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The effect of introducing a mass-dependent diffusion rat@™ “ in a model of coagulation with single-
particle breakup is studied both analytically and numerically. The model atf® is known to undergo a
nonequilibrium phase transition as the mass density in the system is varied from a phase with an exponential
distribution of mass to a phase with a power-law distribution of masses in addition to a single infinite
aggregate. This transition is shown to be curbed, at finite densities, facell in any dimension. However,

a signature of this transition is seen in finite systems in the form of a large aggregate and the finite-size scaling
implications of this are characterized. The exponents characterizing the steady-state probability that a randomly
chosen site has mass are calculated using scaling arguments. The full probability distribution is obtained
within a mean-field approximation and found to compare well with the results from numerical simulations in
one dimension.
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I. INTRODUCTION review, see[4]). For a=—1, using a Smoluchowski ap-
proach it was shown that the system undergoes a gelation
Systems far from equilibrium can undergo phase transitransition, i.e., an aggregate that contains a finite fraction of
tions between two types of steady states when the parametdfse total mass forms at finite time. The fragmentation move
of the system are varied. It is important to ask about thevas shown to modify the mass distribution power-law expo-
sensitivity of such nonequilibrium phase transitions tonent at the gelation transitigb]. An off-lattice version of
changes in the governing dynamics. If the transition surthe a=0 case was studief6] using Smoluchowski rate
vives, is the universality class affected? If the transition isequations in the context of aggregation in dry environments.
lost, does a signature of the lost phase remain in any form™ these studie§1,5,6], the coagulating and fragmenting
In this paper, we investigate these questions within a latmasses represented polymers in a solution, undergoing poly-
tice model of coagulation and fragmentation in which themerization and depolymerization. In a realistic situation, it
diffusion constant for a mas® varies asm™ ¢ with a«>0. may be expected that the diffusion of the polymers would
For the case in which diffusion is independent of the masslepend on their masses. The effect of mass-dependent diffu-
(«=0) and fragmentation involves only chipping off of unit sion on the kinetics of irreversible homopolymerization has
masses, it is known that there is a phase transition from aeen discussed ii7]. In the well-known models of polymer
low-density phase with an exponential distribution of massesnotion such as the Rouse model or the Zimm md8&glthe
to a high-density phase with a power-law distribution of polymer diffusion constanb(m)~m~* andm~? respec-
masses in addition to an infinite aggregate with a mass prdively. This would correspond ta=1 and 1/2 in our model.
portional to the volumé&/ [1]. This transition is characterized This provides further motivation for studying the model with
by a new universality class, different from familiar classesa mass-dependent diffusion rate.
such as directed percolation or the parity-conserving class Other modifications of the dynamics of tlke=0 model
[2], wetting transitions, roughening transitions, or boundary-that have been studied include changes of the fragmentation
driven transitiong 3]. We will show below that this high- rule, the introduction of a spatial bias in the dynamics, and
density phase is lost as soon ass nonzero. Remarkably, the effects of quenched disorder. Introduction of a mass-
though, an imprint of the infinite aggregate remains in thedependent fragmentation by allowing fractions of masses to
form of a large aggregate that strongly modifies the finite-break off(as opposed to single-particle breakwas studied
size behavior of the system, and we characterize the scalirig [9,10]. In this case, it could be inferred that the phase
implications of this. transition is curbed in all dimensions. Spatial bias was intro-
Let us summarize the results of earlier related work. Enduced by choosing rates such that masses have a preferred
hancement of aggregation moves with increasing mass, cogirection of motion, but with mass-independent hopping
responding to negative values @f was investigated earlier rates. In this case, it was shown that the phase transition is
in the context of coalescing branched polyméos a recent  curbed in one dimensidid1]. In two and higher dimensions,
it was shown that bias is irrelevant at least as far as the
existence of a phase transition was concerned. Finally, in a
*Electronic address: r.ravindran1@physics.ox.ac.uk disordered model where fragmentation of masses could oc-
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cur only at fixed sites, it was shown that even in the limit of the tail of the mass distribution changes from an exponential
very low disorder, a new mechanism for the formation ofdecay to an algebraic one aspproachep. from below. As
localized infinite aggregates sets[it2]. one increasep beyondp., the asymptotic algebraic part of
The remainder of the paper is organized as follows. Secthe critical distribution remains unchanged, but in addition
tion Il contains the definition of the model, a brief review of an infinite aggregate forms. All the additional mass in excess
earlier results, and a summary of results obtained in thisf the critical mass condenses into this single cluster and
paper. Section Il contains the analytical proof for the non-does not disturb the background critical distribution. The
existence of a phase with an infinite aggregate at large demnathematical mechanism giving rise to the formation of the
sities for any nonzero value @f. In Sec. IV, the exponents infinite aggregate at the onset of the phase transition was
associated with the probability distributid®(m) are deter- found to be very similar to that of the equilibrium Bose-
mined using scaling arguments. Results of Monte CarlcEinstein condensation in an ideal Bose gas.
simulations in one dimension are also presented. In Sec. V, Finite-size effects in the aggregate phase were studied in
the full distribution is obtained from a mean-field approxi- [15]. For a system of siz&/, the probability distribution
mation and compared with tie(m) obtained from numeri- P(m,V) for p=p. was assumed to have the scaling form
cal simulations. The Appendix discusses different limiting
cases of the problem that are solvable exactly.

