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ABSTRACT

The atomic hydrogen gas (H I) disk in the outer region (beyond ∼ 10 kpc from

the centre) of Milky Way can provide valuable information about the structure

of the dark matter halo. The recent 3-D thickness map of the outer H I disk from

the all sky 21-cm line LAB survey, gives us a unique opportunity to investigate

the structure of the dark matter halo of Milky Way in great detail. A striking

feature of this new survey is the North-South asymmetry in the thickness map of

the atomic hydrogen gas. Assuming vertical hydrostatic equilibrium under the

total potential of the Galaxy, we derive the model thickness map of the H I gas.

We show that simple axisymmetric halo models, such as softened isothermal halo

(producing a flat rotation curve with Vc ∼ 220 kms−1) or any halo with density

falling faster than the isothermal one, are not able to explain the observed ra-

dial variation of the gas thickness. We also show that such axisymmetric halos

along with different H I velocity dispersion in the two halves, cannot explain the

observed asymmetry in the thickness map. Amongst the non-axisymmetric mod-

els, it is shown that a purely lopsided (m = 1, first harmonic) dark matter halo

with reasonable H I velocity dispersion fails to explain the North-South asym-

metry satisfactorily. However, we show that by superposing a second harmonic

(m = 2) out of phase onto a purely lopsided halo e.g. our best fit and more

acceptable model A (with parameters ǫ1
h = 0.2, ǫ2

h = 0.18 and σHI = 8.5 kms−1)

can provide an excellent fit to the observation and reproduce the North-South

asymmetry naturally. The emerging picture of the asymmetric dark matter halo

is supported by the ΛCDM halos formed in the cosmological N-body simulation.

Subject headings: Galaxies: kinematics and dynamics - Galaxies: spiral - Galax-

ies: structure - galaxies: ISM - galaxies: halos
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1. Introduction

Asymmetries are common in disk galaxies and are seen in lopsidedness (Baldwin et al.

1980; Rix & Zaritsky 1995; Bournaud et al. 2005; Saha et al. 2007), in warps (Garcia-Ruiz

et al. 2002; Sanchez-Saavedra et al. 2003; Saha & Jog 2006), in the rotation curves of

receding side and approaching side (Manabe & Miyamoto 1975; Swaters et al. 1999), and

in the distribution of the neutral hydrogen gas in galaxies (Richter & Sancisi 1994). These

asymmetries in the dynamical phenomena can provide valuable information about the nature

of the underlying dark matter potential. In fact, they have often been considered a reflection

of the asymmetry in the dark matter distribution (Weinberg 1994; Jog 1997). However,

one needs to be careful and systematically discard other possibilities such as dynamical

instabilities as the origin of these asymmetries (e.g. Saha & Jog 2006). Our motivation in

this paper is to check whether a non-axisymmetric dark matter halo can explain the recently

measured asymmetry in the atomic hydrogen gas distribution in our Galaxy.

In order to study the shape of the dark matter halo, it is best to look for tracers which

lie mostly outside the main baryonic disk component. Examples of such tracers are the

motion of satellites, neutral hydrogen (H I) gas in the outer region of the galaxy etc.. In

particular, over the last two decades it has become well known that the H I gas layer flares

significantly beyond the optical disk of our Galaxy (Kulkarni, Heiles & Blitz 1982; Knapp

1987; Wouterloot et al. 1990; Diplas & Savage 1991; Merrifield 1992; Nakanishi & Sofue 2003)

and the recent LAB (Leiden/Argentine/Bonn) survey (Kalberla et al. 2005) of Galactic H

I reveals the most comprehensive, uniformly sampled flaring map of the H I gas extended

out to a very large radius from the Galactic centre. Many external edge-on galaxies seem

to show flaring in the thickness of the neutral hydrogen gas (Brinks & Burton 1984; Olling

1996; Matthews & Wood 2003). The most likely reason for the flaring is that the total

gravitational force acting perpendicular to the disk plane decreases with radius while the

velocity dispersion of H I is observed to be nearly constant (Lewis 1984). The contribution

to the total perpendicular gravitational force comes mainly from the stellar disk, gas and the

dark matter halo. Since the midplane density of the stars falls off rapidly compared to that

of dark matter halo at large galactocentric radii (typically beyond the optical disk), the dark

matter halo is expected to take over the major role in determining the vertical distribution

of H I gas in the outer region. This makes the H I layer in the Galactic outskirts extremely

sensitive to the distribution of dark matter and presently available neutral hydrogen gas

(from the LAB survey) extended out to a very large radius from the Galactic centre provides

us an unique opportunity to examine the detailed nature of the dark matter distribution in

the Milky Way.

This approach has been used to investigate the nature of dark matter halos by studying
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the thickness of the neutral hydrogen gas in our Galaxy (Olling & Merrifield 1998, 2000,

2001, Narayan et al. 2005; Kalberla et al. 2007) and for M31 (Banerjee & Jog 2008) . Of

these, recent work by Narayan et al. 2005 based on the Wouterloot et al. (1990) H I data

shows that the observed H I flaring of Milky Way is best fit by a spherical dark matter halo

with density falling faster than the isothermal halo. On the other hand, the most recent and

very detailed work by Kalberla et al. (2007) , based on the LAB survey data, shows that

the dark matter distribution in the Galaxy is rather complicated. They needed a massive

extended dark matter halo, a self-gravitating dark matter disk, and a dark matter ring to

explain the flaring in the H I gas in our Galaxy. Now, one of the most striking feature in the

LAB survey is that the neutral hydrogen gas thickness map shows systematic North-South

(hereafter N-S) asymmetry, where Galactic North refers to 0 ◦ < ϕ < 180 ◦ and Galactic

South by 180 ◦ < ϕ < 360 ◦, in the Galctocentric cylindrical polar coordinate system (R, ϕ,

z). This asymmetry was previously seen in previous HI maps of the Milky Way (Henderson,

Jackson and Kerr 1982), but rarely remarked on. So it may be worth investigating if the

Milky Way H I flaring can be explained by a non-axisymmetric dark matter halo.

Such non-axisymmetries in the collisionless dark matter halo are probably not uncom-

mon. In the current cosmological paradigm, the Λ cold dark matter (Λ CDM) halos are

formed by dissipationless gravitational collapse of the material associated with the peaks of

the primordial density fluctuation field and then grow via mergers and accretion in a highly

nonlinear fashion. The resulting dynamical structures of these halos can be highly asym-

metric. In fact, the Λ CDM halos formed in the recent Millennium Simulation (Springel et

al. 2005) show asymmetry in their mass distribution (Gao & White 2006).

In the present study, we derive, numerically, the flaring in the thickness of the neutral

hydrogen gas using self-consistent model for the Galaxy (Narayan & Jog 2002; Narayan et

al. 2005) including a non-axisymmetric dark matter halo and disk. We take into account the

self-gravity of the gas. Our analysis produces a non-axisymmetric flaring curve for the gas

and in this respect our study is probably different from all the previous studies which tried

to derive H I flaring in spiral galaxies. Based on our analysis, we show that an elliptically

perturbed (readers are referred to §2.2 for details) lopsided dark matter halo with density

falling faster than that of an isothermal halo can explain the observed N-S asymmetry in

the H I thickness map in the Galaxy.

The paper is organized in the following order. §2 describes the formulation of the prob-

lem and models of the dark matter halo. In §3 we present the definition of the thickness of

the H I gas and asymmetry measurements. Method and input parameters are discussed in

§4, while §5 describes the results and various possible models of dark matter halo. Com-

parison of different models are done in §6. §7 describes a comparison with previous works.
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Discussion and conclusions are in §8 and 9 respectively.

2. Vertical dynamics in a Lopsided dark matter halo

We studied the dynamics of an H I gas disk under vertical hydrostatic equilibrium in

a generalized non-axisymmetric dark matter halo potential. The H I disk is gravitationally

coupled to the stellar counterpart. Basically, we are going to study the equilibrium vertical

structure of a two-component star-gas system in an asymmetric potential. We used the

cylindrical polar coordinate system (R,ϕ,z) suitable for the disk geometry. Presuming that

the H I gas is in hydrostatic equilibrium, the vertical dynamics of each component under the

force field due to the surrounding dark matter halo can be described by coupling the Poisson

equation and the equation of hydrostatic equilibrium along the normal to the mid-plane for

each component.

The Poisson equation for the system can be written as:

1

R

∂

∂R
(R

∂Φt

∂R
) +

1

R2

∂2Φt

∂ϕ2
+

∂2Φt

∂z2
= 4πG

(

2
∑

i

ρi + ρh

)

, (1)

where Φt is the total potential due to the stars, H I gas and dark matter halo, ρi with i=1

to 2 denotes the mass density for the stellar and H I components, ρh is the density of dark

matter halo.

