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ABSTRACT

We study the self-consistent, linear response of a galactic disc to vertical perturbations,
as induced say by a tidal interaction. We calculate the self-gravitational potential cor-
responding to a non-axisymmetric, self-consistent density response of the disc using
the Green’s function method. The response potential is shown to oppose the pertur-
bation potential because the self-gravity of the disc resists the imposed potential, and
this resistence is stronger in the inner parts of a galactic disc. For the m = 1 azimuthal
wavenumber, the disc response opposes the imposed perturbation upto a radius that
spans a range of 4-6 disc scale-lengths, so that the disc shows a net warp only beyond
this region. This physically explains the well-known but so far unexplained observa-
tion (Briggs 1990) that warps typically set in beyond this range of radii. We show
that the inclusion of a dark matter halo in the calculation only marginally changes
(by ∼ 10%) the radius for the onset of warps. For perturbations with higher azimuthal
wavenumbers, the net signature of the vertical perturbations can only be seen at larger
radii - for example beyond 7 exponential disc scale-lengths for m = 10. Also, for high
m cases, the magnitude of the negative disc response due to the disc self-gravity is
much smaller. This is shown to result in corrugations of the mid-plane density, which
explains the puzzling scalloping with m = 10 detected in HI in the outermost regions
∼ 30kpc in the Galaxy by Kulkarni et al. (1982).

Key words: Galaxies: kinematics and dynamics - Galaxies: spiral - Galaxies: struc-
ture

1 INTRODUCTION

Galaxy interactions including interactions with satellite galaxies are now known to be common. As a consequence of such a

tidal interaction, vertical distortions in the galactic discs can be easily set in. The most common kind of vertical distortions

in discs are warps, corresponding to the azimuthal wavenumber m = 1 . Tidal interactions with neighbouring galaxies have

often been suggested as the mechanism for the origin of warps (Schwarz 1985, Zaritsky & Rix 1997). The generation of the

warp of our Galaxy due to the tidal interaction with the Large Magellanic Clouds(LMC) was studied by Hunter & Toomre

(1969), and more recently by Weinberg (1995) in the presence of an active dark matter halo. Recent statistical studies by

Sanchez-Saavedra et al. (1990) and Reshetnikov & Combes (1998) conclude that at least 50% of all the observed galaxies show

warping in their discs. Their study on environmental effects, along with another recent analysis of a large number of edge-on

spiral galaxies in the R-band (Schwarzkopf & Dettmar 2001), suggests that tidal perturbation (the m = 1 component) plays

an important role in generating and influencing large-scale warps.

While it is clear that a warp is more likely to set in in the outer parts of a galaxy where the tidal force is stronger, it is

not yet known what decides the actual radius at which a warp starts in the disc. It is a well-known observational fact that

warps are seen in the outer regions of galaxies, typically starting at ∼ 4− 6 exponential disc scale-lengths, as was first seen in
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HI observations by Briggs (1990). However there exists no clear physical explanation for the radius at which a warp sets in.

In fact, little theoretical attention has been devoted to this question.

Other kinds of vertical distortions that are seen are small-scale corrugations in HI in our Galaxy (Quiroga 1974) or in

stars in external galaxies (Florido et al. 1991), and also scalloping in HI in the outer Galaxy (Kulkarni et. al. 1982). Again,

the physical origin of these non-axisymmetric features is not understood.

In this paper, we address these questions and show that the self-gravity of the disc resists any vertical distortion, especially

in the inner regions. Thus using very general physical principles, we derive semi-analytically a minimum radius for the onset

of each of the above vertical perturbations of a galactic disc. Each Fourier component of a perturbing potential will generate

its own signature in the galactic disc. Observations of these signatures in the disc depend on the strength of the perturbation

component and the disc response corresponding to it. The behaviour of a disc subjected to an external perturbation can

entirely be studied by its response funtion.

We study here the response of an axisymmetric disc, perturbed by a tidal potential and show that the disc self-gravity

plays a significant role in sketching a finger-print of the Fourier component of the perturbation onto the disc. We obtain the

self-gravitational potential corresponding to a non-axisymmetric, self-consistent, density response of the disc induced by the

perturbation component and show that it opposes the perturbing potential. The resulting negative disc response (see Jog 1999

for the planar case) decreases the strength of the perturbation in the disc. The vertical linear disc response obtained here is

shown to oppose the perturbation upto a certain radius and for the m = 1 component, in particular, it is upto about 4 disc

scale-lengths. Thus the net disc response for m = 1 or warps can only be seen beyond this radius, which is in a fairly good

agreement with observations. We also add a rigid dark matter halo and show that it only marginally affects the location of

the onset of warps.