1
v +v5[m—(p—pc)V], 2

1
P(m,V)~ —f

mT
II. MODEL AND RESULTS

A. Model where the exponeny is a crossover exponent, and tide
function indicates the aggregate part. The expongraad 7
were shown to be related by the scaling relatjpfr—1)
=1. The exponent was shown to be 5/2 in the mean-field
%’pproximation[l,S,G]; further, numerical evidence was pre-
sented[15] for the exponent being the same in all dimen-
sions.

The model is defined on @&dimensional hypercubic lat-
tice with periodic boundary conditions. Starting from a ran-
dom distribution of non-negative integer masses at each sit
the system evolves in time via the following microscopic
moves:(1) each massn hops with rateD(m)=m"“ to one
of its nearest-neighbor sites chosen randor®y,with rate
w, unit mass breaks off from an already existing mass and is
transferred to a randomly chosen neighboring site, @d
following moves(1) and (2), the mass at each site adds up. The principal results obtained in this paper are summa-
The mass density is a conserved quantity in the model.  rized below.

In one dimension, this model can be mapgéd onto (i) It is shown analytically that there is no phase transition
other well-studied models of nonequilibrium statistical me-at finite density for anyx>0 in any dimension.
chanics. By interpreting the masses as interparticle spacings, (ii) On an infinite lattice with fixed density, on assum-
the model is mapped onto a one-dimensional hard core laing a scaling form
tice gas model with competing short- and long-range hops.

Correspondingly, the problem may be mapped onto a fluctu- 1 m
ating interface with competing short- and long-range moves. P(m,p)= m f(_¢> '
The limiting casew=o reduces to the well-studied simple P

exclusion procesglL3] or equivalently to a fluctuating inter- wheref(y) falls exponentially ay— =, it is shown that the

face governed by the Edwards-Wilkinson equafioA]. two exponents are related to each other by the scaling rela-
tion

C. Summary of new results in this paper

()

B. Previous results fora=0

The casea=0 was studied by means of a mean-field $(2—-7")=1. )
approximation[1], analytical calculation§15], and numeri-
cal simulations if1,15]. The results are summarized below.
The steady-state single-site mass distributi®fm) was

The power-law exponent’ is shown to be equal to

shown to undergo a phase transition in all dimensions. In the 2— b for 0<a<2,
p-w plane, there is a critical lin@ (w)=1+w—1 that = 2 )
separates two types of asymptotic behaviorRgim). For 1 for a>2,
fixedw, asp is varied across the critical line.(w), the large
m behavior ofP(m) was shown to be in all dimensions. Equivalently,
—m/m*
€ ’ P=pe(W), 2 for 0<a<2,
P(m)~y m™, p=pc, (1) =1 @ 6)
1 for a>2.

m~ "+ infinite aggregate, p>p.(W),

where by “infinite aggregate,” we mean a cluster that con- (ii) In numerical simulations on a finite one-dimensional
tains a finite fraction of the total mass in the system. That islattice, it is seen that an aggregate forms when the total mass
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10% r r r at M.. The power-law part has a lattice-size-dependent cut-
off (see the inset of Fig.)1All these observations are quali-
tatively similar to thea=0 case. A crucial difference is the
fact that the power-law exponent is seen to be less than 2.0
for «>0. This is a puzzle since a finite density would imply
that 7>2. In this section, we prove that there is in fact no
transition at finite densities in the thermodynamic limit. The
transition seen in finite-size simulations is explained by the
fact thatM . no longer scales a¢ (as in thea=0 casg, but
with a power ofV greater than unity.

