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We discuss present predictions for the total γγ and γp cross-sections, highlighting why predictions differ. We

present results from the Eikonal Minijet Model and improved predictions based on soft gluon resummation.

1. Present predictions for γγ → hadrons

Present predictions of γγ → hadrons at ener-
gies covered by the Linear Collider differ by large
factors[1], as we show in Fig.1. At

√
s = 500 GeV

different models can predict values which differ by
a factor 3, and the differences widen as the energy
increase. We plan, in the following, to discuss a
work program to reach stable predictions, based
on a QCD description of the decrease and the rise
of total cross-sections through Soft Gluon Sum-
mation (Bloch-Nordsieck Model) and Mini-jets.
There are different reasons why predictions dif-
fer so widely one from the other, some of which
are related to the fact that there is no calculation
to obtain quantitative descriptions of total cross-
sections from first principles. This would not nec-
essarily be a deterrent from making correct pre-
dictions, as the pp/pp̄ case shows. In Fig. 2 we
show present data and some model predictions
for the proton case. Another important reason for
the variety of predictions is that all models for γγ
apply some degree of extrapolation from γp and
pp/pp̄ data. Since, for both photon and proton
processes, there are still differences among data at
high energy (although within one or two standard
deviations at most) this ends up doubling the er-
rors in the extrapolation to γγ. The present range
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Figure 1. Predictions for γγ → hadrons from var-
ious models, Aspen [2], SaS[3], BSW[4], GLMN
[5], BKKS [6], EMM [7,8] and Cudell et al. [9].

of variability of the high energy data for the pho-
toproduction cross-section is highlighted in Fig.
3, where present data are shown together with
the predictions from the Eikonal Minijet Model
(EMM)[8].

As for γγ, it should also be pointed out that
at low energies old γγ data have large errors and
even LEP data [17] may have a 10% normaliza-
tion error. Finally, γγ data do not reach a high
enough energy to pinpoint how the cross-section
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Figure 2. Total proton proton and proton-
antiproton cros-section as described by the Aspen
model [2](labelled BHGP), and a QCD mini-jet
model which includes soft gluon effects[10]. Teva-
tron data come from E710[11], E811[12] and CDF
[13] experiments.

rises (unlike the pp/pp̄ case). These reasons make
widely varying predictions for γγ → hadrons.

2. Which predictions to trust

We can distinguish between various models by
grouping them as those for which the photon is
treated like a proton vs. the QCD models. To
the first group there belong also models based on
Gribov factorization

σγγ =
σ2

γp

σpp/p̄
(1)

for which σγγ(
√

s = 1 TeV ) = 500 ÷ 700 nb.The
QCD based models include the Eikonal Minijet
Model (EMM) for which σγγ(

√
s = 1 TeV ) =

1000 ÷ 1500 nb. We show in Fig. 4 two differ-
ent predictions from the EMM, which will be dis-
cussed shortly.

3. QCD vs. stable predictions

A work program to reach stable predictions will
be based on treating the photon at low energy like
a proton, while distinguishing it from the proton

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 10
2

√s ( GeV )

σ to
t

γp
(m

b)

ZEUS BPC 95

Photoproduction data before HERA

ZEUS 96 Preliminary

H1 94

ZEUS 92 and 94

EMM

 GRS(top line) k0=0.4 GeV  ptmin=1.5 GeV A=0

 GRV(lower) k0=0.66 GeV ptmin=2.0 GeV A non 0

 GRS(center) k0=0.66 GeV  ptmin=1.5 GeV A=0

Aspen Model

Figure 3. Data for total γp → hadrons and pre-
dictions from the Aspen[2] and EMM[7,8] model.
HERA data are from ZEUS [14], H1 [15] and a
set of data extrapolated from Q2 6= 0 from the
ZEUS BPC [16].

at high energy where QCD processes and parton
densities may be different for protons and pho-
tons. At the same time it will be important to at-
tempt a unified description for all three processes.
The basic expression for the total hadronic cross-
section, to be used throughout this paper, will be
based on the eikonal approximation, namely

