
t

PHYSICAL REVIEW E 66, 056104 ~2002!
Aggregate formation in a system of coagulating and fragmenting particles with mass-dependen
diffusion rates
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The effect of introducing a mass-dependent diffusion rate;m2a in a model of coagulation with single-
particle breakup is studied both analytically and numerically. The model witha50 is known to undergo a
nonequilibrium phase transition as the mass density in the system is varied from a phase with an exponential
distribution of mass to a phase with a power-law distribution of masses in addition to a single infinite
aggregate. This transition is shown to be curbed, at finite densities, for alla.0 in any dimension. However,
a signature of this transition is seen in finite systems in the form of a large aggregate and the finite-size scaling
implications of this are characterized. The exponents characterizing the steady-state probability that a randomly
chosen site has massm are calculated using scaling arguments. The full probability distribution is obtained
within a mean-field approximation and found to compare well with the results from numerical simulations in
one dimension.
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I. INTRODUCTION

Systems far from equilibrium can undergo phase tran
tions between two types of steady states when the param
of the system are varied. It is important to ask about
sensitivity of such nonequilibrium phase transitions
changes in the governing dynamics. If the transition s
vives, is the universality class affected? If the transition
lost, does a signature of the lost phase remain in any fo

In this paper, we investigate these questions within a
tice model of coagulation and fragmentation in which t
diffusion constant for a massm varies asm2a with a.0.
For the case in which diffusion is independent of the m
(a50) and fragmentation involves only chipping off of un
masses, it is known that there is a phase transition fro
low-density phase with an exponential distribution of mas
to a high-density phase with a power-law distribution
masses in addition to an infinite aggregate with a mass
portional to the volumeV @1#. This transition is characterize
by a new universality class, different from familiar class
such as directed percolation or the parity-conserving c
@2#, wetting transitions, roughening transitions, or bounda
driven transitions@3#. We will show below that this high-
density phase is lost as soon asa is nonzero. Remarkably
though, an imprint of the infinite aggregate remains in
form of a large aggregate that strongly modifies the fin
size behavior of the system, and we characterize the sca
implications of this.

Let us summarize the results of earlier related work. E
hancement of aggregation moves with increasing mass,
responding to negative values ofa, was investigated earlie
in the context of coalescing branched polymers~for a recent
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review, see@4#!. For a521, using a Smoluchowski ap
proach it was shown that the system undergoes a gela
transition, i.e., an aggregate that contains a finite fraction
the total mass forms at finite time. The fragmentation mo
was shown to modify the mass distribution power-law exp
nent at the gelation transition@5#. An off-lattice version of
the a50 case was studied@6# using Smoluchowski rate
equations in the context of aggregation in dry environmen
In these studies@1,5,6#, the coagulating and fragmentin
masses represented polymers in a solution, undergoing p
merization and depolymerization. In a realistic situation,
may be expected that the diffusion of the polymers wo
depend on their masses. The effect of mass-dependent d
sion on the kinetics of irreversible homopolymerization h
been discussed in@7#. In the well-known models of polyme
motion such as the Rouse model or the Zimm model@8#, the
polymer diffusion constantD(m);m21 andm21/2, respec-
tively. This would correspond toa51 and 1/2 in our model.
This provides further motivation for studying the model wi
a mass-dependent diffusion rate.

Other modifications of the dynamics of thea50 model
that have been studied include changes of the fragmenta
rule, the introduction of a spatial bias in the dynamics, a
the effects of quenched disorder. Introduction of a ma
dependent fragmentation by allowing fractions of masse
break off~as opposed to single-particle breakup! was studied
in @9,10#. In this case, it could be inferred that the pha
transition is curbed in all dimensions. Spatial bias was int
duced by choosing rates such that masses have a pref
direction of motion, but with mass-independent hoppi
rates. In this case, it was shown that the phase transitio
curbed in one dimension@11#. In two and higher dimensions
it was shown that bias is irrelevant at least as far as
existence of a phase transition was concerned. Finally,
disordered model where fragmentation of masses could
©2002 The American Physical Society04-1
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cur only at fixed sites, it was shown that even in the limit
very low disorder, a new mechanism for the formation
localized infinite aggregates sets in@12#.