We show that an aggregate wilh.>V cannot be stable
at finite densities by assuming the presence of such an ag-
gregate and showing that this leads to a contradiction. In Sec.
Il A, we study the mass profile as a function of distance
from the aggregate. Based on our observation that at dis-
tances far from the aggregate the state of the system re-
sembles that at the transition point, we obtain exact relations

FIG. 1. The variation oP(m) with mfor «=1.0 is shown for  that the critical point should satisfy. In Sec. Ill B, we derive
four different values of density at fixed lattice sizeV. As the  further exact relations by examining the two point correla-
density is increased?(m) changes from an exponential distribution tions. In Sec. Il C, we show that the relations obtained from

to a power-law distribution. On increasimgfurther, the power-law  Secs. IIl A and 1l B, when put together, imply that there can
part remains unchanged while the mass in excess of a critical defhe no phase transition at finite densities.

sity p. condenses into an aggregate. The straight line has a power
—1.5. The simulation results are for a one-dimensional lattice of
size 100 andv=0.1. In the inset, the variation of the power-law
cutoff with system size is shown. The simulation results are for a  In the aggregate phase of the=0 model, it is known that
one-dimensional lattice witp=10.0 andw=0.1. there exists only one large aggregft&] in steady state; if
. . L there were more than one, they would collide and coalesce
in the system is increased beyond a certain critical yalue. BYato one. This scenario is verified as well in numerical simu-
analogy with thea.=0 case, we make the assumption that|giiong for arbitrarya (the area under the aggregate part in
P(m) has the scaling form the mass distribution being equal tov)/ Further, in the
limit V—oo, the aggregate becomes immobile ter-0 be-

+ l&(m— M—M,), (7) ~ cause its mass diverges with system size. _

\Y Consider a frame of reference that is attached to this ag-
) N ) gregate. Letn, ands, denote the mass and occupation prob-
whereM; is a V-dependent critical mass aid is the total  apjlity at a sitex with respect to the aggregate. Then, by

mass in the system. It is argued thet=7 with x being  examining the inflow and outflow of mass at each site, we
related tor through y(7—1)=1 as in thea=0 case. The gptain

critical mass is shown to scale with system size as
d{my)

dt

10° |

10-2 L

P(m)

10—4 L

10—6 |

-8 ' ' '
10
10° 10! 10 10°

A. Reference frame fixed to the aggregate

1
P(m,V)~—g| —
(mV)~—g| -

M ~VZCE @) for a<2, (8) = —[ws+(my “)(1-380)]+ % > (wsy
o
implying that the critical densityp.,=M_./V diverges with 1ea
system size. (M %)), 9
(iv) By means of a mean-field approximation, we obtain
the full probability distributionP(m). The scaling form, Eq. With so=1 and(m”)==,_,P(m)m’. In the steady state, the
(3), is seen to hold with the exponents as given in Egs. time derivative is set to zero. Then, the solution of E).is
and(6).
(ml™*+ws=w for x#0. (10)
Ill. ARGUMENTS FOR NO PHASE TRANSITION
AT FINITE DENSITY FOR a>0 At distances far away from the aggregate, the state of the
system resembles that at criticality. Taking the lifit— o
On a finite lattice, on increasing the total madsfrom  in Eqg. (10), we obtain
zero to large values, the following behavior is observed in
numerical simulations. For small values Mf P(m) is seen (M~ =w(l-s,) for a>0. (11)
to have an exponential tail for large masge Fig. 1. AsM
is increased to a critical valud ., P(m) changes to a power This is a relation that the system should satisfy at the critical
law with a cut off at largem. As M is increased beyoni ., point.
an aggregate forms that contains all the mass in excess of In the casex=0, the aggregate is mobile. When the ag-
M.. The rest of the distribution remains identical to the onegregate hops, this corresponds to all the other particles si-
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multaneously making a hop with respect to the aggregate. AEquation(17) is a relation between two-point correlations. A

analysis, similar to the one carried out fer0, yields relation between one-point functions is obtained by summing
over all x, the simplifying factor being that total mass is
2p.=w(1l—s;) for a=0. (12)  conserved. Thus,
The origin of the factor 2 may be traced to the fact that the M(m~ )y —(m*>~*y=wM(1—s)—wsV+ws. (18

aggregate is mobile.
This is an exact relation in all dimensions.
B. Two-point correlations We are interested in the limit whevl,V— o keeping the