For perturbations with higher azimuthal wavenumbers (m) the disc is shown to be well resistant upto higher radii. In

particular we show that any signature of the m = 10 component of the perturbation can only be observed in the very outer

region of the disc beyond ∼ 7 disc scale-length for an exponential disc.

In Section 2, we describe the treatment for the self-consistent linear response of the disc. The results and the comparison

with observations are given in Section 3, and the conclusions are summarised in Section 4.

2 VERTICAL DYNAMICS

We study the vertical response in a disc galaxy subjected to a general perturbing potential of cos(mϕ) type. We use the

cylindrical coordinate (R,ϕ, z) geometry which is the most natural for describing dynamics in a disc. The dynamical system

under study thus consists of a disc embedded in a dark matter halo.

The density distribution of the unperturbed axisymmetric disc is given by

ρd(R, z) = ρd0e
−R/Rde−|z|/z◦ (1)

where ρd0 is the disc central density and Rd is the disc scale-length. z◦ is the vertical scale-height which in general is a

function of the galactocentric distance R. In an interacting or merging disc the scale-height z◦ increases systematically with

the radial distance. The choice of the double exponential disc comes from a recent study by Schwarzkopf & Dettmar (2001) of

tidally-triggered vertical disc perturbations performed on a fairly large sample of disc galaxies which includes both interacting

as well as non-interacting galaxies. Their study reports that 33% of the discs show an exponential mass distribution in the

vertical direction indicating that most of the disc galaxies prefer to have such non-isothermal vertical profiles. So we are

interested in investgating how these non-isothermal discs respond to an external perturbation of the type mentioned above.

The dark matter halo is modeled as an axisymmetric spheroidal system with a pseudo-isothermal density profile which

gives an asymptotically flat rotation curve( de Zeeuw & Pfenniger 1988 ):

ρh(R, z) =
ρh0

1 + (R2 + z2

q2 )/R2
c

(2)

where ρh0 is the central density of the dark matter halo, Rc is the core radius and q is the halo flattening parameter.

The stars in the disc midplane (z = 0) move in a circular orbit at R = R◦ with an angular velocity ϕ̇◦ = Ω◦. So the

unperturbed circular orbit in the z = 0 plane is defined by R = R◦ and ϕ◦ = Ω◦t. The angular velocity Ω◦ is given by

Ω◦
2 =

1

R◦

∂Ψ◦

∂R

∣

∣

∣

∣

R=R◦

(3a)

where Ψ◦ is the total unperturbed potential:
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Ψ◦ = Ψd◦ + Ψh◦ (3b)

Ψd◦ and Ψh◦ are connected to the mass distribution described by eq.[1] and eq.[2] respectively through the Poisson equation.

Ψd0 is given by (see Sackett & Sparke 1990, Kuijken & Gilmore 1989):

Ψd◦(R, z) = −4πGρd0Rd
2z◦

∫ ∞

0

J0(kR)

[1 + (kRd)2]3/2

kz◦e
−|z|/z◦ − e−k|z|

k2z◦2 − 1
dk (3c)

A similar calculation for the halo is more cumbersome and we have used the formula given by eq.(2.88) in Binney &

Tremaine (1987) to calculate the gravitational force generated by the spheroidal dark matter halo described by the screened

isothermal density distribution (eq.[2]).

We consider the perturbing potential at any point(R,ϕ, z) in the disc due to a perturber at a distance D from the disc centre

and at an inclination angle i with respect to the disc midplane:

Ψ1(R, ϕ, z, Ωp) = Ψp◦(R)(1 +
z

D
sin i) cos(mϕ − mΩpt) (4a)

The above form of the potential is derived by assuming that R/D << 1 and z/D << 1 . The form of Ψp◦(R) ∼ GMpR/D2

can be taken as a constant in the above limit, where Mp is the mass of the perturber. Ωp is the pattern frequency of the

perturbing potential.

In the present study we consider only the disc response under the perturbing potential with zero-forcing frequency. Generally

the zero-frequency response of the disc is much more pronounced than the response generated by a non-zero finite-frequency

perturbation ( see Terquem 1998 in case of an accretion disc response ). Thus the perturbing potential with zero-forcing

frequency reduces to

Ψ1(R,ϕ, z) = Ψp◦(R)(1 +
z

D
sin i) cos(mϕ) (4b)

Note that potential of this form in case of m = 1 generates a well-defined integral-sign warp in the disc.