Next, we made a comparative estimate of the Poisson equation’s radial and azimuthal terms

(which we denote as TR and Tϕ respectively). We assumed that the potential of the Galaxy

is asymmetric by a small quantity ǫp and the dominant asymmetry is in the form of a

lopsidedness (i.e. the iso-potential contours are distributed according to cosϕ, corresponding

to m = 1 azimuthal wavenumber). We then wrote the total potential, Φt, in the simplistic

form (Rix & Zaritsky 1995; Jog 1997):

Φt(R, ϕ, z) = Φ0(R, z)(1 + ǫp cos(ϕ − ϕp)), (2)

where Φ0(R, z) is the axisymmetric part of the total potential and ϕp is the constant phase

factor. Then the azimuthal term can be written as

Tϕ =
Φ0(R, z)

R2
ǫp cos(ϕ − ϕp), (3)

and the radial term as:
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TR ≡ 1

R

∂V 2
c

∂R
(1 + ǫp cos(ϕ − ϕp)), (4)

where the rotation velocity, Vc =
√

R∂Φ0(R, z)/∂R is determined at the mid-plane (z = 0).

To proceed further with the comparison, we need the form of the combined axisymmetric

potential Φ0(R, z). We assumed that the rotation curve in the outer region of the stellar

disk is mainly dominated by the dark matter halo.

Let Vc ∼ C0R
−α, where the index α determines the shape of the rotation curve and

C0 is some constant of proportionality. Note that α < 0 i.e. a negative α would produce

rising rotation curves usually found in dwarf galaxies. In normal spiral galaxies α ≥ 0. For

example, α = 0 produces a flat rotation curve that corresponds to a screened isothermal

dark matter halo (p = 1 in our notation, see eq.[12] in §2.2). In the other extreme, when

α = 0.5 the rotation curve falls in a Keplerian fashion. The dark matter halos that produce

an asymptotically Keplerian rotation curve are with indices 1.5 < p ≤ 2 (For the present

work, we restrict ourselves to p = 2). Therefore, we can say that the range of the indices

in the rotation curves, 0 ≤ α ≤ 1, roughly maps to the range 1 ≤ p ≤ 2 in the density

distribution of the dark matter halos. Now clearly, for an asymptotically flat rotation curve

the radial term is exactly equal to zero at the disk mid-plane (z = 0). Whereas, the azimuthal

term is given by Tϕ ∼ log(R)/R2ǫp cos(ϕ− ϕp). For a very slowly falling rotation curve, the

azimuthal term dominates over the radial term and with little algebraic manipulations it can

be shown:

TR + Tϕ ∼ [1 +
ǫp

α2
cos(ϕ − ϕp)]TR. (5)

Then, the Poisson equation for a disk embedded in a non-axisymmetric dark matter halo

with a slowly falling rotation curve (α 6= 0 and α ≪ 1) can be written as:

∂2Φt

∂z2
≃ 4πG

(

2
∑

i

ρi + ρh

)

− [1 +
ǫp

α2
cos(ϕ − ϕp)]TR. (6)

Since TR is a negative quantity, the combined effect of the radial and azimuthal terms in the

Poisson equation (Eq.[6]) is either to increase or decrease the vertical oscillation frequency of

the disk depending upon the orientation of the dark matter halo and the values of α and ǫp.

In other words, this term may either try to confine the gas more towards the disk mid-plane

or help flaring. However, the contribution from the combined radial and azimuthal terms

to the thickness of H I in the outer region is not significant compared to that due to the

first term in eq.[6]. The second term on the r.h.s. of eq.[6] contributes to ∼ 10% in the
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H I thickness in the outer region for a very slowly falling rotaion curve. So in the zeroth

order approximation, we can safely say that the thickness of the disk components is largely

determined by the vertical pull due to the first term on the r.h.s. of the Poisson eq.[6].

The vertical hydrostatic equilibrium equation under the total potential for each component

can be written as (Rohlfs 1977; Binney & Tremaine 1987):

σ2
zi

∂ln ρi

∂z
= −∂Φt

∂z
(7)

In the above equation σzi denotes the vertical velocity dispersion of the ith disk component

in the problem. On combining the above equations (6, 7), the vertical equilibrium of each

component in the disk under the dark matter halo potential is:

∂

∂z

(

σ2
zi

∂ln ρi

∂z

)

= −4πG

(

2
∑

i

ρi + ρh

)

+ [1 +
ǫp

α2
cos(ϕ − ϕp)]TR. (8)

2.1. An analytic approximation to the thickness

An analytic approximation for the thickness can be obtained near the disk mid-plane by

direct integration of the vertical equilibrium equation. This is a useful guide to the numerical

integration of eq.[8].

On integrating eq.[7] of the vertical equilibrium equation and using the boundary condition

at z=0

ρi(R, ϕ, z) = ρi
mid(R, ϕ, 0)

, where ρi
mid(R, ϕ, 0) is the mid-plane volume density of each component, we get:

σ2
zi ln

[

ρi(R, ϕ, z)

ρi
mid(R, ϕ, 0)

]

+ Φt(R, ϕ, z) − Φt(R, ϕ, 0) = 0. (9)

Near the disk mid-plane the potential along the vertical direction will not be very different

than that of the disk mid-plane. Using Taylor’s expansion along the vertical direction and

the vertical equilibrium of each component, it can be shown that:

ρi(R, ϕ, z) = ρi
mid(R, ϕ, 0) × e

−
z2

2H2
i
(R,ϕ) . (10)
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Hence, the density distribution under vertical equilibrium follows a gaussian near the disk

mid-plane with non-axisymmetric thickness. Here Hi(R, ϕ) = σzi/ν(R, ϕ) and the vertical

frequency ν is given by

ν(R, ϕ) =

√

√

√

√4πG

(

2
∑

i

ρi
mid(R, ϕ) + ρh(R, ϕ, 0)

)

. (11)

In deriving the above form, we used eq.[6] with TR = 0, since the thickness of the gas is

largely determined by the vertical pull of the matter towards the disk mid-plane. The reader

should bear in mind that the above analytical formula for the thickness (Hi) is not valid for

high z.

2.2. Models of Non-axisymmetric Dark Matter Halo

We consider here for the first time a seven-parameter dark matter halo model for de-

scribing the neutral hydrogen gas thickness in the Milky Way. The density profile of the

non-axisymmetric dark matter halo is given by:

ρh(R, ϕ, z) =
ρ0(q)

[

1 +
Λ2

ϕ

R2
c(q)

]p , (12)

where ρ0 is the central mass density of the halo, Rc is the core radius, q determines the

oblateness of the halo and p is the index determining the nature of the density profile. The

index p = 1 denotes a softened isothermal dark matter halo with density falling as R−2 at

large radii. The name ’softened isothermal halo’ is derived from the singular isothermal halo

by adding a suitable core radius; these softened halos are also called screened or pseudo-

isothermal halos. Since the mass M(R) within a radius R is proportional to R, the p = 1

halo produces an asymptotically flat rotation curve. For p = 1.5, the density ρh ∝ R−3 at

large radii resembling the NFW halo profile (Navarro et al. 1996). The mass M(R) within

a radius R of such a p = 1.5 halo is proportional to log R and goes to infinity as R goes to

infinity but much more gradually than the p = 1 halo. Whereas p = 2 denotes a perfect

ellipsoid dark matter halo with density falling like R−4 at large radii leading to essentially a

finite mass halo. So the asymptotic rotation curve would be like a Keplerian one. The mass

profile of the p = 2 axisymmetric dark matter halo can be written as:
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M2(R) ∼ 2πρ0R
3
cq

[

tan−1(R/Rc) −
R/Rc

1 + R2/R2
c

]

. (13)

In the above eq.[12]

Λ2
ϕ = (R2

ϕ + z2/q2); Rϕ = R(1 − ǫ1
h cos (ϕ − ϕh) + ǫ2

h cos 2(ϕ − ϕh)), (14)

where Λϕ represents the surface of the concentric ellipsoid with lopsided (m = 1) distribution

superposed with second harmonics (m = 2). The degree of lopsidedness in the dark matter

distribution is ǫ1
h and the degree of second harmonic is determined by ǫ2

h. ϕh denotes the

phase of the asymmetric halo with respect to the Galactic axes. It is very hard to say without

a detailed stability analysis which harmonics (m = 1 or m = 2) will dominate in the dark

matter halo.

Since the higher harmonics (m > 2 or 3) perturbations will be associated with smaller

spatial scales compared to the first or second harmonics, in a collisionless dark matter halo

such small scale higher harmonics are most likely to be Landau damped and large scale

perturbations would be weakly damped (Weinberg 1994). Our expectation is that the dark

matter halos are likely to be dominated by the first two harmonics: a lopsided (m = 1) per-

turbation and an elliptical (m = 2) perturbation. The effects of a lopsided halo perturbation

and m = 2 component in the halo perturbation onto the disk dynamics was studied by Jog

(1999, 2000). Note that with ǫ2
h=0, we end up with a purely lopsided dark matter halo.

With all ǫh = 0, the dark matter halo becomes the usual four-parameter axisymmetric halo

used in previous studies (Narayan et. al. 2005; de Zeeuw & Pfenniger 1988; Becquaert &

Combes 1997). The parameter ϕh contains important information as to how the dark matter

halo is oriented with respect to the Galactic axes. It is important to note that the first two

harmonics in the dark matter halo are out of phase. Writing the density distribution of the

halo in the above form results in freedom to investigate a wide variety of dark matter halo

potentials, while simpler to use than the triaxial ones.