In this section, we derive further exact relations that thedenSItyp fixed. Taking this limit in Eq(18), we obtain

system satisfies at the critical point by studying the two-point (M2
correlations. The analysis is similar to the analysis done for p(mt=e)y— =wp(l-s)—ws, V>1. (19
the a=0 casd 15]. In the rest of the paper, we will work in v

a coordinate system fixed to an arbitrary fixed site. To fix the i e e

notation,x’ will always denote one of thecnearest neigh- In the exponential phasgm™ ) is finite and hence
bors ofx, while x, will denote a neighbor of the origi. Let ~ (M°~ “)/V—0 asV—cc. At the transition point and in the
n(x,x',t) be the mass transferred from sitdo x’ at imet ~ @ggregate phasgm?” ) can at most diverge ag* “ (cf.
in a time intervalAt. From the definition of the model, it discussions in the later sections of this pap&his implies

follows that that (m?~%)/V—0 asV—ox for all finite densities and any
a>0. Thus, another exact relation at the critical point is
( 1 At obtained:
my with prob.ﬁ —,
M pe(m?™ ) e =Wpe(1—Sc) ~ WS (20
n(x,x",t)= 1 (13

1=6m0 with prob.—wAt,

2d C. Proof of no transition

L 0 otherwise. We combine the results of Secs. lll A and 1l B to show

] o that there is no transition. The three quantitigg ~ )., pc,
To orderAt, the only nonzero two point correlation in the 5nqs_ have to simultaneously satisfy two relations: namely,
noise Is Egs.(11) and(20). For nonzero values af, this is possible
only when eithew=0 andp.=0 or p,=c. Equations(11)
(n(xg,X})2) = %[mil_‘“rw(l— S 0. (14) anq (20) cannot be satisfied at finite nonzero valy§$9f
X This completes the proof that there is no transition dor
>0 at finite critical densityp,. .

The massm,(t) at lattice sitex at timet evolves as As a check of correctnesg, ands, can be calculated for
the a=0 case from Eqs(12) and (20). We obtainp.(w)
=y1l+w—1 and s.=(w+2—-2y1+w)/w. Not surpris-
ingly, this is the result that had been obtainedi6] for the

(15  «a=0 case.

The fact remains that a single large aggregate is seen in

To obtain the two-point correlations, we multiplgn,(t simulations on a finite lattice when the mass is large enough

+At) by mg(t+At) and take averages over the possible(see Fig. 1 This observation would be consistent with the

stochastic moves and then over the steady-state ensembleaifove result that there is no transition, provided the critical
states. Dropping all time derivatives and using E(s3), density p. seen in simulations diverges wiW as V# with

mx(t+At)=mx(t)—E n(x,x’,t)+2 (X", X1).

(14), and(15), we obtain B>0. We address this in the next section.
1 , , IV. SCALING FORMS FOR PROBABILITY DISTRIBUTION
Co(X)=WD(X) = 50 2 [Co(X) =WD(X')]=[C,(0) P(mp.V)
XI i) ’

1 A. Large finite densities
+Ws]| dy0- 2d XEO 5X*X0 ' (16) In this subsection, we consider the case when the total
massM and the system siZ¢ are increased to infinity keep-
whereC,,(x)=(m,m}~ %) andD(x)=(m.5, o). The homo- NG the densityp=M/V fixed. In this case, the system is
. o always in the exponential phase. We assume the following
geneous part of E16) is the Laplace equatioRi [ C(x) scaling form for the probability distribution:
—wD(x)]=0. With the inhomogeneous part, the unique so- '

lution is . 1 m
lim P(m,V,p)~—f,| —],
C,(x)=w[D(x)—s] for x+0. (17 Vosos m” p?