The remainder of the paper is organized as follows. S
tion II contains the definition of the model, a brief review
earlier results, and a summary of results obtained in
paper. Section III contains the analytical proof for the no
existence of a phase with an infinite aggregate at large d
sities for any nonzero value ofa. In Sec. IV, the exponents
associated with the probability distributionP(m) are deter-
mined using scaling arguments. Results of Monte Ca
simulations in one dimension are also presented. In Sec
the full distribution is obtained from a mean-field approx
mation and compared with theP(m) obtained from numeri-
cal simulations. The Appendix discusses different limiti
cases of the problem that are solvable exactly.

II. MODEL AND RESULTS

A. Model

The model is defined on ad-dimensional hypercubic lat
tice with periodic boundary conditions. Starting from a ra
dom distribution of non-negative integer masses at each
the system evolves in time via the following microscop
moves:~1! each massm hops with rateD(m)5m2a to one
of its nearest-neighbor sites chosen randomly,~2! with rate
w, unit mass breaks off from an already existing mass an
transferred to a randomly chosen neighboring site, and~3!
following moves~1! and ~2!, the mass at each site adds u
The mass densityr is a conserved quantity in the model.

In one dimension, this model can be mapped@1# onto
other well-studied models of nonequilibrium statistical m
chanics. By interpreting the masses as interparticle spac
the model is mapped onto a one-dimensional hard core
tice gas model with competing short- and long-range ho
Correspondingly, the problem may be mapped onto a flu
ating interface with competing short- and long-range mov
The limiting casew5` reduces to the well-studied simp
exclusion process@13# or equivalently to a fluctuating inter
face governed by the Edwards-Wilkinson equation@14#.

B. Previous results foraÄ0

The casea50 was studied by means of a mean-fie
approximation@1#, analytical calculations@15#, and numeri-
cal simulations in@1,15#. The results are summarized belo
The steady-state single-site mass distributionP(m) was
shown to undergo a phase transition in all dimensions. In
r-w plane, there is a critical linerc(w)5A11w21 that
separates two types of asymptotic behavior ofP(m). For
fixed w, asr is varied across the critical linerc(w), the large
m behavior ofP(m) was shown to be

P~m!;H e2m/m* , r,rc~w!,

m2t, r5rc ,

m2t1 infinite aggregate, r.rc~w!,

~1!

where by ‘‘infinite aggregate,’’ we mean a cluster that co
tains a finite fraction of the total mass in the system. Tha
05610
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the tail of the mass distribution changes from an exponen
decay to an algebraic one asr approachesrc from below. As
one increasesr beyondrc , the asymptotic algebraic part o
the critical distribution remains unchanged, but in additi
an infinite aggregate forms. All the additional mass in exc
of the critical mass condenses into this single cluster
does not disturb the background critical distribution. T
mathematical mechanism giving rise to the formation of
infinite aggregate at the onset of the phase transition
found to be very similar to that of the equilibrium Bos
Einstein condensation in an ideal Bose gas.

Finite-size effects in the aggregate phase were studie
@15#. For a system of sizeV, the probability distribution
P(m,V) for r>rc was assumed to have the scaling form

P~m,V!'
1

mt
f S m

VxD 1
1

V
d@m2~r2rc!V#, ~2!

where the exponentx is a crossover exponent, and thed
function indicates the aggregate part. The exponentsx andt
were shown to be related by the scaling relationx(t21)
51. The exponentt was shown to be 5/2 in the mean-fie
approximation@1,5,6#; further, numerical evidence was pre
sented@15# for the exponent being the same in all dime
sions.

C. Summary of new results in this paper

The principal results obtained in this paper are summ
rized below.

~i! It is shown analytically that there is no phase transiti
at finite density for anya.0 in any dimension.

~ii ! On an infinite lattice with fixed densityr, on assum-
ing a scaling form

P~m,r!5
1

mt8
f S m

rfD , ~3!

where f (y) falls exponentially asy→`, it is shown that the
two exponents are related to each other by the scaling r
tion

f~22t8!51. ~4!

The power-law exponentt8 is shown to be equal to

t85H 22
a

2
for 0,a<2,

1 for a.2,

~5!

in all dimensions. Equivalently,

f5H 2

a
for 0,a<2,

1 for a.2.

~6!

