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Abstract. The observed flaring of HI disk in the outer region of galaxies has been used in the past to determine the shape of
the dark matter halo. Previous studies based on this concept suggest a slightly oblate halo (axis ratio ∼0.8) for our Galaxy. We
reinvestigate this problem by calculating the HI scaleheight in the outer Galaxy to a larger radial distance, and by studying its
dependence on the shape and the density profile of the halo. We find that a simple isothermal infinite halo of any shape- oblate
or prolate, is not able to account for the observed flaring. Instead we show that a spherical halo with density falling faster than
isothermal halo in the outer region provides a better fit to the observed HI flaring as well as the observed rotation curve of our
Galaxy. These halos have about 95% of their mass within a few hundreds of kpc for R◦ = 8.5 kpc and Θ◦ = 220 km s−1, the
central density and core radius can be constrained to the range ρ◦ = 0.035−0.06 M� pc−3 and Rc = 8−10 kpc. Our claim for
such “finite-sized” spherical halos is supported by recent literature on numerical simulation studies of halo formation as well
as analyses of SDSS data.
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1. Introduction

It is a well-known observational fact that the atomic hydrogen
layer flares in the outer Galaxy (Kulkarni et al. 1982; Knapp
1987; Wouterloot et al. 1990; Diplas & Savage 1991; Merrifield
1992; Nakanishi & Sofue 2003). HI flaring is also noticed in
many external galaxies seen edge-on (Brinks & Burton 1984;
Olling 1996a; Matthews & Wood 2003). A possible cause for
flaring could be that the total gravitational force acting perpen-
dicular to the disk plane decreases with radius while the veloc-
ity dispersion of HI is observed to be nearly constant (Lewis
1984). The contribution to the total perpendicular gravitational
force comes mainly from the stellar disk, gas and the dark mat-
ter. While the stellar disk dominates within the optical region
of a normal disk galaxy, the outer region is dominated by the
dark matter. The disk and halo seem to dominate in different
regions of a galaxy because of their different density distribu-
tions. Although both decrease from the center, the disk den-
sity decreases rapidly whereas the halo density decreases much
more slowly, so that the halo extends to several times the size of
the optical disk. Thus the halo plays a major role in determin-
ing the vertical disk structure beyond the optical region. This
makes the outer Galactic HI layer sensitive to the mass and the
density profile of the halo, and hence it can be used as a diag-
nostic to study the halo properties.

The first attempt towards studying the halo parameters us-
ing HI layer was made by Olling (1995), who has developed a
model where the observed thickness of the HI layer can be used

to predict the shape of the halo. This method has been used to
show that the halos of NGC 4244 (Olling 1996b) and NGC 891
(Becqueart & Combes 1997) are highly flattened with their axis
ratios in the range of 0.2–0.4. Olling & Merrifield (2000) use
the same method to find an axis ratio of 0.8 for the halo of
our Galaxy. However, on spanning a larger parameter space
and considering more factors which affect the HI scaleheight,
they find the halo to be closer to spherical for any R◦ > 7 kpc
where R◦ is the distance between sun and the Galactic center
(Olling & Merrifield 2001). Another measurement of the shape
the halo of our Galaxy comes from an entirely different method.
Using the kinematics of the tidal streams of stars surrounding
the Galaxy, called the Sagittarius stream, Ibata et al. (2001)
show that the Galactic dark halo is almost spherical. They con-
clusively rule out axis ratios < 0.7 for our Galaxy. In general,
there is a lot of interest now in determining the shape of the
dark matter halo in a galaxy (see e.g., Natarajan 2002, and the
references therein).