(21
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wherer’ and ¢ are two unknown exponents. Rigorous upperSubstituting for¢ in terms of 7’ [see Eq(24)], we obtain
and lower bounds can be placed ar. Clearly, (m)
=[dm mHAm,V,p) should diverge ap when p—co. But T'=7. (28
the different moments afn vary with p as
That leaves only one undetermined exponent in terms of
, m , which all the other exponents can be expressed.

f dmfﬁ’P(m,P):f dmny™” fa(_¢> ~p?Ty=T), To determine this exponent, we start with Eg8) at the

p transition point, namely,

(22)
This implies that~’ <2. Also, from Eq.(19), (m~¢) is seen M(m'™ %)= (mP™“)c=WMc(1—5;) —WsV+ws;.
to be finite for allp, in particular forp—cc. This implies that (29)

7'>2—a. Also, from the requirement that probability dis- ) ) B . .
tribution sum up to 1,7 necessarily has to be greater than Unlike the scaling/V=p that we used in deriving Eq19)
1. These bounds can be summarized as from Eq.(18), we now assume thl . scales as some power

of V, namely,M.~V#"1 with B>0. From Eq.(25), we

max2—a,)<7'<2. (23)  obtain
The two exponents’ and ¢ can be expressed in terms of B=x(2—1). (30)
one another by an exponent equality. The average mass

{(m)=p. This implies that First, by substituting Eq25) in Eq. (18), it is easy to derive
) that, to leading order iV, (m!~®).=w(1—s.). Now, to

¢(2—7')=1. (24) satisfy Eq.(29), there are two cases we have to consi¢aj:

. . .  (mP M~V or (B) (m* *).~const and (m'~*) =w(1

Thus, there is only one independent exponetitis deter U s)—wsV B+ - .- . Case(A) requires thaty(3— a— 1)

mined in Sec. IV B by studying the finite-size corrections to

the probability distribution. =1, which when simplified implies that=2— «/2. Case

(B) requires thaty(3—a—7)<0 and y(2—a—7)<—-p
which implies that7>3—a and r=2—a/2. For a<1,
these bounds are in contradiction with the rigorous bounds,
For a system on a finite lattice, we s@ég. 1) that when Eq. (23). Thus for 0<a<1, only case(A) is viable and
the total mass is increased beyond a critical MMggV), the  hencer=2-a/2. For 1<a<2, we have to consider case
probability distribution has &-dependent cutoff. Any addi- (B) also. However, any solution that arises from choosing
tional mass that is added aggregates together to form ormase(B) would imply a nonmonotonic dependence obn
massive aggregate. Using this information, we assume the. However, we expect thatis a monotonic function o,
following form for the probability distribution: and hence we discard the solutions arising from a&e
Thus,7=2—a/2. Fora>2, this solution is in contradiction
with the rigorous lower bound, Eq23). Therefore, we as-
sume that the exponent value is stuck at 1 fornaf2 (there
is no contradiction with the above derivation since if the
whereM is the total mass in the system. The two exponentglistribution were indeed a power law; then, the integrals
7andy can be expressed in terms of the two other exponent&ould now diverge at the lower cutoff thoThis agrees with
7 and ¢. We then determine by scaling arguments, thus the exact solution of ther= case(see the Appendixin
solving for all the exponents. which caser=1. Thus,
In [15], it was shown thatr and y are related by the
scaling relation

B. Aggregate formation on large finite lattices

VX

PMV)=—g,| 0|+ T am-(M M), (25)
mT

for =0,
x(r—1)=1. (26)

T=

@ < (31)
The derivation of this result was based on the fact that the 2 2 for 0<a=2,
number of aggregates is of order unity. The arguments carry
forward to the generak case without any modification. We
now argue that’ = from Eqs.(21) and (25). The system \por0 the value for=0 is from [1,15]. Solving for the
feels the presence of the finite size when the densit other exponents, we obtain, forQy<2
dependent cutoff in Eq.21) becomes of the same order as ' ' '

the lattice-size-dependent cutoff in E@5—that is, when

1 for a>2,

pl~VX or p.~VX'¢. Butp, is the mean value of the mass in ==, (32)
the power-law part and from Eq25), p.~V¥?~ 7. Thus, 2-a

oo X 5 i 33

X( —T)—g- (27) ﬁ—n. (33
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2

b= o (39 102 F
Now that all the exponents are known, we return to the be-
havior of the scaling function associated wRlm) at large
finite densities. Numerically, we observe that the scaling T,
function f ,(x) ~const ax—0 for 0<a<2. Fora>2, we g 102+
expectf ,(x) to go to zero as some power fasx—0 (see &