~iii ! In numerical simulations on a finite one-dimension
lattice, it is seen that an aggregate forms when the total m
4-2
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in the system is increased beyond a certain critical value.
analogy with thea50 case, we make the assumption th
P(m) has the scaling form

P~m,V!'
1

mt
gS m

VxD 1
1

V
d~m2M2Mc!, ~7!

whereMc is a V-dependent critical mass andM is the total
mass in the system. It is argued thatt85t with x being
related tot throughx(t21)51 as in thea50 case. The
critical mass is shown to scale with system size as

Mc;V2/(22a) for a,2, ~8!

implying that the critical densityrc5Mc /V diverges with
system size.

~iv! By means of a mean-field approximation, we obta
the full probability distributionP(m). The scaling form, Eq.
~3!, is seen to hold with the exponents as given in Eqs.~5!
and ~6!.

III. ARGUMENTS FOR NO PHASE TRANSITION
AT FINITE DENSITY FOR aÌ0

On a finite lattice, on increasing the total massM from
zero to large values, the following behavior is observed
numerical simulations. For small values ofM, P(m) is seen
to have an exponential tail for large mass~see Fig. 1!. As M
is increased to a critical valueMc , P(m) changes to a powe
law with a cut off at largem. As M is increased beyondMc ,
an aggregate forms that contains all the mass in exces
Mc . The rest of the distribution remains identical to the o

FIG. 1. The variation ofP(m) with m for a51.0 is shown for
four different values of densityr at fixed lattice sizeV. As the
density is increased,P(m) changes from an exponential distributio
to a power-law distribution. On increasingr further, the power-law
part remains unchanged while the mass in excess of a critical
sity rc condenses into an aggregate. The straight line has a po
21.5. The simulation results are for a one-dimensional lattice
size 100 andw50.1. In the inset, the variation of the power-la
cutoff with system size is shown. The simulation results are fo
one-dimensional lattice withr510.0 andw50.1.
05610
y
t

n

of
e

at Mc . The power-law part has a lattice-size-dependent c
off ~see the inset of Fig. 1!. All these observations are qual
tatively similar to thea50 case. A crucial difference is th
fact that the power-law exponent is seen to be less than
for a.0. This is a puzzle since a finite density would imp
that t.2. In this section, we prove that there is in fact n
transition at finite densities in the thermodynamic limit. T
transition seen in finite-size simulations is explained by
fact thatMc no longer scales asV ~as in thea50 case!, but
with a power ofV greater than unity.

We show that an aggregate withMc}V cannot be stable
at finite densities by assuming the presence of such an
gregate and showing that this leads to a contradiction. In S
III A, we study the mass profile as a function of distan
from the aggregate. Based on our observation that at
tances far from the aggregate the state of the system
sembles that at the transition point, we obtain exact relati
that the critical point should satisfy. In Sec. III B, we deriv
further exact relations by examining the two point corre
tions. In Sec. III C, we show that the relations obtained fro
Secs. III A and III B, when put together, imply that there c
be no phase transition at finite densities.

A. Reference frame fixed to the aggregate

In the aggregate phase of thea50 model, it is known that
there exists only one large aggregate@15# in steady state; if
there were more than one, they would collide and coale
into one. This scenario is verified as well in numerical sim
lations for arbitrarya ~the area under the aggregate part
the mass distribution being equal to 1/V). Further, in the
limit V→`, the aggregate becomes immobile fora.0 be-
cause its mass diverges with system size.

Consider a frame of reference that is attached to this
gregate. Letmx andsx denote the mass and occupation pro
ability at a sitex with respect to the aggregate. Then,
examining the inflow and outflow of mass at each site,
obtain

d^mx&
dt

52@wsx1^mx
12a&~12dx,0!#1

1

2d (
x8

~wsx8

1^mx8
12a&!, ~9!

with s051 and^my&5(m51P(m)my. In the steady state, th
time derivative is set to zero. Then, the solution of Eq.~9! is

^mx
12a&1wsx5w for xÞ0. ~10!

At distances far away from the aggregate, the state of
system resembles that at criticality. Taking the limituxu→`
in Eq. ~10!, we obtain

^m12a&c5w~12sc! for a.0. ~11!

This is a relation that the system should satisfy at the crit
point.