The total potential that a disc particle experiences is given by

Ψtotal(R, ϕ, z) = Ψ◦(R, z) + Ψ1(R,ϕ, z) (4c)

2.1 Disc linear response:

2.1.1 Basic equations:

The vertical response of a disc to an imposed external perturbation is governed by the following equations. The vertical

equation of motion in the small-slope approximation (i.e. for a small deviation from the disc midplane z = 0) is given by

d2zm

dt2
= −ν◦

2zm +
∂Ψ1

∂z

∣

∣

∣

∣

(R◦,ϕ◦,0)

(5a)

where the vertical frequency due to the unperturbed disc plus halo system is given by

ν◦
2 =

∂2Ψ◦

∂z2

∣

∣

∣

∣

(R=R◦,0)

(5b)

The linearized equation of continuity, connecting the perturbed velocity to the perturbed density, is given by ( Binney &

Tremaine 1987 )

∂ρ1

∂t
+ ~∇.(ρ◦ ~v1) + ~∇.(ρ1 ~v◦) = 0 (6a)

We denote v1 = vzm = dzm/dt as the perturbed z-velocity and v◦ = vz0 as the unperturbed z-velocity. For simplicity we

assume vz0 = 0.

Then the continuity equation (6a) reduces to

∂ρ1

∂t
+ ~∇.(ρ◦~vzm) = 0 (6b)

The response potential corresponding to this perturbed density is connected through the Poisson equation as

∇2Ψresp(R, ϕ, z) = 4πGρ1(R,ϕ, z) (7)

We solve the above three equations namely eqs.(5a), (6b) and (7) in order to obtain the disc response potential.

On substituting the perturbing potential eq.[4b] into eq.[5a] we obtain a forced oscillator-type second-order differential

equation and the solution can be written as

zm = H(R◦) cos(mΩ◦t) (8)
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Where

H(R◦) =

∂Ψ1

∂z

∣

∣

(R◦,0)

ν◦
2 − Ω◦

2
(9)

So the perturbed velocity in the z-direction is given by

~vzm = −mΩ◦H(R◦) sin(mΩ◦t)ẑ (10)

Substituting this into eq.[6b] and solving for ρ1 we obtain

ρ1 = −
∂ρ◦

∂z
H(R◦) cos(mΩ◦t)

Or

ρ1(R◦, ϕ◦, z) = −
∂ρ◦

∂z
H(R◦) cos(mϕ◦) (11)

From now on we will use the general co-ordinates (R,ϕ, z) instead of (R◦, ϕ◦, z). Note that the unperturbed density distribution

for the disc plus the halo system is given by ρ◦(R, z) = ρd(R, z) + ρh(R, z) (from eqs.[1] and [2]). So that after subsituting ρ◦

in eq.[11] we obtain

ρ1(R,ϕ, z) = [ρd(R, z) + ζh(R, z)]

{

H(R)

z◦

}

cos(mϕ) (12)

In the above equation ζh(R, z) = −z◦∂ρh/∂z which is a positive quantity for any centrally concentrated self-gravitating

system. Since ∂Ψ1/∂z > 0 and ν2
◦ > Ω2

◦ in an oblate geometry, the function H(R) > 0. Thus the perturbed response density

follows the perturbing potential. This behaviour is generally true for any self-gravitating, centrally concentrated disc (see

Section 2.1.2 for details). The total volume density in the disc due to the presence of the mth component of the perturbation

can be written as

ρm(R, ϕ, z) = ρ◦(R, z)

[

1 + (
ρd + ζh

ρ◦
)
H(R)

z◦
cos(mϕ)

]

(13)

2.1.2 Response potential:

The solution of Poisson equation is one of the most tricky issues in this work. Now, the Poisson equation can be solved in two

different ways: either by solving the partial differential equation which needs proper boundary conditions to be imposed, or by

using the integral equation i.e. using the Green’s function method (Jackson 1975). For the planar case, an infinitesimally-thin

disc approximation can be used and hence the differential approach could be used (Jog 1999). This approximation is not valid

here, and hence this approach cannot be used in the present work. Instead here we have to solve the integral equation using

the Green’s function method, for which the boundary conditions are directly in-built into the integral equation (Arfken 1985).

A compact form of the Green’s funtion in cylindrical coordinates can be found in Cohl & Tohline (1999). We now solve the

Poisson equation (eq.[7]) for the non-axisymmetric perturbed density given by eqn(12b) using the Green’s function technique.

So that

Ψresp(R, ϕ, z) = −G

∫

V

ρ1(~r′)

|~r − ~r′|
d3r′ (14)

where

|~r − ~r′| =
[

R2 + R′2 − 2RR′ cos(ϕ′ − ϕ) + (z′ − z)2
]1/2

Then

Ψresp(R, ϕ, z) = −G

∫

V

ρr(R
′, z′) cos(mϕ′)R′dR′dϕ′dz′

[

R2 + R′2 − 2RR′ cos(ϕ′ − ϕ) + (z′ − z)2
]1/2

(15)

In writing the above equation we have used ρr(R, z) = [ρd(R, z) + ζh(R, z)]H(R)/z◦.