The focus of this paper is to determine the halo parame-
ters which provide the best fit (in the least square sense) to
the observed HI scaleheight. The halo parameters we intend
to explore are its central mass density ρ◦, core radius Rc, the
shape (or axis ratio) q and the power law index of the density
profile p. We calculate the HI scaleheight, numerically, based
on our self-consistent model for the Galaxy (Narayan & Jog
2002) and compare the results with the observations. The grav-
itational force due to the dark matter halo is incorporated in the
model as an external force acting on the disk. The effect of the
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disk gravity on the halo is thus neglected in this model so that
the halo is taken to be rigid or non-responsive. The HI scale-
height is first obtained using the simplest profile for the halo –
a spherical screened isothermal density profile. Subsequently,
the shape of this halo is varied. Next we study the effects of
including a non-isothermal halo by varying the power law in-
dex of its density profile. We find that the best fit to the data is
obtained for a spherical halo whose density falls more rapidly
(p = 1.5−2) than that of an isothermal halo (p = 1).

The formulation of the problem is described in Sect. 2 while
the method of calculation and parameters used in the model
are discussed in Sect. 3. Section 4 is devoted to the results of
this paper, and in Sects. 5 and 6, we present discussion and
conclusions.

2. Formulation of the problem

2.1. Vertical equilibrium

We treat the Galactic disk to consist of three major components:
the stars, the interstellar atomic hydrogen gas HI, and the inter-
stellar molecular hydrogen gas H2, which are coupled gravi-
tationally. We assume that the three components are axisym-
metric and are in hydrostatic equilibrium in the z direction. We
use the galactic cylindrical co-ordinates R, φ, z. Then the disk
dynamics under the force field due to the rigid halo can be de-
scribed by the Poisson equation, and the force equation along
the normal to the plane (the equation of pressure equilibrium)
for each component. The Poisson equation for the axisymmet-
ric galactic system in cylindrical geometry is given as:
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where ρi with i = 1 to 3 denotes the mass density for each
disk component, ρh denotes the same for the halo, and Φtotal

denotes the potential due to the disk and the halo. For a disk
with a flat rotation curve, the radial term in the above equa-
tion is identically equal to zero at the mid-plane (z = 0). The
rotation curve of our Galaxy is not observed to be strictly flat
(Merrifield 1992; Honma & Sofue 1997). But quantitatively,
we find that the radial term contributes to less than 1% change
in the HI scaleheight. Hence, this term can be neglected and
Eq. (1) reduces to:
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The equation for pressure equilibrium in the vertical direction
for each component is given by (e.g. Rohlfs 1977):
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On combining the above two equations, we get the equation for
the vertical equilibrium of each component in the disk under
the field of the halo to be:
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Here, we assume that the vertical velocity dispersion is inde-
pendent of distance from the disk plane, that is, the disk is taken
to be isothermal. Note that the above treatment does not assume
the disk to be thin. Under the thin disk approximation, the disk
contribution to the radial term in Eq. (1) would drop out and
Eq. (4) would reduce to:
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where Kz is the vertical force due to the halo. The above equa-
tion was used to calculate the stellar and gas scaleheights in
the inner region of the Galaxy in our earlier paper (Narayan &
Jog 2002). We find that treating the HI disk to be thin in the
present case would overestimate the HI scaleheight by as much
as 10%. Hence, we have used the general approach for a thick
disk for HI gas (Eq. (4)) in the present paper.

2.2. Dark matter halo

We assume a four-parameter halo model as described by
the following density profile (de Zeeuw & Pfenniger 1988;
Becquaert & Combes 1997)

ρ(R, z) =
ρ◦(q)(

1 + m2

R2
c (q)

)p (6)

where ρ◦ is the central mass density of the halo, Rc(q) is the
core radius, q is the axis ratio and p is the index. Here by def-
inition, m2 = R2 + z2/q2 represents the surfaces of concentric
ellipsoids. Note that q = 1 would give rise to a spherical halo,
while q = c/a < 1 gives an oblate halo and q = c/a > 1 de-
scribes a prolate halo, where a is the axis in the disk plane and c
is that along the vertical direction.