In the casea50, the aggregate is mobile. When the a
gregate hops, this corresponds to all the other particles

n-
er
f

a
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multaneously making a hop with respect to the aggregate
analysis, similar to the one carried out fora.0, yields

2rc5w~12sc! for a50. ~12!

The origin of the factor 2 may be traced to the fact that
aggregate is mobile.

B. Two-point correlations

In this section, we derive further exact relations that
system satisfies at the critical point by studying the two-po
correlations. The analysis is similar to the analysis done
the a50 case@15#. In the rest of the paper, we will work in
a coordinate system fixed to an arbitrary fixed site. To fix
notation,x8 will always denote one of the 2d nearest neigh-
bors ofx, while xo will denote a neighbor of the origin0. Let
h(x,x8,t) be the mass transferred from sitex to x8 at time t
in a time intervalDt. From the definition of the model, i
follows that

h~x,x8,t !55
mx with prob.

1

2d

Dt

mx
a

,

12dmx,0 with prob.
1

2d
wDt,

0 otherwise.

~13!

To orderDt, the only nonzero two point correlation in th
noise is

^h~x1 ,x18!2&5
Dt

2d
@mx1

22a1w~12dmx1
,0!#. ~14!

The massmx(t) at lattice sitex at time t evolves as

mx~ t1Dt !5mx~ t !2(
x8

h~x,x8,t !1(
x8

h~x8,x,t !.

~15!

To obtain the two-point correlations, we multiplymx(t
1Dt) by m0(t1Dt) and take averages over the possib
stochastic moves and then over the steady-state ensemb
states. Dropping all time derivatives and using Eqs.~13!,
~14!, and~15!, we obtain

Ca~x!2wD~x!2
1

2d (
x8

@Ca~x8!2wD~x8!#5@Ca~0!

1ws#S dx,02
1

2d (
xo

dx,xoD , ~16!

whereCa(x)5^mxm0
12a& andD(x)5^mxdm0,0&. The homo-

geneous part of Eq.~16! is the Laplace equation¹2@Ca(x)
2wD(x)#50. With the inhomogeneous part, the unique s
lution is

Ca~x!5w@D~x!2s# for xÞ0. ~17!
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Equation~17! is a relation between two-point correlations.
relation between one-point functions is obtained by summ
over all x, the simplifying factor being that total mass
conserved. Thus,

M ^m12a&2^m22a&5wM~12s!2wsV1ws. ~18!

This is an exact relation in all dimensions.
We are interested in the limit whenM ,V→` keeping the

densityr fixed. Taking this limit in Eq.~18!, we obtain

r^m12a&2
^m22a&

V
5wr~12s!2ws, V@1. ~19!

In the exponential phase,̂m22a& is finite and hence
^m22a&/V→0 asV→`. At the transition point and in the
aggregate phasêm22a& can at most diverge asV12a ~cf.
discussions in the later sections of this paper!. This implies
that ^m22a&/V→0 asV→` for all finite densities and any
a.0. Thus, another exact relation at the critical point
obtained:

rc^m
12a&c5wrc~12sc!2wsc . ~20!

C. Proof of no transition

We combine the results of Secs. III A and III B to sho
that there is no transition. The three quantities^m12a&c , rc ,
andsc have to simultaneously satisfy two relations: name
Eqs.~11! and~20!. For nonzero values ofa, this is possible
only when eitherw50 andrc50 or rc5`. Equations~11!
and ~20! cannot be satisfied at finite nonzero values ofrc .
This completes the proof that there is no transition fora
.0 at finite critical densityrc .

As a check of correctness,rc andsc can be calculated for
the a50 case from Eqs.~12! and ~20!. We obtainrc(w)
5A11w21 and sc5(w1222A11w)/w. Not surpris-
ingly, this is the result that had been obtained in@15# for the
a50 case.

The fact remains that a single large aggregate is see
simulations on a finite lattice when the mass is large eno
~see Fig. 1!. This observation would be consistent with th
above result that there is no transition, provided the criti
densityrc seen in simulations diverges withV as Vb with
b.0. We address this in the next section.