Sec. V for numerics This means that, fox <2, in the limit
p— 0, the probability distribution is a power law despite the 10* |
mean mass diverging. These observations are consistent wit
the exact solution of the=c case(see the Appendjx The

formation of a power law in the limit op— is similar to 10° 1
observations in models of aggregation in the presence of ¢ L
constant influx of particles from outsidd6,17. In these 10° 10! 10° 10°
models, despite the mean mass diverging with tilem) m

develops into a power-law distribution. .
An implication of the exponent being less than 2 is that G- 2- The power-law part &?(m) obtained from Monte Carlo
simulations is shown for three different values\af The simula-

the average time scale in the system may become very Iargﬁotns are on a one dimensional lattice with=1.0, p=15.0, and

The a\_/era_ge time scale gpes as the avera%e of t?;.;z!llverse £L0.5. The straight line has an exponent.75[see Eq(31)]. In
the diffusion constant, i.e.(1/D(m))=(m)~m; J the inset the scaling plots of these curves are shown when scaled as

wherem, is the mass cutoff- p®. Thus fora>2/3, itwould i, Eq. (25).
diverge withm, . On the other hand, the inverse of the av-

erage ﬁﬁusi%n _constant (@(m)) remains finite, since g excellent agreement with the analytically predicted values.
(D(m))=(m") is always finite. Thus our model produces a | these simulations, as well as in the ones described in
broad distribution of time scales with dissonance of the avgecs |11 and V. we have used lattice sizes upto a maximum

erage of its inverse, and the inverse of its average. Such & \/—400. This restriction is due to the large times required
scenario is reminiscent of diffusion in heterogeneous enVizy reach steady state, when=0. For a givena and initial

ronments which arises in supercooled liquidsS]. In the  gongiy,  the time required to reach the steady state is pro-
latter system, the translational diffusion constant averageg ional to peV2te

over several heterogeneous regions falls out of proportiona
ity with the inverse of the average time scale. However, the
connection of our model to supercooled liquids should not be
taken too seriously since, while the latter is in equilibrium, |n Sec. IV, the exponents characterizing the probability
our model exhibits a nonequilibrium steady state. distributionP(m) were calculated. These exponents were in-

V. MEAN-FIELD APPROXIMATION

C. Numerical checks

o 6.3 + X
=07 -

In this subsection we provide numerical support for the X
assertions in Sec. IV B from Monte Carlo simulations in one /
dimension. Due to finite-size effects, it is difficult to make an -
accurate direct measurement of the exponefrom Monte /
Carlo simulations foP(m). However, we show that the ana- g -
lytic results for the power-law exponents are consistent with o /
the numerically obtained(m). In Fig. 2, the results from
simulations are compared with the analytic results for
=0.5. In the inset, when the plots for differevitare scaled 1T /
as in Eq.(25), the curves lie on top of each other. Fer e +
=1.0, the predicted exponent 1.5 also matches very well aa
with simulations(see Fig. 1L 10 1(')0

As a second check, we measuyedV) as a function oW/
for «a=0.3 anda=0.7. We adopted the following procedure \

for measuringpc(V). We start the system with a total mass g 3. The variation op(V) with V is shown fora=0.3 and
much greater than the critical mag(V)V. The system is  ,—0.7, where the upper curve has been shifted downwards for
allowed to reach the steady state. The cluster with the largegfarity. The straight lines are best fit with power-law exponents
mass is identified as the infinite clustgg(V) is obtained by  equal to 0.178 0.004 for «=0.3 and 0.53%0.011 for «=0.7.
measuring the average mass in the rest of the sy&tgotud-  These values should be compared with the analytic results
ing the infinite aggregajeln Fig. 3, we obtain the exponent 0.17% ... for «=0.3 and 0.58... for «=0.7 [Eq. (33)]. The

B from the slope of a log-log plot gb (V) versusV. There  simulation was done on one-dimensional latticesvier 1.0.
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dependent of dimension and hence should match with the 107 B

mean field exponents. Also, it was obserjdd] in the « Ty
=0 case that the mean-fiell(m) matched very well with 102 F
the numerically obtaine&(m) for all m. In this section, the
exponents of the probability distribution as well as the full 107 F
distribution are calculated from a mean-field analysis. The 4
values ofP(m) thus obtained are compared with tRém) g W°f
for small values ofv obtained from Monte Carlo simulations & 5
in one dimension. From the mean-field analysis, we also cal- 107 ¢
culate P(m) for those values ofx which are difficult to 106 [
probe by Monte Carlo simulations due to the large times
required to reach the steady state. 107 F
In the mean-field approximation, all correlations are ig-
nored by setting all joint probability distributions to be the 1078 .
product of single-point distribution functions, i.e., 10° 10!
P(m;,m;)=P(m;)P(m;). Under this approximation, the m