3. Thickness of the neutral hydrogen gas

By solving the coupled Poisson equation and the vertical hydrostatic equilibrium equa-

tion (eq.[8]), we obtain the volume density of the atomic hydrogen gas ρ2(R, ϕ, z). To solve

eq.[8] we used the mid-plane volume density and its dispersion of each component as inputs

(see §4). We considered an exponential surface density distribution for the stellar disk with

a mild lopsidedness into it.
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Σ(R, ϕ) = Σ0e
−R/Rd(1 + ǫs cos(ϕ − ϕh)), (15)

where Σ0 and Rd are the central surface density and scale length of the stellar mass dis-

tribution, respectively. The value of ǫs, in principle, can be determined self-consistently by

calculating the response of the stellar disk to the non-axisymmetric dark matter halo consid-

ered in §2.2 but the task is beyond the scope of this paper and not necessary for obtaining a

correct zeroth order model. Instead, we use reasonable numerical values of ǫs and calculate

its effect on the H I thickness in the region of our interest (R ≥ 16 kpc). We have checked

that the gas thickness remains almost unchanged as the value of ǫs is reduced from 0.15 to

0.0 (corresponding to an axisymmetric stellar disk). We have also checked if ǫs alone can

account for the observed systematic N-S asymmetry (prominent beyond ∼ 16 kpc) in the H

I thickness map. We found that even unrealistically high values of ǫs alone can not account

for such high asymmetry in the H I flaring. Note that the contribution of the axisymmetric

stellar disk itself almost drops to zero beyond ∼ 16 kpc compared to that due to the dark

matter halo. So in the present calculation, we considered only the axisymmetric stellar disk

in deriving the H I thickness beyond ∼ 16 kpc. One important assumption in solving eq.[8] is

that the velocity dispersion remains constant (isothermal approximation) along the vertical

direction.

The thickness d(R, ϕ) of the gas is determined by using the second moment of the

volume density distribution and is given by the following relation:

d2(R, ϕ) =

∫

∞

−∞
z2ρ2(R, ϕ, z)dz

∫

∞

−∞
ρ2(R, ϕ, z)dz

. (16)

d(R, ϕ) gives the radial variation of the thickness along a particular azimuthal direction (ϕ)

in the disk. Using this thickness map, we can examine the degree of asymmetry in the gas

thickness distribution.

We note that the thickness of the gas layer in this case is different from the method

used by Levine et al. (2006a) but gives qualitatively similar result. Kalberla et al. (2007)

calculate the gas scale height yet another way, and get result which differ both from the

second moment of the distribution (eq.[16]) and from Levine et al. (2006a). All this says is

that because of the exclusion of certain areas (especially 90 ◦ ≤ ϕ ≤ 110 ◦), and the possible

effects of optical depth, different methods of calculating the scale height can give rise to

different numerical values. In fact, it was demonstrated by Bahcall (1984) that the scale-

height of a gaussian stellar distribution is roughly twice that of an expoential distribution.

The important point, is that all methods show values of scale-height that are ∼ 2−2.5 times
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larger in the northern part of the Galaxy (l = 0 − 180 ◦) than the south (l = 180 − 360 ◦)

and it is this difference that we trying to model and explain.

Let A(ϕk) be the area under the thickness curve along a particular azimuthal angle (ϕk):

A(ϕk) =

∫ Rmax

Rmin

d(R, ϕk)dR (17)

In the above equation Rmin and Rmax represent the initial and the final radius respectively

in the available observation of the gas thickness. The degree of asymmetry in the thickness

distribution, presuming that we are considering a smooth curve, can then be described by:

η(ϕk) =
|A(ϕk) − A(ϕk + π)|
A(ϕk) + A(ϕk + π)

. (18)

The range of η is 0 ≤ η ≤ 1, with η=0 denoting a symmetric distribution. On the other

hand η=1 denotes a highly asymmetric gas/star distribution leading to a one-sided flaring

in the galaxy. It is unlikely that η ≈ 1, because this would mean that the velocity dispersion

of the gas in one half of the galaxy is almost zero (cold component) compared to the other

half. This may lead to an instability in the disc. Considering ϕk = 90 ◦, the above relation

would produce the numerical value of the observed N-S asymmetry in the thickness map.

4. Method and Input parameters

The present study focuses on deriving the thickness map of the neutral hydrogen gas (H

I) in the very outer region (R ≥ 16 kpc) of the Galactic disk. Since of the various baryonic

components the stars and H I dominate the mass in this region, we neglect the effect of

molecular hydrogen gas (H2) on the thickness distribution of H I. Eq.(8), which describes

the zeroth order vertical equilibrium under a non-axisymmetric dark matter distribution,

represents two coupled differential equations for the two disk components: H I and stars.

The vertical density distribution for each component, responding to the total potential due

to the disk and the dark matter halo, was solved numerically as an initial value problem

using the fourth order Runge-Kutta method of integration (Press et al. 1994). The details

of this method are presented in Narayan & Jog (2002) and Narayan et al. (2005). Because

of the underlying non-axisymmetry, eq.(8) is solved for each azimuthal direction along the

Galactocentric radius. Along a particular azimuth, at a particular radius, we calculate the

second moment of the vertical density distribution for each component according to eq.(16)

and call it the thickness of that component. Repeating this procedure for regular intervals
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in the azimuth along the galactocentric radius give us the thickness map of the neutral

hydrogen gas layer in the Galaxy.

The primary input parameters needed for the method are the mid-plane volume density

and the vertical velocity dispersion for each disk component. The H I mid-plane volume

density is obtained from the LAB survey (Kalberla et al. 2005; Levine et al. 2006a). For

the stellar disk, we used its surface density according to eq.(15) for which we need to know

the central surface density and scale length. Note that eq.[15] represents a lopsided stellar

disk and as discussed in §3, the value of ǫs does not effect much the H I thickness in the

very outer region of the Galaxy. So we considered effectively an axisymmetric stellar disk

in the region of our interest. Using the following measured/inferred quantities: the stellar

surface density at the solar region Σ⊙, the disk scale length Rd and the distance of sun from

the Galactic center R⊙, we can derive the central surface density Σ0 and infact the surface

density at any radius. We use Σ⊙ = 45 M⊙pc−2 which is consistent with 48 ± 9 M⊙pc−2

obtained by Kuijken & Gilmore (1991) and 52 ± 13 M⊙pc−2 obtained by Flynn & Fuchs

(1994) for the total surface density, after the gas density is subtracted. We use the IAU

recommended value for R⊙ (=8.5 kpc) and this was also used to determine the observed

thickness map for H I gas (Levine et al. 2006a). The scale length Rd was set equal to 3.2 kpc

(Mera et al. 1998) in accordance with the recent determinations of smaller disk scale-length

for our Galaxy.

4.1. Stellar and H I velocity dispersion

The stellar vertical dispersion was derived from observation of radial dispersion by Lewis

& Freeman (1989) and then using the assumption that the ratio of the vertical to radial

velocity dispersion is equal to 0.45 at all radii in the Galaxy, equal to its observed value in

the solar neighbourhood as obtained from the analysis of the Hipparcos data (Dehnen &

Binney 1998, Mignard 2000).

The H I velocity dispersion (σHI) has been observed to be nearly constant with radius

at approximately 9±1 km s−1 (Spitzer 1978; Malhotra 1995) in the inner Galaxy (out to the

solar circle). Beyond the solar circle, however, the dispersion has not yet been measured. A

study of 200 external galaxies (Lewis 1984) shows that the observed dispersion has a very

narrow range, about 8±1 km s−1, consistent with observations of our Galaxy. Sicking (1997)

showed that in two external galaxies, dispersion decreases slowly out to the outer edge of the

H I layer. In a number of other galaxies, the velocity dispersion decreases and then stabilizes

at a constant value of 7±1 km s−1 (Shostak & van der Kruit 1984; Dickey 1996; Kamphuis

1993). This decrease in velocity dispersion is perhaps due to the lesser number density of
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supernovae (SN) in the outer region (McKee & Ostriker 1977). On the other hand, recent

work by Dib et al. (2007) shows that the SN do not affect the observed gas velocity dispersion

in the galactic outskirt. A large fraction of the observed velocity dispersion is non-thermal (or

turbulent) in origin and the supernovae could be the major source for this turbulent nature

of the H I velocity dispersion. Note that the thermal contribution accounts for only about 1

km s−1 (Spitzer 1978). In any case, the H I velocity dispersion is as crucial as the dark matter

distribution is in determining the H I thickness map in the outer Galaxy. Unfortunately, in

the absence of any direct measurement of the H I velocity dispersion (σHI) beyond the solar

circle, we use σHI as a model parameter in the fitting problem. We construct various model

based on the H I velocity dispersion values and models of dark matter distribution (Eq.[12]).