IV. SCALING FORMS FOR PROBABILITY DISTRIBUTION
P„m,r,V…

A. Large finite densities

In this subsection, we consider the case when the t
massM and the system sizeV are increased to infinity keep
ing the densityr5M /V fixed. In this case, the system
always in the exponential phase. We assume the follow
scaling form for the probability distribution:

lim
V→`

P~m,V,r!;
1

mt8
f aS m

rfD , ~21!
4-4
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wheret8 andf are two unknown exponents. Rigorous upp
and lower bounds can be placed ont8. Clearly, ^m&
5*dm mP(m,V,r) should diverge asr when r→`. But
the different moments ofm vary with r as

E dmmyP~m,r!5E dmmy2t8 f aS m

rfD ;rf(11y2t8).

~22!

This implies thatt8<2. Also, from Eq.~19!, ^m12a& is seen
to be finite for allr, in particular forr→`. This implies that
t8.22a. Also, from the requirement that probability dis
tribution sum up to 1,t8 necessarily has to be greater th
1. These bounds can be summarized as

max~22a,1!,t8<2. ~23!

The two exponentst8 and f can be expressed in terms
one another by an exponent equality. The average m
^m&5r. This implies that

f~22t8!51. ~24!

Thus, there is only one independent exponent.t8 is deter-
mined in Sec. IV B by studying the finite-size corrections
the probability distribution.

B. Aggregate formation on large finite lattices

For a system on a finite lattice, we see~Fig. 1! that when
the total mass is increased beyond a critical massMc(V), the
probability distribution has aV-dependent cutoff. Any addi
tional mass that is added aggregates together to form
massive aggregate. Using this information, we assume
following form for the probability distribution:

P~m,V!5
1

mt
gaS m

VxD 1
1

V
d„m2~M2Mc!…, ~25!

whereM is the total mass in the system. The two expone
t andx can be expressed in terms of the two other expone
t8 and f. We then determinet by scaling arguments, thu
solving for all the exponents.

In @15#, it was shown thatt and x are related by the
scaling relation

x~t21!51. ~26!

The derivation of this result was based on the fact that
number of aggregates is of order unity. The arguments c
forward to the generala case without any modification. W
now argue thatt85t from Eqs.~21! and ~25!. The system
feels the presence of the finite size when the dens
dependent cutoff in Eq.~21! becomes of the same order
the lattice-size-dependent cutoff in Eq.~25!—that is, when
rc

f;Vx or rc;Vx/f. But rc is the mean value of the mass
the power-law part and from Eq.~25!, rc;Vx(22t). Thus,

x~22t!5
x

f
. ~27!
05610
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Substituting forf in terms oft8 @see Eq.~24!#, we obtain

t85t. ~28!

That leaves only one undetermined exponent in terms
which all the other exponents can be expressed.

To determine this exponent, we start with Eq.~18! at the
transition point, namely,

Mc^m
12a&c2^m22a&c5wMc~12sc!2wscV1wsc .

~29!

Unlike the scalingM /V5r that we used in deriving Eq.~19!
from Eq.~18!, we now assume thatMc scales as some powe
of V, namely,Mc;Vb11, with b.0. From Eq.~25!, we
obtain

b5x~22t!. ~30!

First, by substituting Eq.~25! in Eq. ~18!, it is easy to derive
that, to leading order inV, ^m12a&c5w(12sc). Now, to
satisfy Eq.~29!, there are two cases we have to consider:~A!
^m22a&c;V or ~B! ^m22a&c;const and ^m12a&c5w(1
2sc)2wscV

2b1••• . Case~A! requires thatx(32a2t)
51, which when simplified implies thatt522a/2. Case
~B! requires thatx(32a2t),0 and x(22a2t)<2b
which implies thatt.32a and t>22a/2. For a<1,
these bounds are in contradiction with the rigorous boun
Eq. ~23!. Thus for 0,a,1, only case~A! is viable and
hencet522a/2. For 1,a<2, we have to consider cas
~B! also. However, any solution that arises from choos
case~B! would imply a nonmonotonic dependence oft on
a. However, we expect thatt is a monotonic function ofa,
and hence we discard the solutions arising from case~B!.
Thus,t522a/2. Fora.2, this solution is in contradiction
with the rigorous lower bound, Eq.~23!. Therefore, we as-
sume that the exponent value is stuck at 1 for alla.2 ~there
is no contradiction with the above derivation since if t
distribution were indeed a power law; then, the integr
would now diverge at the lower cutoff too!. This agrees with
the exact solution of thea5` case~see the Appendix! in
which caset51. Thus,

t55
5

2
for a50,

22
a

2
for 0,a<2,

1 for a.2,

~31!