P(m)’s evolve in time as FIG. 4. P(m) for @=1.0 obtained from Monte Carlo simula-

tions (shown in symbolsare compared with the results from the

dP(m) = —P(m)(m “+w+s' +ws)+wP(m+1) mean-field analysisshown as lines The lattice size i =400 and
dt w=1.0 and we have used two densitjes 1.0 and 2.0.
m
P(a)P(m—a)
+s m—1)+ —, m>0, . . .
wH ) 321 a“ Comparing the terms proportional ', we obtain the
relation
(35
2—«a 2 WS
dp, p(M?™ ) =(m?) —— pw(1+s). (41
W=—s’(l—s)—ws(l—s)+WP1+s’, (36) p

Thus, for largep, (m?)~ p%(m?2~*). This provides us with a
wheres’=X7m™“. In the steady state, the time derivatives method for deriving the exponents from the mean-field equa-
vanish. Multiplying bye™P™ and summingm from 1 to®,  tions. Assuming the scaling form, E1), and using the
and eliminatingP, we obtain exponent identity, Eq(24), there remains one independent

exponent to calculate. Using the scaling formpinwe obtain

3 sQ +ws(1—-s)(1—e P)—ss

Q/ ’ + Py p’ (37) ¢(3_T,):2+ ¢(3_T’_a), (42)
—WS—S —wW+we"+wse

B o which immediately yields' =2 — /2 and¢ = 2/a, the same
where Q=EffP(r_n)e PMand Q'=27P(m)m “e P™ are  4qin Eqs(31) and (34).
generating functions. _ We now calculate numerically the fulP(m) from the
The ur_1l_<nown quantities and s’ are determined by the ean-field equationé3s) and (36). If s ands’ are known,
two conditions the full distributionP(m) is known. We use this fact to de-
termine the full distribution numerically by the following
(Q")p=0=5, (39) procedure. We fixs ands’ at a certain initial value, calculate
the resultingP(m), and check the consistency conditish
=>P(m)/m®. We tunes’ to satisfy the above condition to
d_Q) _ (39) an accuracy of 10°, to determineP(m)’s and, thus, the
dp 0=0 p- densityp.
Using the above numerical methdé(m) was calculated
Using the series expansio@=3,_o(m")(—p)"/n! and for variousea’s. In Fig. 4, we compare some of these mean-
Q' =3,_o(m" %) (—p)"/n!, and comparing terms order by field results withP(m) obtained using Monte Carlo simula-
order inp, we obtain relations between momentsR{fm). tions, for largeV. The agreement is excellent, suggesting that

From the term inp? we find the mean-field results are a very good approximation to the
actual answer.
p(ml~*)=pw(1l—s)—ws. (40 We now use the mean-field results to proBém) for

values ofa that cannot be studied easily by Monte Carlo
Interestingly, Eq(40) is identical to the exact Eq19) inthe  simulations. In Fig. 5, we show the scaling plots far
V—oo limit. For =0 anda =1 this yields the two results =1.6 anda=3.0. As mentioned in Sec. IV B, the small-
s=(pw—p?)/w(1+p) [15] ands=pw/(W+ pw+ p). behavior of the scaling function has a different behavior for

056104-7



RAJESH, DAS, CHAKRABORTY, AND BARMA PHYSICAL REVIEW E66, 056104 (2002

@ 0.4 - - - helpful discussions and especially A. Bray for his insightful
0.04 Y suggestions on one of the limiting cases. D.D. and B.C. were
o %, 0.3 supported by NSF Grant No. DMR-9815986. R.R. would
' 003 . g o2 i like to thank EPSRC, UK for financial support.
\ [
£ o0 ., .
. 0.1 : APPENDIX: EXACTLY SOLVABLE LIMITS
0.01 b 0 In this appendix, we discuss the limiting cases of the
0 10 20 301 2;‘0 50 60 0 2 4 6 8 model for which the full probability distributiof®(m) can
m/p™ m/p be calculated.