4.2. Model rotation curves

We model the rotation curve for the Galaxy using a bulge, an exponential disk for the

stars and gas and a dark matter halo. Modelling the observed rotation curve is a non-trivial

task given that there are various kind of uncertainties and turns out to be a non-linear

regression problem in a multidimensional parameter space. Naturally, such modelling would

suffer from uniqueness problem. So we aim here to reproduce the main features in the

observed rotation curve and try to generate such rotation curves for which the circular speed

lies in the range determined by the relation Θ◦ = (27±2.5)R◦ kms−1 due to Kerr & Lynden-

Bell (1986). Since we use the IAU recommended value for R◦ = 8.5 kpc, the above range

implies Vc = 230 ± 21 kms−1 at the solar radius. Keeping these constraints in mind, we

proceed to derive the model rotation curves in the following way. We assume that the disk

and the bulge are aligned with the symmetry axis of the dark matter halo. We also assume

the virial equilibrium in the Galaxy. Then the square of the total circular velocity in the

disk mid-plane (z = 0) can be written as:

V 2
c = V 2

bulge + V 2
stars + V 2

gas + V 2
dmh, (19)

where we adopt a Plummer-Kuzmin bulge model to derive the bulge contribution to the

rotation curve. The density profile of the bulge is given by the following formula (Binney &

Tremaine 1987):

ρb(R) =
3Mb

4πR3
b

(

1 +
R2

R2
b

)−5/2

, (20)

where Rb is the bulge scale-length and Mb is the total bulge mass. We have used same
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values of these two parameters in all of our model rotation curves e.g. Rb = 2.5 kpc and

Mb = 2.8×1010M⊙ (see Blum 1995). The inclusion of this simple spherical bulge reproduces

a reasonable looking rotation curve for the Galaxy. However, the contribution of the bulge

to the H I thickness in the region of interest (R ≥ 16 kpc) is almost negligible, the bulge

contributes to ∼ 5% to the overall gas thickness.

The disk contribution to the circular speed is derived using the potential for the expo-

nential mass distribution (Σ(R) = Σ0e
−R/Rd where values of the parameters are mentioned

in §4) and similarly for the various dark matter halo models for which the parameters are

mentioned in the appropriate places below. The gas contribution to the total circular speed

is derived from the following exponential distribution for the H I beyond 14 kpc (Levine et

al. 2006a):

ΣHI(R) = 4.5 × e[−(R−14kpc)/4.3kpc]

Below 14 kpc, we use a constant surface density for the H I gas (as observed) to derive

its contribution to the rotation curve. Although there is a notable difference of our model

rotation curves with the observed one (Brand & Blitz 1993), the slowly falling rotation curves

due to the p = 2 halo model follow the trend found in the Milky Way’s rotation curve in the

very recent analysis of Xue et al. (2008) based on the SDSS data.

5. H I flaring and nature of dark matter halo

There is a clear North-South asymmetry in the thickness map of the H I gas in our

Galaxy. It is not obvious what would have caused such asymmetry in the H I gas distribution.

What is the underlying nature of this asymmetry? It remains to be shown whether this is

purely a gas dynamical effect or reflects some gravitational effect. Below we describe a

step by step analysis of the cause of this asymmetry, which gradually reveals the nature of

dark matter halo in our Galaxy. We used averaged flaring data over the north (0 ◦ ≤ φ ≤
180 ◦) and south (180 ◦ ≤ φ ≤ 360 ◦) respectively excluding about 15 ◦ region about the

Sun-Galactic centre line. The vertical volume density distribution of the gas is derived using

the rotation curve due to Brand & Blitz (1993). The thickness of the gas is then derived

by taking the second moment of the density distribution after the thickness filter has been

applied. In this respect, the thickness measurement of the gas is different from the Levine

et al. (2006a) who uses the tail integration method and it is also different from Kalberla et

al. (2007) who uses half width at half maximum (HWHM) for the half-thickness of the gas

later. In all our analyses below, we use the same thickness map for the gas, although it is
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understood that a different rotation curve would indeed produce different thickness map for

the gas. However, on doing an error analysis we find that the error in calculating the distance

due to an error in the rotation velocity is small (∼ 10% at large galactocentric distances) to

produce an appreciable change in the observed thickness of the gas. The readers are referred

to §8 for a discussion on the dependence of the thickness data on the rotation curve. The

observed N-S asymmetry denotes the average asymmetry in the thickness map of the H I

gas and according to eq.[18], its given by ηobs = 0.262.

5.1. Models of axisymmetric dark matter halo

We first considered a simple axisymmetric dark matter halo model (with all ǫh = 0 in

eq.[14]) for the Galaxy and used different velocity dispersions for the H I in the two halves

to see if the observed N-S asymmetry could be reproduced.

5.1.1. p = 1, Softened Isothermal Halo

The softened isothermal dark matter halo produces naturally the asymptotically flat

rotation curve in a spiral galaxy. It has been shown previously based on the Wouterloot

et al. (1990) data that a p = 1 softened isothermal halo of any shape (oblate or prolate)

cannot explain the observation (Narayan et al. 2005). In the present study, we found the

same trend, so we considered a nearly spherical halo to begin with for further investigation.

We adopt the parameters of the p = 1 isothermal dark matter halo from the mass model

of our Galaxy based on microlensing observation by Mera et al. (1998). We found that

the p = 1 halo with core radius Rc= 5 kpc, central density ρ0=0.035 M⊙pc−3, which gives

rise to an asymptotically flat rotation curve with terminal velocity of 220 km s−1 (Brand

& Blitz 1993) (see bottom right of Fig. 1), and with σHI=9 km s−1 cannot explain the

present observation (LAB data). The fact that p = 1 softened isothermal halo can’t explain

the flaring in the gas thickness distribution has already been verified by Narayan et al.

(2005) in the case of Wouterloot et al. (1990) data and more recently by Kalberla et al.

(2007) based on the LAB survey data. Now, there are two aspects of the H I thickness

map derived from the LAB survey data: the radial variation of the gas thickness in the

North and the South and the prominent asymmetry between the North and the South as

mentioned already. An axisymmetric p = 1 halo with the above mentioned parameters

(giving rise to Vc = 220 km s−1) and σHI = 9 km s−1 appears to be quite massive and hence

difficult to reproduce the present observation. By inspection of Fig. 1 (top left), it is easy

to check that there has to be an order of magnitude decrease in the dark matter mid-plane
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density to reproduce the observed gas thickness at 30 kpc. Moreover, the striking difference

between the two slopes makes it clear that even a linearly increasing velocity dispersion with

radial distance (although unphysical) cannot fit the observation. Obviously, an axisymmetric

p = 1 halo alone can not explain the other important aspect of the thickness map, namely,

the observed N-S asymmetry. This fact leads us to explore another possibility of a model of

an axisymmetric p = 1 halo accompanied by a non-axisymmetric distribution of H I velocity

dispersion. It can be explained in a simple way that a different H I velocity dispersion on

both sides of the hemispheres is not going to improve the situation either. In a naive theory,

the thickness of H I gas can be written as hHI ∝ σHI/
√

Gρmid. Using this simple formula, it

is easy to see that in order to increase the thickness by a factor of 2 at a particular radius,

one needs to raise the dispersion by a factor of ∼ 2 (because ρmid remains the same). At

R = 30 kpc, the thickness of H I gas in the Northern hemisphere is roughly a factor of 2 more

than that in the Southern hemisphere and to explain this asymmetry based on purely gas

dynamical effect and the axisymmetric p = 1 isothermal halo (giving rise to a flat rotation

curve), one needs to have σHI ∼ 20 km s−1 which is unlikely according to the standard

models of ISM of our Galaxy.

5.1.2. p=1.5, an NFW type halo

At large distances (R ≫ Rc) from the centre, p = 1.5 halo resembles an NFW profile

(Navarro et al. 1996) for the dark matter halo. In our model of vertical equilibrium, this

seems to be preferable compared to the p = 1 softened isothermal dark matter halo. Because

of the density falling faster than the p = 1 isothermal halo, the resulting rotation curve also

starts falling beyond about 10 kpc. We use eq.[2.96b] of Binney & Tremaine (1987) to

generate the rotation curve of the p = 1.5 halo. The axisymmetric p=1.5 halo with Rc= 8

kpc and ρ0=0.025 M⊙pc−3 produces a reasonable rotation curve (see bottom right of Fig. 1).