After performing the integration over ϕ′ we obtain the response potential corresponding to an odd-m (i.e. m=1,3,5,7....)

perturbation as

Ψodd
resp(R, ϕ, z, m) = −4G cos(mϕ)

∫ ∞

0

∫ ∞

−∞

ρr(R
′, z′)R′dR′dz′

√

(R + R′)2 + (z′ − z)2
[2Eod(m, k) − K(k)] (16)

where

Eod(m,k) =

∫ π/2

0

sin2(mβ)
√

1 − k2sin2(β)
dβ (17a)
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and K(k) is the complete elliptical integral of first kind and k is as defined below

k2 =
4RR′

(R + R′)2 + (z′ − z)2 + zs
2

(17b)

In the above equation, zs is the small softening parameter added to make the response potential regular at r = r′.

Similarly for even-m (i.e.,m = 2, 4, 6, 8....) perturbation the response potential takes the form

Ψeven
resp (R,ϕ, z, m) = −4G cos(mϕ)

∫ ∞

0

∫ ∞

−∞

ρr(R
′, z′)R′dR′dz′

√

(R + R′)2 + (z′ − z)2
[2Eev(m, k) − K(k)] (18)

where

Eev(m, k) =

∫ π/2

0

cos2(mβ)
√

1 − k2sin2(β)
dβ (19)

Now substituting ρr(R, z) into eq.(16) and eq.(18) we obtain

Ψodd
resp(R,ϕ, z, m) = −4G cos(mϕ)

∫ ∞

0

H(R′)

z◦
Zod

exp(R,R′, z, m)R′dR′ (20a)

where

Zod
exp(R,R′, z, m) =

∫ ∞

−∞

[ρd(R
′, z′) + ζh(R′, z′)]

√

(R + R′)2 + (z′ − z)2
[2Eod(m,k) − K(k)] dz′ (20b)

and

Ψeven
resp (R, ϕ, z, m) = −4G cos(mϕ)

∫ ∞

0

H(R′)

z◦
Zev

exp(R, R′, z, m)R′dR′ (21a)

where

Zev
exp(R,R′, z, m) =

∫ ∞

−∞

[ρd(R′, z′) + ζh(R′, z′)]
√

(R + R′)2 + (z′ − z)2
[2Eev(m,k) − K(k)] dz′ (21b)

Using eq.(9) and the definition of the perturbing potential we have

H(R′) = Ψp◦(R
′)h(R′) (22a)

where

h(R′) =
sin i

[

ν2
◦(R′) − Ω2

◦(R′)
]

D
(22b)

We assume that Ψp◦(R
′) is a very slowly varying function or even a constant (in agreement with the assumptions in sec 2.)

over the disc size and has a small magnitude compared to the background, this is justified since the perturber is typically

much more distant than the size of the disc. Thus we can take this term out of the integration in eqs.(20a) and (21a). Then

the response potential in the disc midplane(z = 0) is given by

Ψodd
resp(R,ϕ, z = 0, m) = −4Gρd0 cos(mϕ)Ψp◦(R)

∫ ∞

0

e−R′/Rd
h(R′)

z◦
Zod

exp(R, R′, 0, m)R′dR′ (23a)

and

Ψeven
resp (R, ϕ, z = 0, m) = −4Gρd0 cos(mϕ)Ψp◦(R)

∫ ∞

0

e−R′/Rd
h(R′)

z◦
Zev

exp(R, R′, 0, m)R′dR′ (23b)

Note that the only significant contributions from the dark matter halo to the response potential come through the function

h(R) since at the z = 0 plane ζh(R′, z′) part being an odd function of z′ contributes zero to the Z-integrals.

Substituting the perturbing potential at the z = 0 plane into eqs. (23a) and (23b), we can write the response potential for

the odd-m and even-m perturbations as:

Ψodd
resp(R, ϕ, z = 0, m) = Rodd

m (R)Ψ1(R,ϕ, z = 0) (24)

And

Ψeven
resp (R, ϕ, z = 0, m) = Reven

m (R)Ψ1(R, ϕ, z = 0) (25)

where

Rodd
m (R) = −4Gρd0

∫ ∞

0

e−R′/Rd
h(R′)

z◦
Zod

exp(R, R′, 0, m)R′dR′ (26)
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Reven
m (R) = −4Gρd0

∫ ∞

0

e−R′/Rd
h(R′)

z◦
Zev

exp(R, R′, 0, m)R′dR′ (27)

The above eqs.(26) and (27) define the dimensionless response potential of the disc for odd m and for even m perturbations

respectively.