By varying p one can generate different halo density pro-
files. p = 1 gives a screened isothermal halo. The mass den-
sity here goes as r−2 at large radii (r � Rc). This leads to the
mass within a spheroid M(r) ∝ r and a flat rotation curve. For
p = 1.5, ρ ∝ r−3 at large r just like the NFW halo (Navarro
et al. 1996) and this gives M(r) ∝ log(r). i.e., the total mass
goes over to infinity (similar to the case of p = 1) but more
gradually. This family of halos gives rise to a falling rotation
curve for r � Rc. p = 2 halos have their mass density falling
much faster (∝r−4 at large r). M(r) saturates to a finite value,
unlike the other two cases. The rotation curve falls faster than
the former class.

2.2.1. Halo shape: isothermal halo

In the above equation p = 1 gives a screened isothermal halo.
Varying q in this profile would give an axisymmetric “pseudo-
isothermal” halo of a different shape. When the shape of a halo
of fixed mass changes to either prolate or oblate, its central
density, ρ◦, and the core radius, Rc, are bound to change in
order to conserve the mass. Therefore to know the exact density
profile for any ellipsoid, we need to first calculate the ρ◦ and Rc
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Fig. 1. This plot shows the variation of halo parameters as a function of its axis ratio (see Eq. (7)). Figures 1a and b show the variation in the
central density and the core radius, with oblateness (q=minor axis/major axis). Figures 1c and d show the same as a function of prolateness
(q=minor axis/major axis). This dependence on axis ratio arises from keeping the mass within a thin spheroidal shell of the halo and the
terminal velocity of the halo invariant of q.

as functions of q. We find that ρ◦(q) and Rc(q) are related to
their spherical counterparts by the following relations:

ρ◦(q) = ρ◦(1)
1
q

(
e

sin−1 e

)3

Rc(q) = Rc(1)

(
sin−1 e

e

)
· (7)

These are obtained by imposing the following two constraints:
the mass within a thin spheroidal shell (Binney & Tremaine
1987, p. 54) and the terminal velocity of the halo should be
independent of q. Here e is the eccentricity, and e =

√
1 − q2

for the oblate case (q < 1); and e =
√

1 − (1/q2) for the pro-
late case (q > 1). Figures 1a and 1b show the plots for ρo(q)
and Rc(q) respectively as a function of oblateness and Figs. 1c
and 1d give the corresponding plots for prolate shapes.

2.3. Comparison with previous work

We note that relations for ρo(q) and Rc(q) for the oblate case
have been previously obtained by Olling (1995) (see Fig. 2 of
his paper) but by using a different method. The rotation veloc-
ity at core radius and the terminal velocity are the two con-
straints used to derive the relations for ρo(q) and Rc(q) in his
work. This method also yields similar results but the method is
cumbersome and the relations are approximations.

In this respect, we find that our method is advantageous in
the following ways: first, it gives simple and accurate relations
for Rc(q) and ρo(q), and second, these relations can be used for
the oblate as well for the prolate cases along with the appropri-
ate relations between e and q as given above, whereas Olling
considered only oblate halos.

The “global approach” originally proposed by Olling
(1995) and subsequently used by Olling & Merrifield (2000,
2001), to calculate the HI scaleheight is a general one and can

be used even if the stellar disk is truncated before the HI layer
ends. The method used in this paper is the so-called “local ap-
proach” (see Sect. 2.1), where the density obtained as a solution
is based on the local graviational potential. This method, which
was previously used by Spitzer (1942) and Bahcall (1984) to
get classic results for the vertical disk distribution, is adopted
in our work too because of its simplicity. The drawback of this
method is that it does not yield self-consistent results (verti-
cal density distribution and scaleheight of HI in this case) for
truncated stellar disks. In our work (as in the works of Spitzer
and Bahcall), the assumed density distributions of all the disk
components and the halo are continuous. Hence the results are
very close approximations of the exact self-consistent solutions
(obtained by using the global approach) and are therefore valid.