σγh
tot = 2P γh

had

∫

d2~b[1 − e−χI(b,s) cosχR(b, s)] (2)

where P γh
had is a phenomenological parameter in-

troduced to describe the probability that a pho-
ton behaves like a hadron. Its value can be fixed
from Quark Counting rules and Vector Meson
Dominance, to be P γp

had =
∑

(4πα/f2
V ), V =

ρ, ω, φ. For γγ processes Eq. 2 holds with
P γγ

had = [P γp
had]

2. Eq. 2 is also used for purely

hadronic processes, in which case P γh
had = 1. We

set χR(b, s) = 0 and from the expression for the
inelastic cross-section, i.e.

σγh
inel = P γh

had

∫

d2~b[1 − e−2χI(b,s)] (3)

we identify 2χI(b, s) with the average number
n(b, s) of inelastic collisions taking place for any
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Figure 4. Data for γγ → hadrons and fits using
the EMM, with and without soft gluon resuma-
tion.

given value of the impact parameter b, at energy√
s of the colliding hadrons. In the figures to fol-

low, for all the curves with Bloch-Nordsieck re-
summation, for γp we have chosen the soft part
of n(b, s) as coming only from proton proton, as
this seems to give the best description for the soft
part, whereas for γγ we have chosen the average
between pp and pp̄. Then, for γγ

n(b, s) = nγγ
soft+ABN (b, s, ptmin)σ̃γγ

jets(s, ptmin)(4)

with σ̃γγ
jets(s, ptmin) = σγγ

jets(s, ptmin)/P γγ
had. Re-

summation of soft gluons takes place through
the Fourier transform of the exponentiated soft
gluon transverse momentum distribution in b
space, obtained using the Bloch-Nordsieck (BN)
method[10], e−h(b,s,ptmin), with

h(b, s, ptmin) =

∫ kmax

kmin

d3n̄gluons(k) [1 − eikt·b](5)

In the BN model, the impact parameter space
distribution appearing in the eikonal formalism is
then identified with

ABN (b, s, ptmin) =
e−h(b,s,ptmin)

∫

d2~b e−h(b,s,ptmin)
(6)

In our work program, we first obtain a good de-
scription of proton data[18]. This allows to fix

the soft eikonal to be used together with QCD
minijets and resummation for protons. We then
try to get a good description of γp using the soft
eikonal, and, subsequently, fix the jet parameters,
ptmin and densities, to be used with photons.

4. Bloch-Nordsieck resummation

Resummation and its embodyment in the
EMM constitute a very challenging task : this in-
volves calculating the function h(b, s, ptmin), i.e.
fix kmin and kmax for each parton parton scatter-
ing. In our presently simplified approach, we shall
average the function ABN (b, s, ptmin), and hence
kmax, over densities and parton cross-sections,
obtaining for kmax a rising function of the energy√

s, as discussed in the next section. A second
crucial point of the BN approach, comes in setting
kmin = 0. This requires the knowledge of αs(kt)
as kt → 0[19]. We use here the model in [20],
with an α̃s singular but integrable as discussed in
[19], and such that for k⊥ ≫ ΛQCD α̃s → αAF

s ,
while for k⊥ ≪ ΛQCD α̃s → (k2

⊥)−p. Notice
that if p is smaller than 1 the integral in the func-
tion h(b, s, ptmin) can be done.

5. Energy dependence in impact parame-

ter b

To leading order in αs the energy dependence
which ultimately will soften the rise due to mini-
jets, comes from the maximum transverse mo-
mentum allowed to a single gluon emitted by the
most energetic partons at the beginning of the
QCD cascade, valence quarks for the proton, all
type of quarks for the photon. The kinematics
for the emission [21] gives

kmax(ŝ) =

√
ŝ

2
(1 − ŝjet

ŝ
) (7)

with integration to be done over ŝ, the energy of
the initial parton-parton subprocess and the jet-
jet invariant mass

√

ŝjet. Averaging over densi-
ties

< kmax(s) >=
√

s
2 ·

·
∑

i, j
∫

dx1
√

x1
fi/a(x1)

∫

dx2
√

x2
fj/b(x2)

∫

dz(1−z)
∑

i,j

∫

dx1

x1
fi/a(x1)

∫

dx2

x2
fj/b(x2)

∫

(dz)
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with the lower limit of integration in the variable
z given by zmin = 4p2

tmin/(sx1x2).