The numerical values of the functions Zexp(R, R′, 0, m) are positive for both odd and even m perturbations since at the

midplane the dominant contribution from the function [2E(m,k) − K(k)] ( for both even and odd cases ) comes when R = R′

and z′ = 0 i.e. k ∼ 1. The function h(R) is positive in an oblate dark matter halo (since ν2
◦ > Ω2

◦), whereas it is negative

when the dark matter halo is prolate (since ν2
◦ < Ω2

◦) and the disc self-gravity is negligible. Hence the response function in

eqs.(26) and (27) has a negative definite sign for the disc-alone system and also for a system consisting of a disc and an oblate

dark matter halo. In contrast, this can have a positive sign for the case of a disc plus a massive prolate dark matter halo.

The studies of galactic structure and dynamics in the literature normally assume a spherical halo or an oblate dark matter

halo, hence we have performed all our calculations for a nearly spherical halo i.e. with a very small obtaleness as a convenient

choice.

Thus the dimensionless response potential has a sign opposite to the perturbation potential (eq.[4b]) in the commonly used

two cases of disc alone or a disc plus an oblate halo systems. In the linear regime studied here the magnitude of the response

potential is proportional to the strength of the perturbation potential. So the resulting disc response potential becomes weaker

when the perturber is far away from the disc.

A similar negative disc response in the planar case for a self-gravitating disc was earlier studied in detail by Jog (1999) to

explain the radius beyond which lopsidedness is seen in spiral galaxies. In that problem, the disc response to a distorted halo

was calculated. We can clearly see that the negative disc response is a general phenomenon valid for any self-gravitating disc

subjected to an external perturbation.

Note another striking feature that the vertical disc response studied here is independent of the central density ρd0 of the

galaxy for a ’disc alone’ system and is weakly dependent on the central density ρc = ρd0 + ρh0 for a ’disc plus dark matter

halo’ system. This becomes clear from a close examination of eqs.([26],[27]) and eq.(22b) as h(R) is inversely proportional to

ρd0 in the first case, and it depends on ρh0/ρd0 (which is a small number in general) in the second case. So the behaviour

of the disc linear response along the galactocentric distance depends mainly on the three dimensional mass-distribution and

depends only weakly on the central brightness of the galaxy. Thus the results obtained below are general and are valid for

both normal as well as the low surface brightness galaxies.

2.2 Self-consistent treatment:

In obtaining the disc response potential (see sec.2.1.2) we have ignored the self-gravity of the perturbation itself i.e. the disc

response potential was calculated due to the imposed potential alone. Obviously the stars in the disc will be affected by

both the externally imposed potential and the potential arising due to the disc response to it. So from the requirement of

self-consistency the total potential (Ψt) that would be experienced by the disc can be written, following Jog (1999), as:

Ψt = Ψ1 + Ψ′
resp (28)

where Ψ′
resp is the self-gravitating potential corresponding to the net self-consistent change in the disc density (ρ′) which is

obtained as a response to the total potential Ψt. Following the argument given by Jog (1999), we can write the total potential

experienced by the disc in the presence of an external, linear perturbation as

Ψt = χmΨ1 (29)

where

χm =
1

1 + |Rm(R)|
(30)

χm(6 1) is called the reduction factor or the susceptibility of the disc in a zero-forcing frequency field. It tells us how the

magnitude of the perturbing potential is reduced due to the self-consistent negative disc response. Since |Rm(R)| is a positive

definite quantity, the magnitude of the total perturbed potential in the disc plane is always less than that of the external

perturbing potential. In the limiting case of |Rm(R)| = 0 implying χm = 1 corresponds to no reduction effect i.e. the disc self

gravity plays no role and hence the disc can be taken to be directly exposed to the externally imposed potential.
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3 RESULTS:

We study the radial behaviour of different Fourier components (m) of the response potential and investigate its implications

for astronomical observations. The basic idea is to find whether there is a pronounced minimum in the response potential and

to see if the position of this minimum which we call Rmin occurs within the typical size of the galatic disc. The net vertical

distortion will be seen beyond this radius as argued next.

The net perturbed motion is set by the total potential Ψt (eq.[29]) and will decide where a warp is seen. This net

perturbed motion is described by eqs.(8) and (9) except that here the perturbation potential Ψ1 is replaced by the total

potential Ψt = χm Ψ1 which takes account of the self-consistent response of the disc. Note that the term 1/[ν2
◦ − Ω2

◦] in

equation (9) increases monotonically with radius for any realistic disc galaxy, while χm has a minimum at Rmin. Hence the

product of these two terms has a minimum close to Rmin. Thus the net perturbed motion and hence warp (for m = 1) and

scalloping (for m = 10) will only be seen beyond Rmin for m = 1 and 10 respectively. Therefore, although the response

potential and the reduction factor rise on both sides of the minimum (Figs. 1 and 2), the warps will be seen only in the outer

parts. This is particularly true in a realistic tidal encounter where the magnitude of the perturbation potential Ψpo will be

higher at larger radii whereas here for simplicity we have assumed this to be nearly constant across the disc, see the discussion

following eq.(22b).

