density up to�25 kpc, and only be-
yond this does the halo start to dominate the disk surface density aswe go outward
in the galaxy.
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5.2. Simultaneous Constraints

The calculated rotation curve does not depend on the shape
of the halo (q). All the q values give equally good fits to the ob-
served data. Surprisingly, the �2 minima for the rotation curve
and the H i scale height data, taken separately, lie on different
regions of the grid. The best-fit to the rotation curve alone gives
high values of the central density and small values of the core
radius. The best-fit to the scale height data, on the other hand,
gives a lower central density and a larger core radius. Geehan
et al. (2006) obtained a best-fit �0 of 0.033M� pc�3 (somewhat
higher than the value we get) and Rc of 8.2 kpc, probably be-
cause they had used the rotation curve as the only constraint.
We, on the other hand, have used two complementary constraints:
the planar one involving the rotation curve and the vertical one
involving the H i scale height. This allows us to uniquely de-
termine the physical parameters of the halo and the true mini-
mum in the grid spanning all the parameters for the dark matter
halo.

We find that the observed H i scale height increases linearly
with radius and does not flare. This can be explained if the halo
is flattened and, consequently, implies a smaller central density,
while keeping the same mass within a radius to explain the ob-
served rotation curve.

5.3. Dependence on the H i Velocity Dispersion

The calculation of the H i scale height is crucially dependent
on the chosen value of the vertical velocity dispersion of H i.
We do not have any observationally measured value for the gas
dispersion for M31. Here, we have assumed it to be constant at
8 km s�1 at all radii, as is observed for about 200 galaxies
(Lewis 1984). If at all, the observed dispersion falls off with ra-
dius very gradually in the outer galaxy (Kamphuis 1993; Narayan
et al. 2005). Repeating the whole analysis for a slightly smaller
value of (vz)H i

¼ 7 km s�1, we find the best-fit �0 and Rc to be
0.007 M� pc�3 and 19.5 kpc, respectively, with q ¼ 0:8Y0:9,
implying a less oblate halo, but with larger �2 values, than ob-
tained for the best-fit case with 8 km s�1 in x 4.4. Physically, this
trend can be explained as follows. In this case, the pressure sup-
port is smaller; hence, the gravitational force required to balance it
has to be smaller to match the same observed data; hence, a less
flattened halo is expected.

We also tried a case with a small radial falloff in the H i

dispersion from 8 to 7 km s�1 in the outer disk between 18 and
27 kpc. This variation assumed is ad hoc, but it allows us to
explore the effect of such a gradient on the halo shape deduced.
In this case, again the best-fit is obtained for a less oblate halo of
q ¼ 0:5Y0:6 (compared to the q ¼ 0:4 obtained for a constant
dispersion of 8 km s�1, x 4.4). Here, �2 values are lower, but
show a shallow minimum for the dependence on the halo shape
q. This is because, in this case, the observed fairly flat scale
height distribution is sought to be mainly explained by a radial
variation in the gas dispersion. While this gives lower �2 values
as expected, it also has a weak dependence on the halo shape,
which is therefore not constrained well.

It is interesting that a small radial gradient in gas dispersion
results in a rounder halo (q � 0:6) which is more typical of the
halo shapes seen in the cosmological simulations (Bailin &
Steinmetz 2005; Bett et al. 2007). This shows how crucial the
value of the gas velocity is in this model in determining the flat-
tening of the halo, which has possible implications for the galaxy
formation scenarios. This highlights the necessity of accurate mea-
surement of gas dispersion in galaxies.

5.4. Comparison with the Milky Way Galaxy

The ratio of the total mass in the halo to the total mass in the
disk (in stars and gas) within a certain radius is an important
physical quantity, since it tells one how significant the halo is at
a certain radius. For the best-fit value for p ¼ 1 and q ¼ 0:4, we
calculate the halo mass as a function of the radius by integrating
the halo density profile as given in equation (7). The disk mass
in the two components is as observed (x 3.2). It is now known
that M31 has an extended disk up to 40 kpc with a similar disk
scale length in the inner and outer regions ( Ibata et al. 2005).
We find that the fraction of the total mass in a dark matter halo
is 83% within R ¼ 30 kpc or about 5Rd and is 89% within
R ¼ 40 kpc or about 7Rd . In comparison, for the Galaxy, using
the isothermal halo model for the Galaxy and the stellar disk
model as given by Mera et al. (1998) and the observed values of
H i and H2 gas (Scoville & Sanders 1987), we obtain the cor-
responding ratio of the halo mass to the total mass to be 80%
within 5Rd (=16 kpc) and 84%within 7Rd (=22 kpc). These are
remarkably similar in the two galaxies.

On the other hand, the scale height distribution is different in
the two galaxies; it is nearly flat, increasing linearly for M31,
whereas it flares in the outer Galaxy. To explain this, an isother-
mal, flattened, oblate-shaped halo is needed for M31 as shown
here, whereas using a similar approach, it was shown that a spher-
ical halo with density falling faster than an isothermal profile is
needed to explain the data for the Galaxy (Narayan et al. 2005).
Thus, the dark matter halo shapes and density profiles do not ap-
pear to be universal even in large spiral galaxies.

6. CONCLUSIONS

We have used both the observed rotation curve and the outer
galactic H i scale height data to constrain the dark matter halo
profile of M31. We have systematically explored various shapes
and power-law indices for the density distributions for the halo to
fit the observed data. Our galactic disk model consists of coupled
stars and H i gas, where the gas gravity is taken into account on
an equal footing with the stellar gravity. We find that an oblate
isothermal halo with a central density of 0.011 M� pc�3 and a
core radius of 21 kpc best fits the observations. The axis ratio for
the best-fit result is 0.4. This is in sharp contrast to the spherical
halo used tomodelM31 in the literature so far. The rotation curve
constraint alone is usually used, which determines the mass
within a radius but cannot uniquely determine the shape of the
halo. The present work highlights the fact that using the two
simultaneous and complementary constraints of rotation curve
and the H i scale height data in the outer galactic region allows
one to identify the shape as well as the density distribution of
the dark matter halo in spiral galaxies.

We stress that the availability of more data points for the H i

scale heights in the outer galaxy beyond 5Y6 disk scale lengths
and an accurate determination of the H i gas velocity dispersion
would provide a tighter constraint for the shape and the den-
sity profile of the dark matter halo. In fact, having such data for
other galaxies would allow the above method to be applied to a
systematic study of the dark matter halo properties in different
galaxies.

We thank the anonymous referee for helpful comments which
greatly improved the presentation of results in the paper.We thank
Shashikant Gupta for his help with optimizing the numerical
code.
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