3. Calculations and input parameters

Equation (4) represents the three coupled equations for the
three disk components (stars, HI, and H2) which are to be
solved for the corresponding density distributions. The verti-
cal density distribution for each component responding to the
total potential of the disk and the halo, is solved for numeri-
cally as an initial value problem, using the fourth order Runge-
Kutta method of integration (Press et al. 1994). The details of
this procedure are presented in our earlier paper (Narayan &
Jog 2002). At any radius R, the HWHM of the vertical density
distribution is defined as the scaleheight. Repetition of the cal-
culation at regular intervals of the radius gives us the “model”
scaleheight curve.

The input parameters for the model for each disk compo-
nent are its surface density and vertical velocity dispersion. The
surface densities for HI and H2 are taken from the observations
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Fig. 2. The calculated HI scaleheight is shown as a function of the
galactocentric radius in the outer region of the Galaxy. The shape of
an initially spherical isothermal halo (ρ◦ = 0.035 M� pc−3; Rc = 5 kpc)
is changed keeping its mass constant. This plot shows the results from
our model for different axis ratios. The solid line is due to spherical
shape (q = c/a = 1); the dashed lines are due to oblate halos (c/a =
0.8, 0.6, 0.4) and the dotted lines are due to prolate halos (a/c = 0.8,
0.6, 0.4). The points show the observed values. Note that neither the
oblate nor the prolate-shaped halos are clearly favoured by the data.

of Wouterloot et al. (1990). The stellar disk surface density
is assumed to fall exponentially with distance from the cen-
ter. The stellar disk mass and the surface density at any radius
can be calculated using the following measured/inferred quan-
tities: the stellar surface density at solar region Σ�, the disk
scalelength Rd and the distance of sun from the center R◦. We
use Σ� = 45 M� pc−2 which is consistent with 48 ± 9 M� pc−2

obtained by Kuijken & Gilmore (1991) and 52 ± 13 M� pc−2

obtained by Flynn & Fuchs (1994) for the total surface den-
sity, after the gas density is subtracted. We use the IAU rec-
ommended value for R◦ (=8.5 kpc) and Rd is equal to 3.2 kpc
(Mera et al. 1998) in accordance with the recent determinations
of smaller disk scalelength for our Galaxy.

The stellar vertical dispersion is derived from the observa-
tions of radial dispersion by Lewis & Freeman (1989) and the
assumption that the ratio of the vertical to radial velocity dis-
persion is equal to 0.45 at all radii in the Galaxy, equal to its
observed value in the solar neighbourhood as obtained from
the analysis of the Hipparcos data (Dehnen & Binney 1998;
Mignard 2000). The vertical velocity dispersion for H2 is taken
to be 5 km s−1 (Stark 1984; Clemens 1985).

3.1. HI velocity dispersion

The HI velocity dispersion is observed to be almost constant
with radius and is about 9 ± 1 km s−1 (Spitzer 1978; Malhotra
1995) in the inner Galaxy (upto solar circle). Beyond the solar
circle, however, the dispersion is not yet measured. A study

of 200 external galaxies (Lewis 1984) shows that the ob-
served dispersion has a very narrow range, about 8 ± 1 km s−1,
consistent with observations of our Galaxy. Sicking’s (1997)
work shows that in two external galaxies, dispersion decreases
slowly upto the outer edge of the HI layer. In a number of other
galaxies, the velocity dispersion decreases and then saturates
to a constant value of 7 ± 1 km s−1 (Shostak & van der Kruit
1984; Dickey 1996; Kamphuis 1993). This decrease in disper-
sion is perhaps due to the lesser number density of supernovae
in the outer region (McKee & Ostriker 1977). A major part of
the observed dispersion is non-thermal in origin and the super-
novae could be the major source for this whereas the thermal
contribution comes upto just about 1 km s−1 (Spitzer 1978).