This has observational relevance if Rmin occurs within the typical size of a galactic disc as mentioned above. While the

optical or stellar disc in a galaxy was long believed to have a sharp outer truncation at 4.5-5 exponential disc scalelengths

(van der Kruit & Searle 1981), it has been argued recently on general grounds that the disc can extend beyond this (Narayan

& Jog 2003), thus the size of the disc can be larger. In fact, the stellar disc in some galaxies such as NGC 2403 and M33

(Davidge 2003), NGC 300 (Bland-Hawthorn et al. 2005) and M 31 (Ibata et al. 2005), is observed to extend to even 8 or

larger disc scalelengths. Thus we are justified in analysing the vertical perturbations to stellar discs upto these radii (Section

3.1).

3.1 m = 1 component

The perturbing potential with an m = 1 component (as in eq.[4b]), generates the well-known integral-sign warp in a galactic

disc. However, so far the physical reason as to where this warp starts in the disc is not understood (Section 1). We try to

answer below this question by studying the disc response to the m = 1 component of the tidal perturbation.

3.1.1 Radius for onset of warps

The dimensionless response potential (eq.[26]) depends mainly on the ratio of the scale-height to the scale-length z◦/Rd -

which we define to be the thickness parameter of the disc. This is an important parameter because it provides the information

regarding the three-dimensional structure of the disc. A higher value of the thickness parameter indicates a thicker disc, and

conversely it is smaller for a thinner disc. It has a weak dependence on the central density of the galaxy in general and in

particular for a ’disc-alone’ system it is independent of the central density (see Section 2.1). For the sake of simplicity we first

treat a constant value of the thickness parameter across the disc.

In Fig.(1), R1(R), the response function for the m = 1 component is plotted as a function of radius for a constant value

of z◦/Rd = 0.2 for the disc-alone case and for a disc plus an oblate dark matter halo. The minimum of this response lies

within the extent of the optical exponential disc: Rmin = 5.6Rd for a disc-alone system, while Rmin = 5.1Rd for the disc plus

an oblate-halo system, with halo parameters Rc = 1.7Rd, ρh0 = 0.025 (in units of Md/R3
d) and q = 0.95. Thus the inclusion

of a rigid halo has a marginal effect on the resulting value of Rmin, the reason for this is discussed later in this section. Note

that these halo parameters are chosen so that they match closely the halo mass model of our Galaxy (see Mera et.al. 1998)

and the halo mass, Mh, is ∼ 7Md, the disc mass, for these parameters within the total extent of the disc studied (6 10Rd).

In Fig. 2 we plot the reduction factor χ1 versus radius, which also shows a minimum close to Rmin. As discussed above,

beyond this radius, the magnitude of the negative disc response decreases, and hence the net disc response increases. Thus

the self-gravity of the disc resists a vertical distortion of type m = 1 in the inner regions and a net warp is only seen beyond

the above Rmin, which is ∼ 5.1Rd for the disc plus oblate-halo case. We note that this lies in the range where warps are seen

in galaxies (Briggs 1990).

Varitation with thickness parameter, z0/Rd:

We have scanned a possible range of the ratio z◦/Rd from 0.05 to 0.5 in case of disc plus an oblate-halo for Mh ∼ 7Md and

in all these cases Rmin lies within 4Rd to 6Rd, see Table 1 below for details. Thus we show that the warps will be seen beyond

a radius in the range of 4-6 Rd, which agrees well with the observed radial range for the onset of warps (Briggs 1990). This

shows that in a normal galaxy disc if warps are generated solely due to the tidal perturbation they are likely to start between

4 − 6Rd.
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Table 1. Rmin/Rd for m = 1 mode vs. Thickness parameter (z◦/Rd)

(z◦/Rd) 0.05 0.1 0.2 0.3 0.4 0.5

Rmin/Rd 5.9 5.6 5.1 4.7 4.4 4.2

Further note that that as the thickness parameter, z◦/Rd, increases, the resulting Rmin for the response lies farther in,

in the inner region of the disc. The reason for this is that the self-gravity of the disc reduces as the disc becomes puffed up in

the vertical direction, hence the net disc distortion can be seen from an earlier radius. This brings out clearly why thin discs

have a better resistive power against an external perturbation than the thicker discs.

This physical point has the following implication: if a disc is already heated say due to internal sources such as clouds

or spiral arms as in late-type galaxies, then any perturbation of the type considered here (namely the m = 1 case) is more

likely to disturb it into a warp. Thus a thicker disc is more likely to show warping. This could also be the reason why a larger

fraction of galaxies at high redshift are observed to be warped (Reshetnikov et.al. 2002), both because tidal interactions are

more likely at high redshift, and these can also heat up a disc, and also because galaxies at high redshift are more gas-rich

which can heat up the discs internally.