FIG. 5. P(m) obtained from the mean-field analysis when
scaled as in Eq(21) with exponents as in Eq$31) and (34). (a) la=e
The curves are foe=1.6, w=0.1 and for densities 2.38, 3.81, and In the limit a—, the rate of diffusion becomes equal to
6.69. (b) The curves are forx=3.0, w=0.3 and for densities zero for all massem=2. The model then reduces to a zero
102.74, 165.07, 250.12, and 325.30. The scaling functifx)  range proceskl9] in which with ratew unit mass can break
goes to zero for smak. off from massesn=2, while the unit mass can hop to a
neighboring site with rate w. It is then straightforward to
verify that the steady-state probability distribution has a

a<2 anda>2. In the former casé(x) ~ const, while in the ;
product form, i.e.,

latter casef (x) ~0 whenx—0.

VI. SUMMARY AND CONCLUSIONS P(....my,my, .. -)=1_i[ P(m;), (A1)

In summary, we have studied the steady state of a system
of aggregating and fragmenting particles, with a massWith
dependent diffusion rateD(m)~m~¢ with «>0. We

m
showed analytically that the nonequilibrium phase transition, v m=1,
which is known to exist forr=0, vanishes when>0. This P(m)=4 c(1+w) m=0 (A2)
is in agreement with the results of numerical simulations, w )

through which we explored the dependence both on system

size and total mass. Although no true infinite aggregatelhe constantsc and y are fixed by the two constraints
forms in the thermodynamic limit, its imprint at high densi- ,,P(m)=1 and Z,;mP(m)=p. Solving for c and y, we
ties remains in finite-sized systems in the form of an aggreebtain

gate. Further, for the single-site mass distribution function,

we obtained the exact scaling exponents associated with its w(l-s)

dependence on the mass, density, and system size. C=Trw (A3)
Our results give more credibility to the intuitive argu-

ments presented ii1] as to the circumstances in which one s(w+1)

should expect to see a nonequilibrium phase with an infinite Y= WS (A4)

aggregate, as occurs in the=0 case. We reproduce the

argument here. In the model under consideration, there agjth the site occupation probabilitybeing equal to

two competing processes: while the diffusion move creates

larger and larger masses by coagulation, the fragmentation YW2(1+p)2+4pw—w(1+p)

move tends to create smaller masses, as well as to inhibit the s= > . (A5)

formation of large masses. If the diffusion move was to be

considered by itself, then a cluster of sizeould be created | the |imit w— o, s has the correct limip/(1+ p) [see Eq.
in time of orderl?* ¢, If the fragmentation move was to be (A9)].

considered on its own, then a fluctuation of ortlerould be We would be interested in the form &(m,p) when p
dissipated in time of the orddf. This exponent is known —o. Expandings in terms of 1p, we obtain

exactly because of the exact analddy in one dimension

between an only-fragmentation model and the Edwards- 14w 1 1
Wilkinson interfacq 14]. For =0, the two processes are of s=1-———+0| —|. (AB)
similar strength and hence there is the possibility of a tran- P
sition. But fora>0, the fragmentation process always domi- L
nates and hence there is no aggregate phase. In this limit,
ACKNOWLEDGMENTS P(m,p)~ Ee—m/p, p—®. (A7)
p

We would like to thank S. Coppersmith, S. Redner, P. L.
Krapivsky, D. Dhar, T. Witten, and S. Krishnamurthy for Thus
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m

P LM A8 P (G 0 A9
=—f,|— 0 =—|— =0.
(m,p) mf=l 5] M, (A8) (m) Trp\1+p, @ ™ (A9)
where the scaling functiof.,(x) ~x whenx—0. From Eqg.
(A8), we see thatr=1 for a=oc. 3. w=0
2. w=o0 In this limit, masses diffuse and coagulate on contact.

In the limit w=o, the model reduces to a zero range Clearly, the steady state is one in which the entire mass is
procesg19]. As in thea= case, the steady-state probabil- clumped together into one aggregate. Fordhe0 problem,
ity distribution has a product form as in EGA1). P(m) for  this is the only limit in which an aggregate forms which
this limiting case was worked out ifl]. For the sake of holds a finite fractionhere unity of the total mass at finite
completeness, we reproduce the final result: density.
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