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The B8 function of SU(3) lattice gauge theory with three flavors of light dynamical quarks is ob-

tained numerically by use of the (improved) ratio method. It appears to have a dip structure similar
to that found in the theory without quarks. Our data seem to suggest that deviations from asymp-

totic scaling may be small for 8 > 5.3.

PACS numbers: 12.38.Gc

Monte Carlo simuiation of quantum field theories,
formulated on the lattice, has now become the most
important nonperturbative technique which one can
use to obtain quantities such as hadronic masses from
the underlying theory. An important step in such cal-
culations is the continuum limit which consists of re-
moval of the lattice regularization by taking the limit
of vanishing lattice spacing a: The physical predictions
should be independent of the cutoff. The 8 function
of the theory tells us how to tune the bare coupling
constant in the continuum limit so as to obtain the
physical predictions. It is thus important to uncover
and understand the structure of the 8 function of a
theory. Recently a lot of effort has therefore been
devoted to investigations of (nonperturbative) deter-
minations of the 8 function for SU(2) and SU(3)
gauge theories.! Two different methods have been
employed so far: (i) the Monte Carlo renormaliza-
tion-group (MCRG) method?> and (ii) the ratio
method.>* The former combines the real-space
renormalization-group approach with Monte Carlo
simulation, whereas the latter involves a comparison
of Wilson loops which differ in size by a factor of 2. In
the case of a theory with dynamical fermions, such as
QCD, a straightforward application of the MCRG
method is made difficult by the Grassmannian nature
of the fermion variables. On the other hand, the ratio
method can still be used,’ provided that gauge con-
figurations incorporating the effects of dynamical fer-
mions can be generated on the computer. A lot of dif-
ferent algorithms now exist which can achieve it fairly
efficiently. While the field of development of such al-
gorithms is still evolving rapidly, we feel that it has
matured enough to allow us to extract the 8 function
of QCD. Indeed, one can even perform a consistency
check on the fermion algorithm by comparing the
results with asymptotic-scaling predictions.

In this Letter, we report first results on the nonper-
turbative 8 function of QCD with three light (dynami-
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cal) flavors. Using the staggered-fermion formalism
and the pseudofermion algorithm, we simulated SU(3)
lattice gauge theory (with Wilson action) with three
light dynamical quarks. Measuring various Wilson
loops on the configurations so generated, we obtaine:d
information on the B8 function by use of the ratio
method. The method consists of forming basic ratios
o W (iy,iy)
R iy, iy, j1,da) Wiy
(1
W iy, i) W (i3,i4)
W(jni) W (zja)”
such that ij+i=jj+j, and ij+i+iz+is=ji1th
+j3+ js in the two cases, respectively. As noticed.by
Creutz® already, these ratios are free from perturbative
singularities, and they satisfy the homogeneous
renormalization-group equations

R(2i1,2iy,2j,2j38,L) =R (il,ig,jl,jz;ﬁ',L/Z):(z)

R (i, by, 13,08, ,2,30J4) =

R(2i},2iy,2i3,2i4,2j1, 22, 243, 2j4;8.L)
=R (il,iz,is,i4,jl,J'z,J'3,j4;ﬁ',L/2)'

AB(B)=B—p' is the change in the coupling required
to compensate the change of scale of a factor of 2.
The parameters L and L/2 denote the linear sizes of
the lattices on which the ratios are calculated. When
B’ is tuned such that Eq. (2) is satisfied, then the lat-
tice size in physical units occurring on both sides of
the equation is same, ensuring minimum finite-size ef-
fects. Using the definition of the 3 function [denoted
here by B(g?)] one can easily show that AB defined
above is related to it by

fﬂ dx __2In2 G)
B-88 2B (6//x ) N

where we have used the definition 8=6/g* for QCD
For large B, or equivalently small g2, the 8 function i
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TABLE 1. Summary of results for A8 for SU(3) gauge
theory with three light flavors, obtained by use of the basic
ratios.