3.1.2 Implications and Discussion:

Weak Dependence on the halo mass:

Figs. 1 and 2 show that the minima in these and hence the radius for the onset of warps is only marginally affected (∼ 10%)

on inclusion of a rigid dark matter halo. This may seem surprising since the halo is known to be dominant in the outer parts.

However, there are two reasons for this: first, the disc mass and the halo mass are still comparable to within a factor of few

upto the region of interest, namely around Rmin. Second and more important reason is that the halo density distribution is

an even function of z and hence on including the halo, the only change in the disc response function occurs due to the effect

on H(R) in eq.[22] (see Section 2.1.2 for details). This weak dependence on the halo mass is highlighted in the next figure.

In Figure 3 we plot the location of the minimum of the response potential, Rmin, for m = 1 vs. Mh/Md, the ratio of

dark matter halo-to-disc mass (where the ratio is obtained for the mass within the size of the disc considered, namely 10 Rd).

The most striking result from this figure is that Rmin has a weak dependence on the halo-to-disc mass ratio. The value of

Rmin decreases as the halo becomes more and more massive compared to the disc mass. This is because in the presence of a

massive halo and hence a higher restroring force, the outer parts of the disc rises gradually as compared to the case of disc

alone system where the disc edge bends sharply. We find that Rmin for the onset of warps is smaller when the disc edge bends

more gradually (Fig. 1). This particular result explains well the observational point made by Sanchez-Saavedra et al. (2003)

that the farther away the warp stars, the steeper it rises.

So far we have considered the halo to be rigid. An inclusion of a live halo as in a realistic galaxy is much harder to treat

without N-body simulations. A live halo would respond to both the direct tidal potential and the perturbed disc configuration.

The halo response to the tidal field is shown to magnify the tidal field as seen by the disc and this in turn can increase the

amplitude of warp(m=1)(see Weinberg 1995). So if the live halo forces the disc edge to bend more sharply then we would

expect to see an outward-shift in Rmin. However, in view of the above discussion on Rmin vs halo mass, we suspect that the

location of Rmin will not be strongly affected in the presence of a live dark matter halo in our problem.

Effect of increasing scale-height, and planar random motion on Rmin:

The above calculation assumes a constant disc thickness with radius. In a realistic galaxy, the stellar scale-height flares

moderately within the optical radius (de Grijs & Peletier 1997, Narayan & Jog 2002). For such a disc where the scale-height

or the thickness parameter increases with radius, we find that the resulting values of Rmin lie slightly within 4 disc scale-

lengths. Inclusion of significant planar random motions (which is important for the stellar disc component) in the disc can

also shift the Rmin values in the inward direction. This can be understood from the fact that the planar random motions

make the disc stiffer and warp the disc through smaller angles, that is the disc edge bends more gradually, as was shown by

Debattista & Sellwood (1999).

These can together explain why many discs show stellar warps (e.g. Reshetnikov & Combes 1998), which therefore must

start within the optical radius.

Comparison with Radius of onset for planar lopsidedness:

A thin disc has a stronger self-gravitational force in the vertical direction than in the plane, which explains why the radial

distance of 4-6 Rd upto which a disc is able to resist the vertical distortion for the m = 1 mode as we have found here, is

larger than the disc resistance upto ∼ 2Rd to the m = 1 mode in the plane (Jog 2000). Thus the idea of negative disc response

explains naturally why discs are susceptible to onset of planar lopsidedness from smaller radii as observed (Rix & Zaritsky

1995, Bournaud et al. 2005) while they are able to resist warps till a larger radius (Briggs 1990).
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3.2 Higher m components

Perturbations with higher-order azimuthal wavenumbers (m > 1) are of particular interest because they may be responsible

for producing the corrugations generally seen in the outer region of disc galaxies (Florido et al. 1991). For example for the

m = 4 component, we find that the minimum of the response potential is at Rmin = 6.5Rd .

The HI gas in the outermost parts of Milky Way shows a remarkable scalloping with a high azimuthal wavenumber m ∼ 10

(Kulkarni et al. 1982). This interesting feature of the Galactic disc provided us the motivation for studying the response to

an m = 10 component of the perturbation. The gas surface density is larger than the stellar surface density by about 18 kpc

or six disc scalelengths (Narayan et al. 2005), hence the dominant mass component of the disc is HI gas. The treatment for a

self-consistent disc response derived in this paper is therefore directly applicable to the gas disc at large radii. For the m = 10

case, the minimum of the response potential, Rmin, occurs at 8.1Rd for a disc-alone case, and at 7.1Rd for the case of a disc

plus an oblate dark matter halo as shown in Fig.4. The dark matter halo parameters used are the same as for Fig.(1).