In this work, the dispersion is taken to be 9 km s−1 at
9 kpc, consistent with Malhotra (1995). Between 9–20 kpc
the dispersion is allowed to decrease linearly with a slope of
–0.2 km s−1 kpc−1, as it is found to give the best fit to the data.
Beyond 20 kpc, which is about twice the optical disk size, it
is kept fixed at 7 km s−1, equivalent to that observed in exter-
nal galaxies. This is perhaps justified in the absence of direct
observations in the outer Galaxy.

4. Results

In this section we calculate the HI scaleheight versus radius
in the outer Galaxy using the above parameters for the disk
components and different density profiles for the dark matter
halo. We then compare our results with observed HI scale-
height data. Of the various observations of HI scaleheight in
the outer Galaxy by different authors, we find that results of
Knapp (1987), Wouterloot et al. (1990) and Merrifield (1992)
are consistent with each other. Of these, Wouterloot et al give
scaleheight values upto a very large distance (nearly 3 R◦) with
closest sampling (bin size of about 250 pc). Therefore we use
their data to fit with the results from our model. Unfortunately,
the error bars associated with these data points are not given.
So, we compute least square (which is equivalent to χ2 with
unit error bars) of the model-generated curve in order to mea-
sure its goodness of fit. Merrifield (1992) has pointed out that
Wouterloot’s data has to be corrected for beam-size effects but
we note that the correction on the derived HI scaleheight is so
small (Fig. 4 of Merrifield 1992) that it can be ignored in our
study.

The first choice of dark matter profile used here is that pro-
posed as a part of the complete mass model of the Galaxy
by Mera et al. (1998) based on microlensing observations. It
is a simple screened isothermal spherical halo (p = 1) with
Rc = 5 kpc, the central density ρo = 0.035 M� pc−3 and the
terminal rotation velocity= 220 km s−1. Their stellar disk pa-
rameters are Σ� = 45 M� pc−2, Rd = 3.2 kpc and R◦ = 8.5 kpc.
Figure 2 (solid line) shows that the HI scaleheight obtained
using this profile matches well with observations upto about
20 kpc. But, beyond this region the calculated values fall much
below the observed points, thereby giving a poor fit (a high
value of least square).



C. A. Narayan et al.: Constraints on the halo density profile using HI flaring 527

4.1. Shape of the halo

Next, we consider whether halo of any different axisymmet-
ric shape can improve the fit with the data. In doing so the
remaining halo parameters and the disk parameters are kept
unchanged. Such halos, especially those of oblate shape have
gained popularity as discussed in Sect. 1.

Figure 2 shows the resulting scaleheight curves from our
model for a range of values for q, the axis ratio. In addition to
the oblate halos that are extensively studied in the literature,
we also consider halos that are prolate shaped. This makes the
study of the effect of halo shape on the HI flaring complete.
Also, there is some evidence in recent literature in favour of
prolate-shaped halos. For example, Ideta et al. (2000) find that
prolate halo helps sustain warps better. Figure 2 shows that the
scaleheight upto 16 kpc radius remains almost unaffected by
the change in halo shape and the effect of shape is prominent
only beyond 20 kpc. Also note that both the oblate and the pro-
late cases reduce to that of the spherical halo under limiting
conditions (i.e., for q = 1). A definite trend is observed as the
shape is varied from oblate to prolate. The oblate halo tends to
reduce the scaleheight and this reduction increases with flatten-
ing. The effect is exactly opposite for the prolate-shaped halo.
This is because the mid-plane halo density increases on com-
pressing the halo (oblate shape) and decreases on elongating it
(prolate shape). This results in a higher constraining force due
to the oblate shape, and vice versa for the prolate shape.

It is clearly seen that the results from the pseudo-isothermal
models (p = 1; q � 1) do not fit the observations well irre-
spective of the choice of shape and the axis ratio. The least
square for the oblate case increases with increasing oblateness.
Though the curves generated by prolate halos also do not give
a good fit, the least square is lower than that for the oblate case.
The overall trend shown by the prolate curves matches with ob-
servations better but they are still far from giving a good fit to
the data.