At R⊙ the rotation velocity is 223 km s−1 and at 2R⊙, Vc=216 km s−1. At 25 kpc, the

difference in rotation velocities between the p = 1 and p = 1.5 halo is approximately 20 km

s−1. In the top right panel of Fig. 1, we show the half-thickness of H I gas due to the p = 1.5

halo model considered here. The axisymmetric halo model with σHI=9.2 km s−1 fits well

the observation in the southern part beyond about 15 kpc. However, the same model does

not fit the thickness curve at all in the northern halves. The solid line shows the curve with

H I velocity dispersion ∼ 12.2 km s−1 and yet does not give a good fit. An increase in the H

I velocity dispersion beyond 12 km s−1 would force the model curve to intersect the observed

one only at a single point in the North. This again demonstrates that the N-S asymmetry in

the thickness map of the H I is probably not due to a gas dynamical effect, rather it arises

due to some gravitational effect.
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Fig. 1.— Half thickness of neutral hydrogen gas (first three panels) in the Milky Way and

rotation curve models (bottom right) for different dark matter halos. Top left: Solid line

is the model fitted to the North and dashed line to the South for the p = 1 axisymmetric

halo giving rise to a flat rotation velocity of 220 km s−1 at large radii. Top right: Model

half thickness due to axisymmetric p = 1.5 dark matter halo with different σHI in the two

halves. Bottom left: Model half thickness due to axisymmetric p = 2 dark matter halo with

different σHI in the two halves
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5.1.3. p = 2, a Perfect Ellipsoidal Halo

Previous studies by Narayan et al. (2005) have investigated the axisymmetric p = 2

halo in considerable detail to explain the H I thickness in the Galaxy. Their p = 2 halo

provides a good fit to the Wouterloot et al. (1990) flaring data. In the present study, we also

considered an axisymmetric p=2 halo and see if different H I velocity dispersions can explain

the N-S asymmetry. We consider a core radius Rc= 9.4 kpc and central density ρ0=0.035

M⊙pc−3 which produces a reasonable rotation curve (see Fig. 1) within the uncertainties in

the observation out to 30 kpc where the difference between the p = 1 (flat rotation curve)

and p = 2 rotation curves is ∼ 25 km s−1. Note that the rotation curves for both p = 1.5

and p = 2 halos are slowly falling with radial distance. Recent analysis of the kinematics

of a large number of Blue Horizontal-Branch halo stars from the SDSS database by Xue et

al. (2008) show that the rotation curve of our Milky Way is actually falling slowly with the

Galactocentric radius. So this direct observational analysis supports the falling trend in the

rotation curve of Milky Way. Infact, the choice of the halo parameters for the p=2 case

makes the rotation curve more realistic as observed. At 25 kpc, the circular speed due to our

p = 2 halo differs from the flat rotation curve only by ∼ 15 km s−1 which is well within the

observed error bars. Beyond about 15 kpc, with linearly decreasing H I velocity dispersion

from 9.2 (at 10 kpc) to 8.0 (at 30 kpc) km s−1, the p = 2 halo considered here gives a good

fit to the observed data in the southern halves. However, even with σHI=12.2 or 14.2 km

s−1, the p = 2 halo does not fit well the observation in the north. With 14.2 km s−1, the

model curve over-estimates the observation between 13 - 23 kpc and underestimates beyond

24 kpc. On the other hand with 12.2 km s−1, the model under-estimates the observation

beyond 20 kpc. The solid curve in Fig. 1 (Bottom left panel) is with a constant σHI=13.2

km s−1 in the Northern halves. Compared to p = 1 and p = 1.5, an axisymmetric p = 2 halo

with different H I velocity dispersion comes closer to the observation. We have also tried to

use a linearly decreasing H I velocity dispersion from 13.2 or 12.2 km s−1, but no good fit

found. It becomes quite clear that the observed H I flaring in the North cannot be explained

with any physically meaningful variation of the H I velocity dispersion.

5.2. Non-axisymmetric dark matter distribution

Based on the above three axisymmetric cases we have investigated so far, we conclude

that an asymmetric state of ISM combined with axisymmetric dark matter potential is not

able to explain the observed asymmetry in the thickness map indicating that the observed

asymmetry is probably not due to a gas dynamical effect. The large scale asymmetry in the

north-south thickness map is instead likely to be gravitational in origin. Beyond 16 kpc,
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the stellar contribution is not significant compared to the dark matter, which implies that

the N-S asymmetry is not likely due to the asymmetric stellar disk and also the observed

asymmetry in the stellar disk is not very high in the Galaxy. This gives us a room to explore

whether the N-S asymmetry originates due to an asymmetric dark matter halo. As explained

in §1, such asymmetric dark matter halos are not uncommon even in the cosmological N-

body simulations. By inspecting the observed H I thickness map, we guess that the N-S

asymmetry is primarily lopsided (m = 1) in nature. A lopsided dark matter halo has been

used to provide an explanation for the observed lopsidedness in the underlying stellar disk

and for the asymmetry in the rotation curves of disk galaxies (Jog 1997, 2002). Below we

test our hypothesis that the Milky Way’s dark matter halo is lopsided. We show next that

the observed nature of the H I distribution demands that the lopsided dark matter halo to

be oriented with phase angle φh = 270 ◦. In the present case, φh is the angle between the

direction in which the dark matter distribution is elongated more on one side compared to

the other and the Galactocentric coordinate axes. So the dark matter density maximum

of the lopsided halo is along the southern direction (φ = 270 ◦) and the density minimum

is along the northern direction (φ = 90 ◦). We test p = 1.5 and p = 2 halos as the likely

candidates in our further investigation; p = 1 is not used because it fails to produce the

observed flaring even in the south.

Fig. 2.— Half thickness of neutral hydrogen gas in Milky Way. Solid line is the model fitted

to the North and dashed line to the South. The value of HI velocity dispersion σHI is 9.2

kms−1.
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5.2.1. p=1.5 lopsided halo

Having oriented the dark matter halo with phase φh = 270 ◦, we found that an ax-

isymmetric (ǫh=0) p = 1.5 halo with H I velocity dispersion 9.2 km s−1 fits quite well the

observation in the southern halves (see Fig. 1). However, a purely lopsided configuration

(ǫ2
h = 0 in eq.[14]) with reasonable parameters can not explain the observed asymmetry in

the thickness map of H I gas. The parameter ranges we have tried are σHI = 7 − 10 km

s−1 and ǫ1
h = 0.02 − 0.4. We found that no combination of these parameters could provide

a good fit to the observed data. Further, we tried to fit the combined model of the dark

matter halo (given in eq.[12]) with lopsidedness as the dominant component. Again, for

the above mentioned parameter range no good fit to the observed data was found. Fig. 2

shows a configuration of the dark matter halo in which both the first (m = 1) and second

(m = 2) harmonics are equal in strength and out of phase with each other. Of course, such

configuration of p = 1.5 halo with reasonable H I velocity dispersion (9.2 km s−1) provides

better fit to the observation than the axisymmetric configuration of p = 1.5 halo with high

σHI .

5.2.2. p=2 lopsided halo

Since the axisymmetric p = 2 halo already seemed promising compared to others, we

carried out a detailed analysis of the p = 2 lopsided halo here. We used the basic parameters

like core radius and central density of the axisymmetric p = 2 configuration (see §5.1.3). In

order to find a best fit model of the Galaxy under a purely lopsided halo, we make a 2D

grid of two independent and free parameters (σHI , ǫ1
h) spanning a large dynamical range i.e.

[σHI , ǫ1
h]=[(7 - 12) km s−1, (0.05 - 0.40)] for this halo model. We found that with σHI ≤ 9.0

km s−1, a purely lopsided p = 2 halo is not sufficient to explain the observation. With some

more exploration, we found that a purely lopsided p=2 halo with ǫ1
h = 0.17 and σHI = 11

km s−1 does fit the observation quite well (see Fig. 3). We call this configuration model p2L.

The rotation curve for this model is shown in the bottom panel of Fig. 3. The difference

between the rotation velocities in the North and the South is ∼ 20 km s−1 for this model.

The density contours of the dark matter halo are shown in the right panel of Fig. 3. Note

that the H I velocity dispersion for this model p2L is fairly high. So we further explored

the parameter space consisting of ǫ1
h, ǫ2

h and σHI for the p = 2 dark matter halo to find the

best possible model to explain the observed radial variation of the thickness map and its N-S

asymmetry.

Based on the different values of H I velocity dispersion and different values of the ǫ1
h and

ǫ2
h, we construct three models (model A, model B and model C) which give a very good fit
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Fig. 3.— Left: Half thickness of neutral hydrogen gas in Milky Way, model p2L. Solid

line is the model fitted in the North and dashed line to the South. See Table 1 for the

model parameters. Right: Density contours of the p = 2 lopsided dark matter halo. dashed

lines are for the axisymmetric perfect ellipsoidal (p = 2) halo. Solid lines are for the purely

lopsided p = 2 dark matter halo in case of model p2L. Rc is the core radius of the dark

matter halo. Contour levels are 0.05×ρ0 for the inner most one and decreasing by a factor

of 2 outwardly. HI velocity dispersion σHI is 11.0 kms−1 for this model.

to the averaged observation in both halves of the Galaxy and thereby explain the observed

asymmetry.

Model A

We assumed the velocity dispersion of H I, σHI = 8.5 km s−1, to be constant out to

30 kpc for simplicity. The value of the velocity dispersion is more reasonable one and it is

very closed to what has been used by Kalberla et al. (2007) in their best fit model. Once
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σHI is fixed, we are essentially left with again a 2D grid of free parameters ǫ1
h and ǫ2

h for

the dark matter halo. The parameter range explored is [ǫ1
h, ǫ2

h]=[(0.05 - 0.40), (0.05 - 0.40)].

We found that the inclusion of the second harmonic component in the dark matter halo

dramatically improved the quality of the fit compared to all the previously explored cases.

The best fit model parameters, for the above mentioned σHI , are ǫ1
h=0.20 and ǫ2

h=0.18.