where the value fora50 is from @1,15#. Solving for the
other exponents, we obtain, for 0,a,2,

x5
2

22a
, ~32!

b5
a

22a
, ~33!
4-5



be

in

e
w

of

t
rg

se

v-

a
av
ch
v

ge
na
th
b

m

he
ne
an

-
it

e

re
ss

ge

t

es.
in

um
ed

ro-

lity
in-

ed as

for
nts

ults

RAJESH, DAS, CHAKRABORTY, AND BARMA PHYSICAL REVIEW E66, 056104 ~2002!
f5
2

a
. ~34!

Now that all the exponents are known, we return to the
havior of the scaling function associated withP(m) at large
finite densities. Numerically, we observe that the scal
function f a(x);const asx→0 for 0,a,2. Fora.2, we
expectf a(x) to go to zero as some power ofx asx→0 ~see
Sec. V for numerics!. This means that, fora,2, in the limit
r→`, the probability distribution is a power law despite th
mean mass diverging. These observations are consistent
the exact solution of thea5` case~see the Appendix!. The
formation of a power law in the limit ofr→` is similar to
observations in models of aggregation in the presence
constant influx of particles from outside@16,17#. In these
models, despite the mean mass diverging with time,P(m)
develops into a power-law distribution.

An implication of the exponentt being less than 2 is tha
the average time scale in the system may become very la
The average time scale goes as the average of the inver
the diffusion constant, i.e.,̂ 1/D(m)&5^ma&;m

*
3a/221 ,

wherem* is the mass cutoff;rf. Thus fora.2/3, it would
diverge withm* . On the other hand, the inverse of the a
erage diffusion constant 1/^D(m)& remains finite, since
^D(m)&5^m2a& is always finite. Thus our model produces
broad distribution of time scales with dissonance of the
erage of its inverse, and the inverse of its average. Su
scenario is reminiscent of diffusion in heterogeneous en
ronments which arises in supercooled liquids@18#. In the
latter system, the translational diffusion constant avera
over several heterogeneous regions falls out of proportio
ity with the inverse of the average time scale. However,
connection of our model to supercooled liquids should not
taken too seriously since, while the latter is in equilibriu
our model exhibits a nonequilibrium steady state.

C. Numerical checks

In this subsection we provide numerical support for t
assertions in Sec. IV B from Monte Carlo simulations in o
dimension. Due to finite-size effects, it is difficult to make
accurate direct measurement of the exponentt from Monte
Carlo simulations forP(m). However, we show that the ana
lytic results for the power-law exponents are consistent w
the numerically obtainedP(m). In Fig. 2, the results from
simulations are compared with the analytic results fora
50.5. In the inset, when the plots for differentV are scaled
as in Eq.~25!, the curves lie on top of each other. Fora
51.0, the predicted exponent 1.5 also matches very w
with simulations~see Fig. 1!.

As a second check, we measuredrc(V) as a function ofV
for a50.3 anda50.7. We adopted the following procedu
for measuringrc(V). We start the system with a total ma
much greater than the critical massrc(V)V. The system is
allowed to reach the steady state. The cluster with the lar
mass is identified as the infinite cluster.rc(V) is obtained by
measuring the average mass in the rest of the system~exclud-
ing the infinite aggregate!. In Fig. 3, we obtain the exponen
b from the slope of a log-log plot ofrc(V) versusV. There
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is excellent agreement with the analytically predicted valu
In these simulations, as well as in the ones described

Secs. III and V, we have used lattice sizes upto a maxim
of V5400. This restriction is due to the large times requir
to reach steady state, whena.0. For a givena and initial
densityr, the time required to reach the steady state is p
portional toraV21a.

V. MEAN-FIELD APPROXIMATION

In Sec. IV, the exponents characterizing the probabi
distributionP(m) were calculated. These exponents were

FIG. 2. The power-law part ofP(m) obtained from Monte Carlo
simulations is shown for three different values ofV. The simula-
tions are on a one dimensional lattice withw51.0, r515.0, and
a50.5. The straight line has an exponent21.75 @see Eq.~31!#. In
the inset the scaling plots of these curves are shown when scal
in Eq. ~25!.