4.2. Halo density profiles

Since the variation in the shape of the halo does not lead to a
good agreement between the model and the observations, we
consider change in the density profiles as characterised by the
index p (Eq. (6)). As p is varied between 1, 1.5 and 2, the
shape of the halos is kept spherical for the sake of simplicity.
For each value of p, a realistic range of ρo and Rc is chosen
to form a grid of (ρo, Rc) pairs. The core density ρo is var-
ied between 0.001–0.1 M� pc−3 in steps of 0.002 M� pc−3 and
Rc is varied between 4–15 kpc in steps of 100 pc. The total
(disk+ halo) circular speed at the solar point is calculated cor-
responding to each of these grid points. The HI scaleheight is
calculated for only those grid points which give circular speed
in the range determined by the relation between Galactic con-
stants, Θ◦ = (27 ± 2.5)R◦ km s−1 (Kerr & Lynden-Bell 1986;
Reid et al. 1999). This is the first constraint used to narrow
down the number of possibilities for the best fit halo model.
The second constraint is that the least square value of the model
scaleheight curve should be minimum. We find that just a small
subset (∼10) of the entire set of grid points (∼5000) gives

Fig. 3. The best fit (based on the least square value) for the observed
HI scaleheight is given by a halo with p = 2 where p is the index in the
halo density profile (solid line). For comparison, results for a typical
isothermal halo (p = 1) is also shown (dashed line).

minimum values of the least square. The final constraint im-
posed on this subset is that the total disk+halo rotation curves
generated by these halos should show the main trends seen in
the observed rotation curve (Merrifield 1992; Honma & Sofue
1997) such as the rise beyond the solar point and fall be-
yond 2 R◦. The above procedure is repeated for other values of
index p.

For the specific choice of R◦ = 8.5 kpc (Rd = 3.2 kpc;
Σ� = 45 M� pc−2), the Θ◦ is expected to be in the range
230±21 km s−1. The least square value is found to be minimum
for p = 2 and ρo, Rc are in the range of 0.035–0.093 M� pc−3

and 7–9.5 kpc respectively. These halos span the entire range
of allowed Θ◦ ie, between 210–250 km s−1. Figure 3 shows the
case of ρo = 0.035 M� pc−3 and Rc = 9.4 kpc. As the central
density increases (and Rc decreases), the Θ◦ increases progres-
sively. In each case, the total rotation curve rises from the solar
point, reaches a peak value and then falls beyond. But the rise
becomes more gradual, the peak shifts towards centre and the
fall becomes steeper as the central density increases (for the
higher end of Θ◦), thus growing more and more inconsistent
with the observed rotation curve. Therefore we find that halos
with ρo = 0.035–0.06 M� pc−3 and Rc = 8−9.5 kpc , which
give Θ◦ = 210 to 230 km s−1 give a good fit to the HI data as
well as produce realistic rotation curves.

The choice of p = 1.5 for the halo profile also gives a rea-
sonable fit to the data points, though not as good as for p = 2.
The fall in the rotation curve generated by p = 1.5 is so grad-
ual that it almost appears to be constant in the region of interest.
This is however certainly within the error bars of the observed
rotation curve (Honma & Sofue 1997). The least square values
for the p = 1 halos are so large (for physically meaningful ρo,
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Rc) that they do not pass the very first constraint used to obtain
the best fit halos.

Thus our model shows a preference for 1.5 < p ≤ 2 in
the density profile for the halo (Eq. (6)), corresponding to a
density fall-off proportional to r−β with 3 < β ≤ 4, at very
large radii (R � Rc). For p = 2, the density falls to 10−4 of the
central density at just 10 core radii (∼100 kpc). In comparison,
the fractional fall-off for isothermal case (p = 1) is only 10−2

at the same distance. This steeper density fall can give rise to
the rapid observed flaring between 20–24 kpc. See Fig. 4a for
a comparison between p = 1 and p = 2 density profiles. Note
that at large radii (R � Rc), p = 1.5 goes over to the popular
NFW profile for the dark halo.