Such configuration of the dark matter halo which is indeed lopsided, reproduced the N-S

asymmetry quite well in the Galaxy (see Fig. 4). The rotation curves for the model in the

two halves of the Galaxy are shown in the right panel of Fig. 4. The circular speeds at the

solar radius are quite comparable to the p = 1 flat rotation curve within the uncertainties.

At 25 kpc, the north and south rotation curves differ from each other by ∼ 19 km−1, the

value in the north being ∼ 209 km−1. The density contours of the model dark matter halo

are shown in the bottom panel of Fig. 4. Because of the presence of the second harmonics

(m = 2), the contours are elongated in the East-West direction of the Galaxy too. It is quite

clear now that a simple model that consists only of a lopsided dark matter halo does not

reproduce the observed asymmetry in the thickness map of the atomic hydrogen gas in our

Milky Way. The lopsided dark matter halo with some amount of second harmonic (m = 2)

superposed onto it appears to give the best fit to the data compared to the purely lopsided

dark matter halo. We call the emerging picture of dark matter halo as elliptically perturbed

lopsided dark matter halo.

Model B

Here we consider the velocity dispersion of H I, σHI = 9 km s−1 slightly higher compared

to model A and again flat out to 30 kpc. The increased velocity dispersion improves the

fit by a very small amount below 16 kpc. With the same halo parameters as in model A,

the fit is not good beyond 16 kpc. So we reduced the strength of the second harmonic (ǫ2
h)

and when the second harmonic is decreased to ∼ 2/3 of the first harmonic (ǫ1
h) we again

recovered a good fit to the data. The resulting model halo with parameters ǫ1
h = 0.2 and

ǫ2
h = 0.14 reproduced the N-S asymmetry in the Galaxy quite well (see Fig. 5). The rotation

curves for the model in the two halves of the Galaxy are shown in the right panel of Fig. 5.

At 25 kpc, the rotation speed in the north is ∼ 191 km−1 and in the south it is ∼ 212 km−1.

It appears that the rotation curve in the south is more closer to the flat rotation curve (with

Vc = 220 km−1). The density contours of the model dark matter halo are shown in the

bottom panel of Fig. 5. Due to the presence of a small component of second harmonic, the

contours are elongated by a small amount compared to model A in the East-West direction

of the Galaxy. This dark matter halo can be considered as a dominantly lopsided halo. This

model again confirmed our earlier findings from model A.

Model C
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Fig. 4.— Top left: Half thickness of neutral hydrogen gas in Milky Way, model A. Solid

line is the model fitted in the North and dashed line to the South. Beyond ∼ 16 kpc the

fit is quite good. The model parameters are given in Table 1. Top right: Rotation curve of

the Galaxy for model A. Bottom: Density contours of the dark matter halo of model A.

dashed lines are for the axisymmetric perfect ellipsoidal (p=2) halo. Solid lines are for the

elliptically perturbed lopsided p=2 dark matter halo with second harmonics (m = 2) being

∼ the first (m = 1) one (see table 1). Rc is the core radius of the dark matter halo. Contour

levels are 0.05×ρ0 for the inner most one and decreasing by a factor of 2 outwardly. σHI

used for this model is 8.5 kms−1.
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Fig. 5.— Top left: Half thickness of neutral hydrogen gas in Milky Way, model B. The

solid line is the model fitted in the North and dashed line in the South. Beyond ∼ 16 kpc

the fit is quite good. The model parameters are given in Table 1. Top right: Rotation curve

of the Galaxy for model B. Bottom: Density contours of the dark matter halo of model

B. dashed lines are for the axisymmetric perfect ellipsoidal (p = 2) halo. Solid lines are for

the asymmetric lopsided p = 2 dark matter halo with the second harmonic (m = 2)∼ 50%

of the first (m = 1) one (see table 1). Rc is the core radius of the dark matter halo. Contour

levels are 0.05×ρ0 for the inner most one and decreasing by a factor of 2 outwardly. σHI

used for this model is 9.0 kms−1.
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Fig. 6.— Half thickness of neutral hydrogen gas in Milky Way, model C. Solid line is the

model fitted in the North and dashed line to the South. The H I velocity dispersion is quite

high in the radial range 10–16 kpc. See Table 1 for the dark matter halo parameters.

We constructed this model primarily to see if we can explain the observation also in the

region 10 < R < 16 kpc. We found that the mid-plane density distributions of H I and stars

are almost same in the radial range 10 ≤ R ≤ 16 kpc (see Fig. 8) and interestingly enough

the half-thickness of H I in this radial range is almost the same as that of stars. Another

important fact to be noted is that the H I half-thickness is roughly constant in this radial

range (10 ≤ R ≤ 16 kpc). Now, we know that the thickness of H I ∼ σHI/
√

(Gρmid), where

ρmid is the total mid-plane volume density. So we vary the H I velocity dispersion in the

following manner in this radial range:

σHI = 55.6e−R/2Rσkms−1 for 10 ≤ R ≤ 16 kpc . (21)

= 8.5kms−1 R ≥ 16 kpc

From 16 kpc (∼ 5 Rd) onwards σHI=8.5 km s−1 and stays flat out to 30 kpc. We consider

Rσ = 4370 pc because a similar value in the case of stellar disk can produce a flat thickness

(Lewis & Freeman 1989) in the Galaxy.

With the H I velocity dispersion varied in the above fashion (eq.[21]) and ǫ1
h = 0.2 and

ǫ2
h=0.18 (same as model A), we got an excellent fit to the observation (see Fig. 6). Model

C provides the best fit to the observed data and reproduces the observed asymmetry in the

thickness map of H I. In terms of halo asymmetry parameters, model C is exactly equal to

the model A and so are the rotation curves. The density contours are the same as in Fig. 4.

So model C confirms that our best fit dark matter halo model and again it is a lopsided dark

matter halo with some elliptical perturbation.
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6. Comparison of different models

6.1. Measurement of asymmetry

Given the radial variation of the H I thickness in different azimuths (φ), we can quantify

the degree of observed asymmetry by η (see eq.[18]) in the two halves of the Galaxy. We

used this parameter η as a measure of the underlying asymmetry in the thickness distribution

and to differentiate between the above models which seem to reproduce the observation quite

well. The value of ηobs is computed by assuming ϕk = 90 ◦ as discussed at the end of §3. Just

by comparing the observed asymmetry (ηobs) and the model predicted asymmetry (ηmodel),

we find that model p2L is the best match to the observation (see Table 1) but the velocity

dispersion used in this model is quite high. Our next best model is model C based on the

comparison of asymmetry and this model also has a very high velocity dispersion between 10

- 16 kpc. On the other hand model A is probably more reasonable because the H I velocity

dispersion is not very high. The H I dispersion of model A is almost the same as that used

recently by Kalberla et al. (2007); their solution is close to a single component model like

we have considered with an effective constant velocity dispersion of 8.3 km s−1. In all the

four models of p = 2 dark matter halo one thing is common and it is the parameter ǫ1
h ∼ 0.2,

the degree of lopsidedness. So the different models are essentially built up around the same

basic configuration, a lopsided halo. To make the picture more clear, these models, being

a function of two apparently independent parameters (σHI and ǫ2
h), can be thought of as

a family of models of lopsided dark matter halos. From Table 1, amongst the first three

models, it is clear that as ǫ2
h increases, σHI decreases to make the fit better. One interesting

fact about these family of models is that a better fit to the observed data demands that the

second harmonic be out of phase with the first one.

Table 1: Asymmetry and the models of the p = 2 lopsided dark matter halos

Model σHI ρ0 Rc q ǫ1
h ǫ2

h Σ1.1 ηobs ηmodel

(km s−1) M⊙pc−3 kpc M⊙pc−2

p2L 11.0 0.035 9.4 0.95 0.17 0.0 72.0 0.262 0.261

A 8.5 0.035 9.4 0.95 0.20 0.18 80.0 0.262 0.265

B 9.0 0.035 9.4 0.95 0.20 0.14 78.0 0.262 0.271

C Eq.[21] 0.035 9.4 0.95 0.20 0.18 81.0 0.262 0.260

In Table 1 ηobs is obtained from the observed average thickness of H I on both the halves.