6. Soft Gluon Emission and Energy De-

pendence

The Bloch Nordsieck model is like the EMM
model with σQCD

jet driving the rise. The Fourier
transform of soft gluon emission in kt space gives
the impact parameter space distribution of col-
liding partons. This introduces an energy de-
pendence in the b-distribution of partons in the
hadrons which depends on ptmin and the parton
densities. One achieves two main results, a soft-
ening effect, and a reduction of the dependence
from hard scattering parameters. The softening
effect happens because as

√
s increases, the phase

space available for soft gluon emission also in-
creases, and with it the transverse momentum of
the initial colliding pair due to soft gluon emis-
sion. This leads to more straggling of initial par-
tons and hence to a reduced probability for the
collision.

7. Bloch-Nordsieck Model for p−p and p−p̄

In the proton-proton and proton-antiproton fit
with the Bloch-Nordsieck (BN) model, for the av-
erage number of collisions, we now write

n(b, s) = σsoftA
soft
BN + σjetA

jet
BN (8)

where Asoft
BN (b, s) is obtained using the BN ansätz,

with a kmax which becomes constant after a slight
initial rise. Soft gluon emission has now a twofold
effect as the energy increases: with σsoft con-
stant or decreasing (as from Regge exchange)

σsoftA
soft
BN will decrease, whereas, with σjet in-

creasing rapidly, σjetA
jet
BN will still increase but

not as much as without soft gluons. A good de-
scription is obtained with a soft part given by

σpp
soft = σ0 = 48mb (9)

and

σpp̄
soft = σ0(1 +

2√
s
) (10)

We show our present description [18] of pp and
pp̄ data in Fig. 5.
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Figure 5. Total proton-proton and proton-
antiproton cross-section as described by the EMM
with soft gluon emission both in the hard and soft
region.

8. The case for γp and γγ

With the previously described expressions, we
now turn to γp, using nγp

soft(b, s) = 2
3npp

soft. We
obtain various fits, depending upon the densities
being used for the photon, and the results are
shown in Figs. 6,7,8, for each set of densities and
various values of ptmin. The present update for
γγ is done using the soft part of the eikonal n(b, s)
from the average of the proton and the antipro-
ton fit, i.e. nγγ

soft(b, s) = 4
9 (npp

soft + npp̄
soft)/2, soft

resummation for hard scattering, and three types
of densities, GRV[22], GRS[23] and CJKL [24]. In
Fig. 9, we show a comparison between the pre-
dictions from the Aspen model, the EMM with-
out soft gluon emission, and two curves from the
EMM with inclusion of soft gluons and different
parton densities. We also indicate (stars) pseudo
data points to be measured at the future Linear
Collider. How predictions for γγ → hadrons de-
pend upon ptmin in the case of CJKL densities,
can be seen in Fig. 10. Similar results hold for
other densities.
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9. Conclusions

In this talk we have presented a comprehen-
sive description of proton and photon total cross-
sections, based on the use of the Eikonal represen-
tation and on the hypothesis that QCD jet cross-
sections drive the rise of all total cross-sections.
This Eikonal Minijet Model (EMM) is not fully
satisfactory, since the rise with energy thus pre-
dicted is either too fast or too slow, depending
on the parameters. It is shown that inclusion of
soft gluon emission from initial state partons can
give a much more realistic description in all cases,
pp, pp̄, γp and γγ. Different models are also dis-
cussed and compared with the data and with the
EMM.
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