It is interesting to see that the strength of the dimensionless disc response potential at Rmin in this case is about 10 times

less than that of the m = 1 component. But despite its small magnitude, the signature of this higher order perturbation can

be clearly seen through the corrugations produced in the midplane density in the outermost part of the disc. In Fig.5 we have

shown the resulting isodensity contours of the midplane density perturbed by the m = 10 Fourier component of the external

perturbation. The contours show a clear deviation from the exponential disc embedded in a screened isothermal dark matter

halo beyond 7 disc scale lengths, and the deviation is strong by 10 disc scale-lengths or 30 kpc ( assuming Rd ∼ 3 kpc ). This

behaviour is in a good agreement with the scalloping with m = 10 observed in the outermost regions of HI distribution in the

Galaxy (Kulkarni et al. 1982).

4 CONCLUSIONS

This paper shows that the self gravity of the disc resists any vertical distortion in a galactic disc embedded in a dark matter

halo. The main results obtained are as follows:

1. We calculate the self-gravitational potential corresponding to a non-axisymmetric, self-consistent density response of the

disc, and show that it opposes the perturbation, and this resistence is stronger in the inner parts of a galactic disc. Thus,

the net vertical distortion in the disc is only seen in the outer regions. For example, for the m = 1 azimuthal wavenumber,

the disc response opposes the imposed perturbation upto ∼ 4-6 disc scale-lengths, so that the disc shows a net warp only

beyond this region. This physically explains the well-known observation that the onset of warps is typically observed beyond

this range of radii (Briggs 1990).

2. The net effect of vertical perturbations with higher azimuthal wavenumbers is seen at higher radii. For example, for m = 10,

the net effect on the disc can only be seen beyond 7 exponential disc scale-lengths and the effect is prominent by 10 disc

scalelengths or 30 kpc. The resulting corrugations of the mid-plane density explains the long-known puzzle of scalloping

detected in HI at these radii in our Galaxy by Kulkarni et al. (1982).

3. The disc self-gravitational force is stronger along the vertical direction than in the plane. Hence the idea of negative disc

repsonse due to the disc self-gravity studied here, and earlier for the planar case (Jog 1999, 2000), naturally explains why discs

can resist vertical distortions till a larger radius than the planar ones. This explains why galaxies show net planar lopsidedness

from smaller radii (Rix & Zaritsky 1995) compared to the larger radii beyond which warps are seen (Briggs 1990).

4. This paper, plus the earlier work for the planar disc response (Jog 1999, Jog 2000), shows that the inner regions of discs

are robust and able to resist a distortion as say induced by tidal interactions. This is a general result and is valid for any

disc or a disc plus halo system subjected to an external perturbing potential. This result could be important in the gradual

build-up of galactic discs now being studied in cosmological scenarios.
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Figure 1. Dimensionless response potential, R1 for the m = 1 Fourier component of the external perturbation for a constant thickness
disc. The scale-height to scale-length ratio i.e. z◦/Rd is taken to be 0.2. This figure shows that Rmin occurs at 5.6Rd for the disc-alone
system and at 5.1Rd for the disc plus halo system.

Figure 2. Reduction factor χ1 for the m = 1 component of the perturbation potential due to the negative disc response for z◦/Rd = 0.2.
The minimum of the reducton factor occurs at a radius Rmin = 5.6Rd for the disc-alone sysem and at 5.1Rd for the disc plus halo

system. Beyond Rmin, the reduction factor increases steadily.
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Figure 3. Rmin for the reponse potential of m = 1 vs. the ratio of the dark matter halo to disc mass, considered within the radius of
10Rd. The figure shows that the Rmin has a weak dependence onMh/Md, the halo-to-disc mass ratio.

Figure 4. Reduction factor χ10 for m = 10 Fourier component of the external perturbation, calculated for z◦/Rd = 0.2. Rmin of the
response is located at 7.1Rd and 8.1Rd for a disc plus halo system and a disc-alone system respectively. The reduction factor increases
sharply beyond these radii. Note that the reduction due to the negative disc response is very small in magnitude compared to that for
the m = 1 case.
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Figure 5. Contour diagrams for the disc mid-plane density perturbed by the m = 10 Fourier component of the perturbation in the
(R, ϕ) plane. The mass of the perturber is taken to be 10% of the disc mass and at a distance ∼ 36 kpc (for Rd ∼ 3 kpc) from the disc
centre. Contour levels are ρc×(0.408, 0.272, 0.181, 0.12, 0.08, ...); where ρc is the total central mid-plane density of the galaxy in M⊙pc−3.
Contours after 7 disc scale-length deviate clearly from the unperturbed midplane mass distribution and the deviation is stronger by ∼

10 disc scale-lengths or 30 kpc, showing the signature of scalloping.
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