ηmodel is from the fitted curves.
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6.2. Constraints from the surface mass density at Solar radius

Apart from the constraint on the rotation curve due to Kerr & Lynden-Bell (1986), we

provide here our estimations of total surface density at the solar radius for various models and

compare them with other measurements from the literature. The value of the total surface

density at the solar radius put a strong and important constraint on any mass model of our

Galaxy. Based on K dwarfs, Kuijken & Gilmore (1991) provide us the total surface density

within 1.1 kpc from the Galactic midplane Σ1.1 = 71±6 M⊙pc−2. By analysing HIPPARCOS

K giants, Holmberg & Flynn (2004) measure Σ1.1 = 74 ± 6 M⊙pc−2. By modeling the H I

thickness in the Galaxy, Kalberla et al. (2007) estimate Σ1.1 = 79 ± 2 M⊙pc−2. Our best

fit models are in good agreement with all the previous measurements. For example, for

the model p2L Σ1.1 = 72 M⊙pc−2; for the model A, Σ1.1 = 80 M⊙pc−2; for the model B,

Σ1.1 = 78 M⊙pc−2 and for model C, Σ1.1 = 81 M⊙pc−2. We used the total baryon mass

surface density at the solar radius to be Σstar+gas = 50 M⊙pc−2 which is within the limit

(48 ± 8 M⊙pc−2 at R⊙) provided by Kuijken & Gilmore (1989). Within 800 pc from the

Galactic plane Holmberg & Flynn (2004) reports a surface density of Σ0.8 = 65± 6 M⊙pc−2

and from Kalberla et al. (2007) Σ0.8 = 66.9 ± 2 M⊙pc−2. In this context, our model p2L

gives Σ0.8 = 65 M⊙pc−2 and from model A, we get Σ0.8 = 71 M⊙pc−2. In Fig. 7, we plot the

total surface mass density (derived from modeling of the vertical hydrostatic equilibrium) of

the Galaxy (including stars, gas and dark matter) within 1.1 kpc from the Galactic midplane

as function of radius. It shows clearly that the surface density is higher in the Southern part

of the Galaxy. In any case, our results on the surface density measurements in the solar

neighbourhood are in close agreement with previously quoted values or within the quoted

error bars.

Fig. 7.— The total surface mass density in the Galaxy within 1.1 kpc from the Galactic

midplane. It includes the stars, H I and the dark matter distribution from our model p2L. At

2R⊙, the difference in the total surface densities between the North and South is ∼ 4M⊙pc−2.
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6.3. Total mass of the Galaxy

Starting from the cosmological point view to studying galactic dynamics and especially

in Galactic astronomy it is very important to have a good knowledge of the total mass of

Milky Way. One of the complete analysis using most of the usual methods e.g. satellite

kinematics, very high velocity stars, Local Group and Galactic rotation curve, Kochanek

(1996) estimated the total mass of the Galaxy to be ∼ 4.9 ± 1.1 × 1011 M⊙ within 50 kpc

from the center of the Galaxy. Previous to this study, Lin, Jones & Klemola (1995) found

the mass of the Milky Way to be 5.5 ± 1.0 × 1011 M⊙ within 100 kpc from the centre. By

modeling the rotation curve, Dehnen & Binney (1998) provided the Milky Way’s mass within

100 kpc to be 7±2.5×1011 M⊙. From the uvby−β survey of high velocity stars, Garcia Cole

et al. (1999) suggest the mass of Milky Way to be 3.2−3.6×1011 M⊙ within 50 kpc from the

Galactic centre. By using the kinematic information for Galactic satellites and halo objects,

Sakamoto et al. (2003) estimated the mass of the Galaxy within 50 kpc (excluding Leo I)

to be 5.0 − 5.5 × 1011 M⊙. In contrast to these studies, Kalberla et al. (2007) based on the

H I thickness modeling in the Galaxy found the total mass of the Milky Way disk itself to

be 2.9± 0.1× 1011 M⊙. The most recent analysis based on the Blue Horizontal-Branch halo

stars from the SDSS, Xue et al. (2008) estimate the mass of our Galaxy to be 4.0±0.7×1011

M⊙ within 60 kpc from the Galactic centre. Based on the modeling of H I thickness, we find

the total mass of Milky Way to be ∼ 3.3 × 1011 M⊙ within 100 kpc from the center and

within 50 kpc it is about 3.1× 1011 M⊙. The mass of stellar disk is ∼ 4.2× 1010 M⊙ and the

halo mass within 100 kpc is ∼ 2.53×1011 M⊙. The difference between the halo masses in the

North and South is ∼ 2−3×1010 M⊙ in our models of asymmetric halos. It is true that the

total mass of the Galaxy saturates beyond about 100 kpc because the density profile of our

p=2 dark matter falls faster (∝ R−4 at R >> Rc) than the the isothermal one. But within

100 kpc, our estimates are in good agreement with most of the previous mass estimates of

Milky Way.

7. Comparison with Previous Work

The most recent work which has extensively used the LAB survey H I data are Levine

et al (2006a) and Kalberla et al (2007). Of these two, Kalberla et al. (2007) has studied

in considerable detail the behaviour of the H I thickness in the Galaxy and found that in

order to explain the observation they needed beside a massive dark matter halo, a dark

matter disk and a dark matter ring. Such configurations of the dark matter for our Galaxy

is troublesome for the CDM paradigm.

Here, we would like to point out few similarities and differences of our method with the
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previous ones. First of all, one of our best-fit models, namely model A, uses a constant H I

velocity dispersion of 8.5 km s−1 which is close to what Kalberla et al. (2007) used for the

their model namely 8.3 km s−1. To make it more clear, although we do not use explicitly the

different phases of ISM (e.g. CNM and WNM) to model the H I thickness map, the state of

the ISM is roughly the same in our model as it is in Kalberla et al. (2007). In contrast to

Kalberla et al. (2007), we consider non-axisymmetric models of dark matter halo and also

a mild lopsided stellar disk. From Fig. 8, it is clear that the gas self-gravity is comparable

to the stellar one and we take into account the full self-gravity of the H I gas in deriving the

thickness map of the gas.

There is a marked difference in the averaged flaring curves in the North and the South

derived in our paper with that in Kalberla et al. (2007) which excludes a region 90 ◦ < ϕ <

110 ◦ in the North showing very high flaring in the H I thickness map. On the other hand, if

this region is included in the averaging process, the averaged observed gas thickness would

increase by ∼ 20% and if the H I velocity dispersion remains constant, one would expect a

less massive dark matter halo from a simple minded calculation. Similarly, if we exclude this

region the thickness in the North reduces to ∼ 3.4 kpc.

Another important fact about the LAB survey data is the pronounced N-S asymmetry in

the gas thickness distribution. Certainly, an axisymmetric model of the Galaxy can not

reproduce such asymmetry in the data. In this context, recent work by Sanchez-Salcedo et

al. (2008) have also shown that MOND provides a reasonably good fit to the azimuthaly

averaged flaring in the H I gas using the same LAB survey data. Now for an axisymmetric

baryon distribution, the MOND potential would also be axisymmetric, because the differen-

tial operator acting on the potential in the Poisson equation is rotationally invariant. Hence,

it would probably be very hard to reproduce the observed N-S asymmetry in the H I thick-

ness map. Whereas our family of lopsided dark matter halos naturally explain the observed

North-South asymmetry.

The density distribution of the dark matter halo (namely the p = 2) in our model is similar

to that obtained by Narayan et al. (2005) (namely a p = 2 halo as the best fit model) based

on the Wouterloot et al. (1990) H I flaring data. The axisymmetric version of our model is

similar to that used by Narayan et al. (2005).

8. Discussion

(i) Self-gravity of the atomic hydrogen gas

In the radial range from 10 - 16 kpc, we find that azimuthally averaged mid-plane volume
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Fig. 8.— Mid-plane volume density of stars and gas in the two halves of the Galaxy. Density

distributions are shown for the model A. For other models they are almost the same. Note

that H I gas is comparable to the stars. N= North and S= South

density of the atomic hydrogen gas is comparable to that of the stars (see Fig. 8) and beyond

this radial range gas is in fact dominating over the stars. This suggests that the self-gravity

of the H I gas is quite important in determining its thickness and thereby the nature of dark

matter halo. By self-gravity of the gas we mean that the gas is held by its own gravity. In

other words, we include the gas density in the Poisson equation to derive its contribution to

the total potential of the Galaxy. Without any self-gravity, the gas would move like a test

particle under the potential of the Galaxy. So it would be interesting to check the change

brought about by excluding the H I self-gravity on its vertical scale-height. The difference is

not negligible, it is seen to be about 10-15% within the optical disk (R < 4Rd). This could be

because these regions are dominated by the stellar disk and by the dark matter respectively.

For the region 4 < R/Rd < 6, the difference is substantial (∼20 - 30%) suggesting that in

this range, the gas gravity is very important in negotiating the hydrostatic equilibrium for

the H I layer. Thus neglecting it may lead to a serious overestimate of the H I scaleheight

in general at all radii in the outer Galaxy and to explain the observed gas scale-height one

may need to invoke a heavier dark matter halo.

(ii) Molecular hydrogen gas

In the present work, we are mostly concerned with the very outer region of the Galactic

disk especially beyond 16 kpc. The particular reason for this is that the thickness curve

of the atomic hydrogen gas in the northern hemisphere of the Galaxy deviates noticeably

from the southern one beyond this region. The molecular hydrogen gas extends upto about

17 kpc in the Galaxy (Wouterloot et al. 1990) and beyond around this region there is little

data. Since our calculation of gas thickness is local (in the sense that we do not consider

the gas gravity in global sense) we have neglected the effect of molecular hydrogen on the
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H I thickness throughout our work. In fact, the absence of molecular hydrogen gas beyond

about 16 kpc makes it more convenient in disentangling the effect of dark matter halo on

the H I gas.