FIG. 3. The variation ofrc(V) with V is shown fora50.3 and
a50.7, where the upper curve has been shifted downwards
clarity. The straight lines are best fit with power-law expone
equal to 0.17860.004 for a50.3 and 0.53960.011 for a50.7.
These values should be compared with the analytic res
0.176 . . . for a50.3 and 0.538 . . . for a50.7 @Eq. ~33!#. The
simulation was done on one-dimensional lattices forw51.0.
4-6
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dependent of dimension and hence should match with
mean field exponents. Also, it was observed@15# in the a
50 case that the mean-fieldP(m) matched very well with
the numerically obtainedP(m) for all m. In this section, the
exponents of the probability distribution as well as the f
distribution are calculated from a mean-field analysis. T
values ofP(m) thus obtained are compared with theP(m)
for small values ofa obtained from Monte Carlo simulation
in one dimension. From the mean-field analysis, we also
culate P(m) for those values ofa which are difficult to
probe by Monte Carlo simulations due to the large tim
required to reach the steady state.

In the mean-field approximation, all correlations are
nored by setting all joint probability distributions to be th
product of single-point distribution functions, i.e
P(mi ,mj )5P(mi)P(mj ). Under this approximation, the
P(m)’s evolve in time as

dP~m!

dt
52P~m!~m2a1w1s81ws!1wP~m11!

1swP~m21!1 (
a51

m
P~a!P~m2a!

aa
, m.0,

~35!

dP0

dt
52s8~12s!2ws~12s!1wP11s8, ~36!

wheres85(1
`m2a. In the steady state, the time derivativ

vanish. Multiplying bye2pm and summingm from 1 to `,
and eliminatingP1, we obtain

Q5
sQ81ws~12s!~12e2p!2ss8

Q82ws2s82w1wep1wse2p
, ~37!

where Q5(1
`P(m)e2pm and Q85(1

`P(m)m2ae2pm are
generating functions.

The unknown quantitiess and s8 are determined by the
two conditions

~Q8!p505s8, ~38!

S dQ

dp D
p50

52r. ~39!

Using the series expansionQ5(n50^m
n&(2p)n/n! and

Q85(n50^m
n2a&(2p)n/n!, and comparing terms order b

order in p, we obtain relations between moments ofP(m).
From the term inp2 we find

r^m12a&5rw~12s!2ws. ~40!

Interestingly, Eq.~40! is identical to the exact Eq.~19! in the
V→` limit. For a50 anda51 this yields the two results
s5(rw2r2)/w(11r) @15# ands5rw/(w1rw1r).
05610
e
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e
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Comparing the terms proportional top3, we obtain the
relation

r^m22a&5^m2&
ws

r
2rw~11s!. ~41!

Thus, for larger, ^m2&;r2^m22a&. This provides us with a
method for deriving the exponents from the mean-field eq
tions. Assuming the scaling form, Eq.~21!, and using the
exponent identity, Eq.~24!, there remains one independe
exponent to calculate. Using the scaling form inr, we obtain

f~32t8!521f~32t82a!, ~42!

which immediately yieldst8522a/2 andf52/a, the same
as in Eqs.~31! and ~34!.

We now calculate numerically the fullP(m) from the
mean-field equations~35! and ~36!. If s and s8 are known,
the full distributionP(m) is known. We use this fact to de
termine the full distribution numerically by the following
procedure. We fixs ands8 at a certain initial value, calculate
the resultingP(m), and check the consistency conditions8
5(P(m)/ma. We tunes8 to satisfy the above condition to
an accuracy of 1025, to determineP(m)’s and, thus, the
densityr.

Using the above numerical method,P(m) was calculated
for variousa ’s. In Fig. 4, we compare some of these mea
field results withP(m) obtained using Monte Carlo simula
tions, for largeV. The agreement is excellent, suggesting t
the mean-field results are a very good approximation to
actual answer.