The p = 2 halo gives a finite mass on integrating upto
infinity. For example, the best fit halo has a total mass of
2.8× 1011 M� of which about 90% lies within 100 kpc. In con-
trast, the mass of an isothermal halo is linearly proportional to
the distance of integration and therefore becomes infinite at in-
finity (see Fig. 4b). Since most of the mass of p = 2 halos are
confined to within a few hundreds of kpc (or a few decades of
core radii), these can be regarded as naturally truncated halos
or “finite sized” halos. This concept has very important conse-
quences in the cosmological scenario.

In Fig. 4c, we plot the rotation curves corresponding to p =
1 and 2 cases. This illustrates the difference between these two
model cases especially at large radii, and is in a form that is
directly amenable to future observational checks. In the case of
p = 1, the rotation curve becomes flat at large radii in keeping
with the linearly rising mass of the halo (compare with Fig. 4b);
whereas in the case of p = 2, the rotation curve begins to drop
beyond ∼12 kpc.

4.3. Comparison with other deductions

Observationally, the vast database of SDSS has allowed re-
searchers to check the large-scale behaviour of the dark mat-
ter halos. Prada et al. (2003) find that the radial density pro-
file ∝r−3 as predicted by most modern cosmological models,
is consistent with the observed velocity dispersion of satellites
of isolated galaxies. This corresponds to p = 1.5 in our model.
Fischer et al. (2000) and McKay et al. (2002), on the other hand
find that the halo mass density falls off as r−4 at very large radii
(corresponding to p = 2 in our model) i.e., for r � 260 h−1 kpc,
which is the minimum size limit for an isolated galaxy. This
limit corresponds to about 400 kpc within which 95% of mass
is confined for our best fit halos. These support the overall trend
in the results from our work. However, we need to be careful in
comparing our results with the above SDSS studies which are
on isolated galaxies while our Galaxy has at least one massive
close neighbour.

The faster than isothermal fall-off is also supported by
many numerical simulation studies in the literature. In their
simulations on formation of dark halos, Avila-Reese et al.
(1999) find that most halos tend to have density profiles ∝r−β
where β falls in the range 2.5–3.8, in the outer region. Bournaud
et al. (2003) find from their simulations, that dark halos should
extend to at least ten times further than their stellar disks,

(a)

(b)

(c)

Fig. 4. a) Log-normal plot of the halo mass density (in units of
M� pc−3) as a function of the galactocentric radius, for the best-fit
halo (p = 2) and the isothermal halo (p = 1). Although the two begin
to differ around the optical edge of the stellar disk itself, the effect on
HI scaleheight becomes noticeable only after 20 kpc (see Fig. 3). The
corresponding p = 1.5 profile (which is equivalent to the NFW den-
sity profile at large radii) falls between the two shown profiles but is
closer to the p = 2 profile. b) The behaviour of M(R) (mass contained
within a spheroid of radius R) as a function of R, is shown here for the
two kinds of halos. For an isothermal halo, the mass tends to infinity
whereas for p = 2, it tends converges to a finite value as R increases.
The mass tends to infinity for p = 1.5 as well, but rather gradually
compared to that of p = 1. c) Rotation curves for the cases p = 1 and
p = 2. For p = 1, the rotation curve becomes flat at large radii whereas
for p = 2, the curve begings to fall beyond a radius of ∼12 kpc.
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in order to be able to explain the formation of tidal dwarf galax-
ies. We note that our best fit halo certainly extends much be-
yond the corresponding limit of ∼120 kpc. Further support for
the choice of p = 2 comes from studies which show that the
halo core radius is comparable to the optical/Holmberg radius
for a galaxy (Salucci 2001). As p increases, the best fit value
for Rc also increases. Hence p = 2 halos give the largest value
for Rc (8–10 kpc) which is closest to the Homberg radius esti-
mated for our Galaxy (e.g., Binney & Merrifield 1998).