(iii) Effect of Galactic constants

We have built the stellar disk model based on the IAU-recommended values for the

galactic constants - R◦ = 8.5 kpc and Θ◦ = 220 km s−1. It would definitely be interesting

and also worthwhile to know how the results for the halo density profile vary with the assumed

galactic constants. For example, Olling & Merrifield (2001) find the effect of varying these

constants on the inferred axis ratio of the halo. Unfortunately, all the observational inputs

for our model, like the H I and H2 surface densities, H I scale-height and the stellar velocity

dispersion, are based on the IAU-recommended galactic constants and rescaling them for

different values of the constants is beyond the scope of this paper.

(iv) Rotation curve and gas thickness data

Different rotation curves produce different degrees of flaring because of the dependence

of R on Θ through equation 1 of Levine et al. (2006a). The rotation curves used in the present

analysis differ by a small amount < 10% from the flat rotation curve, Θ(R) = 220 km s−1,

used by Levine et al. (2006a). An error analysis shows that R changes approximately by

∼ Θ/Θ⊙, where Θ⊙ is the circular speed at the solar position. Thus, dR/dΘ, the sensitivity

of an error in the distance to an error in the circular speed produces an error in the distance

of a parcel of gas from the center of about 10% at 30 kpc. Because all values of Galactic

latitude are small at large R, this translates to an error in the thickness of the gas layer by

no more that 10%, and then only at the largest distances.

Although the differences in the rotation curves used by us and by Levine et al. (2006a)

implies that the two analyses are not exactly commensurate, we are trying to explain a factor

of 2 increase in the thickness of the gas layer of the Milky Way from one hemisphere to the

other, an order of magnitude larger than the maximum 10% effect caused by differences in

the rotation curves. Note that the factor of 2 change in the scale height occurs at all radii

beyond about R = 17 kpc and the effect on ∆R will be smaller at smaller radii because ∆Θ

is also smaller. Therefore, while there is a 10% effect at the largest distances, the most it

will do is to have a 10% effect on the scaling of the model.

It is worth mentioning at this point that we do not solve the vertical hydrostatic equi-

librium considering epicylic orbit correction for the gas. For this one needs to solve the Jeans

equation and Poisson equation self-consistently, which is considerably more complex than

what we do here, and in any event probably results in only a small correction. Our primary

aim is to understand the nature of the observed asymmetry and build a first order model to
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explain it.

(v) Effect of Galactic warp

The vertical structure of the Milky Way’s disk is fairly complicated. The warp in the

H I disk is very asymmetric; in the northern hemisphere the disk mid-plane rises to a height

of about 4 kpc, while in the south it goes down to about 1 kpc and then again comes back

to the undisturbed mid-plane (Kerr 1957; Burton 1988; Levine et al. 2006a). Since the

warp is a global feature in the Galaxy, it will have its own self-gravity to affect the vertical

oscillations in the disk. The effective vertical oscillation frequency in the disk can be written

as νeff =
√

ν2
d + ν2

warp, where νd is the vertical frequency of the unperturbed disk and νwarp is

the extra vertical frequency due to the enhanced self-gravity of the warp. Because the warp

is global in nature, νwarp is an integral quantity (see eq.[4b] in Saha & Jog 2006). However,

an analytic form for νwarp can be written in a local sense via the WKB analysis and it is

∼
√

2πGΣd|k| (Binney & Tremaine 1987), where |k| is the wavenumber for the warp. Since

we are solving the vertical hydrostatic equilibrium locally, the contribution from the global

warp (|k| −→ 0) becomes insignificant. In order to account for the warp in the gas thickness,

one has to formulate the vertical hydrostatic equilibrium as an integral problem which we

plan for the future.

(vi) Galactic spiral structure

The recent work by Levine et al. (2006b), based on the 21 cm LAB Galactic H I survey,

reveals a multi-armed spiral structure of our Galaxy. Their study shows a good correlation

between the positions of the spiral arms and the H I thickness. This is an expected behaviour

because the presence of the spiral arms would cause enhanced gravity and scattering of the H

I clouds would not change the vertical velocity dispersion appreciably, leading to a decrement

in the H I thickness. However, we do not expect the thickness of H I to change appreciably

because the strength of the perturbed surface density does not vary strongly as a function of

the Galactocentric radius along an arm or even from arm to arm (Levine et al. 2006b). In

the present paper, under the zeroth order approximation, we worked with the average data in

the northern and southern halves of the Galaxy respectively. This is certainly an incomplete

modeling of the data and in future we expect to construct a self-consistent formulation of

the problem to include the spiral structure of the Galaxy.

(vii) Uniqueness of the Lopsided halo model

In astronomy, it is quite a hard job to prove directly the uniqueness of a proposed model

which fits a given set of observational data well. One obvious way of approach is to compare

different theoretical models against the given data set. Given the various uncertainties in

the observation and our incomplete understanding of the physics of our Galaxy, such a
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comparison may even lead to degeneracies and bayesian analysis would probably be the

appropriate way out to lifting such degeneracies or discard other obvious models based on

physical grounds. Before we go into discussing other possible theoretical models, we would

like to remind the reader some basic facts just for a recap. We are dealing with the outer

region of the Galaxy and especially beyond R > 16 kpc which is ∼ 5 disk scale length and

this is also the typical size of the stellar disk in a disk galaxy. So the influence of the stellar

disk on the vertical distribution of the gas is almost negligible compared to that due to the

dark matter halo.

Certainly, the internal disk instabilities alone (being normally weak, except the bar

instability) are unlikely to produce the observed asymmetry in the gas thickness distribution.

One of the possible alternative models is an off-centered dark matter halo with respect

to the Milky Way’s disk. Such a model of an off-centered axisymmetric halo has been used

previously by Levine & Sparke (1998) to generate lopsidedness in the disk. As pointed out

by these authors that this method is effective when the disk lies within the core radius

(almost constant density region of the halo) of the halo and as result is more efficient in

dwarf galaxies rather than in luminous galaxies. In this context, one of our halo model

namely p = 2 halo whose core radius is ∼ 9 kpc as compared to the disk scale lenth ∼ 3 kpc

could have been a possible case for investigation. However, note that the N-S asymmetry in

the gas distribution begins beyond 16 kpc which is roughly ∼ 2×Rc of the halo and at this

radius, the disk is no more in a nearly constant density region of the halo, making it harder

to maintain the lopsidedness. In any case, this is an interesting possibility to be investigated

in a future problem.

Other possible model is an asymmetric gas accretion onto the disk as proposed by Bour-

naud et al. (2005) to reproduce lopsidedness observed in the galactic disk. To produce strong

lopsidedness as observed, one needs the accretion of the cold gas through the cosmological

filaments to be highly asymmetric and in reality it is not clear if the gas accretion is asym-

metric to such a degree. On the other hand, it makes sense to think in this direction because

the H I distribution looks more disturbed in the North rather than in the South. At this

point, it is worthwhile to mention that the gas actually contributes very little to the rota-

tion curve (mostly dominated by the dark matter); so an axisymmetric p = 1 halo with an

asymmetric gas accretion again may not be the good candidate for the present observation.

However, an axisymmetric p = 2 halo with an asymmetric gas accretion could have been a

possible candidate, but its beyond the scope of the present paper to examine such a model

in considerable detail.

On the other hand, our lopsided halo models are more natural to occur in cosmological

scenario. Tidal interactions or large scale tidal harassment or major mergers of neighbouring
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dark matter halos are more likely to produce large scale perturbations in the dark matter

halo. And since the CDM halos are collisionless object the survival of such global perturba-

tions in the halo is less of a problem.

9. Conclusions

We have analyzed both axisymmetric and non-axisymmetric configurations of dark mat-

ter halos with a consistent picture of the ISM to explain the observed nature of the North-

South asymmetry in the thickness distribution of the H I gas. Below we summarize the main

results:

With a model of the ISM that has reasonable values of the gas velocity dispersion, an

isothermal dark matter halo producing a flat rotation curve with Vc=220 km s−1 cannot

produce the observed flaring in the H I gas thickness.

We show that the nature of the systematic North-South asymmetry in the H I thickness map

is gravitational in nature. An axisymmetric dark matter halo with different values of the

H I velocity dispersion in the two halves of the Galaxy can not reproduce this asymmetry.

The observed asymmetry in the thickness map of neutral hydrogen gas is apparently not the

result of purely gas dynamical effects.

We show that a purely p = 1.5 or p = 2 lopsided dark matter halo also cannot explain

the observed North-South asymmetry. For a purely p = 2 lopsided halo, the H I velocity

dispersion has to be unreasonably large to come close to the observation and even then, the

fit is not very good.

Finally, we come up with a configuration of the dark matter halo in which some amount

of second harmonic (m = 2) is superposed out of phase onto a purely p = 2 lopsided halo.

For the best fit models (A & C), the values of lopsidedness and elliptical perturbation are

ǫ1
h = 0.2 and ǫ2

h = 0.18 respectively. We call such a halo an elliptically perturbed lopsided

dark matter halo which can explain the observed North-South asymmetry. Basically, the

emerging picture of the dark matter halo of the Milky Way is dominantly lopsided in nature.

In such a halo, the density falls off faster than the p = 1 isothermal dark matter halo. The

emerging model of the asymmetric dark matter halo is supported by the halos formed in the

recent cosmological N-body simulation.
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