We now use the mean-field results to probeP(m) for
values ofa that cannot be studied easily by Monte Car
simulations. In Fig. 5, we show the scaling plots fora
51.6 anda53.0. As mentioned in Sec. IV B, the small-x
behavior of the scaling function has a different behavior

FIG. 4. P(m) for a51.0 obtained from Monte Carlo simula
tions ~shown in symbols! are compared with the results from th
mean-field analysis~shown as lines!. The lattice size isV5400 and
w51.0 and we have used two densitiesr51.0 and 2.0.
4-7
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RAJESH, DAS, CHAKRABORTY, AND BARMA PHYSICAL REVIEW E66, 056104 ~2002!
a,2 anda.2. In the former casef (x);const, while in the
latter casef (x);0 whenx→0.

VI. SUMMARY AND CONCLUSIONS

In summary, we have studied the steady state of a sys
of aggregating and fragmenting particles, with a ma
dependent diffusion rateD(m);m2a with a.0. We
showed analytically that the nonequilibrium phase transiti
which is known to exist fora50, vanishes whena.0. This
is in agreement with the results of numerical simulatio
through which we explored the dependence both on sys
size and total mass. Although no true infinite aggreg
forms in the thermodynamic limit, its imprint at high dens
ties remains in finite-sized systems in the form of an agg
gate. Further, for the single-site mass distribution functi
we obtained the exact scaling exponents associated wit
dependence on the mass, density, and system size.

Our results give more credibility to the intuitive argu
ments presented in@11# as to the circumstances in which on
should expect to see a nonequilibrium phase with an infi
aggregate, as occurs in thea50 case. We reproduce th
argument here. In the model under consideration, there
two competing processes: while the diffusion move crea
larger and larger masses by coagulation, the fragmenta
move tends to create smaller masses, as well as to inhibi
formation of large masses. If the diffusion move was to
considered by itself, then a cluster of sizel would be created
in time of orderl 21a. If the fragmentation move was to b
considered on its own, then a fluctuation of orderl would be
dissipated in time of the orderl 2. This exponent is known
exactly because of the exact analogy@1# in one dimension
between an only-fragmentation model and the Edwar
Wilkinson interface@14#. For a50, the two processes are o
similar strength and hence there is the possibility of a tr
sition. But fora.0, the fragmentation process always dom
nates and hence there is no aggregate phase.
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APPENDIX: EXACTLY SOLVABLE LIMITS

In this appendix, we discuss the limiting cases of t
model for which the full probability distributionP(m) can
be calculated.

1. aÄ`

In the limit a→`, the rate of diffusion becomes equal
zero for all massesm>2. The model then reduces to a ze
range process@19# in which with ratew unit mass can break
off from massesm>2, while the unit mass can hop to
neighboring site with rate 11w. It is then straightforward to
verify that the steady-state probability distribution has
product form, i.e.,

P~ . . . ,m1 ,m2 , . . . !5)
i

P~mi !, ~A1!

with

P~m!5H cgm, m>1,

c~11w!

w
, m50.

~A2!

The constantsc and g are fixed by the two constraint
(mP(m)51 and (mmP(m)5r. Solving for c and g, we
obtain

c5
w~12s!

11w
, ~A3!

g5
s~w11!

w1s
, ~A4!

with the site occupation probabilitys being equal to

s5
Aw2~11r!214rw2w~11r!

2
. ~A5!

In the limit w→`, s has the correct limitr/(11r) @see Eq.
~A9!#.

We would be interested in the form ofP(m,r) when r
→`. Expandings in terms of 1/r, we obtain

s512
11w

w

1

r
1OS 1

r2D . ~A6!

In this limit,

P~m,r!'
1

r
e2m/r, r→`. ~A7!

Thus
4-8
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P~m,r!5
1

m
f `S m

r D , m,r→`, ~A8!

where the scaling functionf `(x);x whenx→0. From Eq.
~A8!, we see thatt51 for a5`.

2. wÄ`

In the limit w5`, the model reduces to a zero ran
process@19#. As in thea5` case, the steady-state probab
ity distribution has a product form as in Eq.~A1!. P(m) for
this limiting case was worked out in@1#. For the sake of
completeness, we reproduce the final result:
ev

-
.

s

05610
P~m!5
1

11r S r

11r D m

, m>0. ~A9!

3. wÄ0

In this limit, masses diffuse and coagulate on conta
Clearly, the steady state is one in which the entire mas
clumped together into one aggregate. For thea.0 problem,
this is the only limit in which an aggregate forms whic
holds a finite fraction~here unity! of the total mass at finite
density.
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