In the present work, the halos that provide a reasonable fit
to the observed flaring have p in the range of 1.5–2 but were
all spherical in shape. This result is consistent with recent find-
ings on the shape of dark halo of our Galaxy (Ibata et al. 2001;
Olling & Merrifield 2001). These recent studies indicate that
the shape is nearly spherical (see Sect. 1). Thus we find that the
results for both density profile and shape (p and q) for the dark
halo of our Galaxy as deduced from the HI flaring, are consis-
tent with recent observational evidence and theoretical works.

5. Discussion

(1) Asymmetry in the Galaxy: A very crucial assumption in
our model is that the Galactic disk and the halo are axisymmet-
ric. This is done for simplicity, as was also done by previous au-
thors (Olling & Merrifield 2000, 2001). We note, however, that
the outer Galaxy shows asymmetry or lopsidedness. There is
observational evidence for kinematical lopsidedness where the
cut-off in the fourth and the first quadrants differs by 25 km s−1

(Burton 1988), and also for spatial lopsidedness where the mea-
surable column density extends much farther out in the north
than in the south (up to 4 R� and 2.2 R� respectively) – see
Merrifield (2002), also see Nakanishi & Sofue (2003). Thus the
analysis and the conclusions from our paper are largely based
on the northern data and that is the limitation in the analysis of
the present paper.
(2) Galactic constants: We have built the stellar disk model
based on the IAU-recommended values for the galactic con-
stants – R◦ = 8.5 kpc and Θ◦ = 220 km s−1. It would definitely
be interesting and also worthwhile to know how the results for
the halo density profile would vary with the assumed galactic
constants. For example, Olling & Merrifield (2001) find the ef-
fect of varying these constants on the inferred axis ratio of the
halo. Unfortunately, all the observational inputs for our model,
like the HI and H2 surface densities, HI scaleheight and the
stellar velocity dispersion, are based on the IAU-recommended
galactic constants and rescaling them for different values of the
constants is beyond the scope of this paper.
(3) Self-gravity of the gas: It is interesting to check the change
brought about by excluding the HI self-gravity on its vertical
scaleheight. The difference is not negligible, it is seen to be
about 10–20% within the optical disk (R < 4Rd) and also be-
yond R > 6Rd. This could be because these regions are dom-
inated by the stellar disk and by the dark matter respectively.
For the region where 4 < R/Rd < 6, the difference is sub-
stantial (∼50%) suggesting that in this range, the gas gravity is
crucial in negotiating the hydrostatic equilibrium for the
HI layer. Thus neglecting it may lead to a serious overestimate
of the HI scaleheight in general at all radii in the outer Galaxy

(as already cautioned by Olling 1995) and particularly in the
intermediate range of radii.

6. Conclusions

We calculate the HI scaleheight in the outer Galaxy using a
Galactic disk model taking the dark matter halo also into ac-
count. In the outer Galaxy, the dark matter halo is the key com-
ponent that decides the scaleheight of HI, hence we calculate
the radial variation in the HI scaleheight as a function of the
shape and density profile of the halo. Based on the method of
least squares we show that neither oblate nor prolate-shaped
isothermal halos can provide a good fit to the observations.

Instead, the best agreement with data is provided by a
spherical halo and a density profile that is ∝r−β with 3 < β ≤ 4
in the peripheral parts of the Galaxy (1.5 < p ≤ 2). In such
a halo, the density falls off steeper than the-often-used isother-
mal halo. The rotation curves produced by these best-fit halos
are also in good agreement with the observed one. This result
seems to be in good agreement with the recent trend seen in the
literature on the numerical simulations of halo formation, as
well as the halo density profiles deduced from the SDSS data.
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