B Cut AB (AB )min (AB )max
5.4 0.08 0.82 0.81 0.83
5.6 0.05 0.317 0.290 0.347
5.8 0.05 0.535 0.523 0.545
6.0 0.07 0.609 0.561 0.637
6.2 0.11 0.567 0.373 0.681

dominated by the two universal terms
33-2n, 3 153~ 19n, s

B(g)=-
¢ 4872 384nt °
+0(gh), @
where ny is the number of massless flavors. From

Egs. (3) and (4) one obtains that
AB=0.474+0.128/8+ 0(B~2), Q)

for ns=3 and sufficiently large 8. An agreement with
the prediction above would act as a check on our
method of including the dynamical fermions in the nu-
merical simulations. Noting that any linear combina-
tion of the ratios in Eq. (2) also satisfies the equation,
one can define ‘‘improved” ratios from which lattice-
artifact corrections are eliminated. We will use the
tree-level improved ratios Ry, =R, + «R;, where « is
determined by the requirement that these artifacts can-
cel in tree-level perturbation theory’ (i.e., by requiring
AB=0).

Our results were obtained for L =8 in Eq. (2) by
measuring all Wilson loops up to size 6X6 on the 8*
lattice and 3x 3 on the 4* lattice. The bare mass for
the fermions was chosen to be ma =0.1 on the 8* lat-
tice and 0.2 on the 4* lattice. This amounts to a
neglect of the logarithmic corrections under the scale
change of 2 due to anomalous dimensions. The effect
of dynamical fermions was taken into account by per-
forming fifty pseudofermion hits at an average accep-
tance level of ~ 70% in the gauge sector. From previ-
ous studies it is expected that these choices are fairly
optimal. Wilson loops were measured over typically
a few thousand iterations in each case, discarding a
thousand for equilibration. The errors on the mea-
surements have been corrected for sweep-to-sweep
correlations. Tables I and II display the results for AS
obtained from matching the basic ratios and the tree-
level improved ratios, respectively. To obtain the pre-
cise value of B’ a linear interpolation between the ra-
tios measured at various different 8’ values has been
used. Except for 8=75.4, about ten ratios were used in
the first case and twenty in the second case to deter-
mine AB. The magnitude of fluctuations at each B,
and hence a naive estimate of error, can be obtained

TABLE II. Same as Table I, but obtained by use of tree-
level improved ratios.

B CUI AB (AB )min (AB )max
5.6 0.05 0.301 0.295 0.310
5.8 0.05 0.533 0.523 0.541
6.0 0.05 0.606 0.585 0.626
6.2 0.10 0.480 0.438 0.531

from the minimum and maximum values of AS given
in the tables. Statistical fluctuations in the Wilson-
loop values at 8=135.4, which themselves are quite
small at [ow B, prevented us from obtaining more ra-
tios at 8=15.4, and also the improved ratios at that 8.
Since the improvement is more relevant at high 3, in
Fig. 1 we have plotted the summary of our results by
displaying the AB estimates from improved ratios ex-
cept for 8=15.4. The errors shown here are more con-
servative; they correspond to the cuts used in the
respective matching predictions. The dashed line is
the prediction of Eq. (5).

Before we discuss the physical significance of Fig. 1,
let us first make some simple observations based on it.
One sees a clear dip structure in the AB, which is
rather similar to that observed in the theory without
quarks but at a lower value of 8. In the pure gauge
theory the dip occurred®* at 3=6.0, whereas we find
a pronounced dip at 8=15.6 which seems to be some-
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FIG. 1. AB as a function of 8 for QCD with three light
dynamical flavors. The dashed line shows the asymptotic-
scaling prediction of Eq. (5). Also shown above it is the
asymptotic-scaling prediction for the quenched theory.
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what narrower than the one in the pure gauge case: At
B=5.4 we observe already a large value of AS charac-
teristic of the strong-coupling regime, and for 8 > 5.8
our data are consistent with the perturbative, asymp-
totic-scaling predictions. Thus, if we use the measured
AB function of Fig. 1 as an input we conclude that
across the dip the correlation length changes by a fac-
tor of 2, compared with the pure gauge theory where
the dip covers a 8 range of 5.7 to 6.6, and the correla-
tion length changes by a factor of about 4. Although
the quality of our data is not very good, it does seem
to suggest that unlike the theory without quarks the
approach to asymptotic scaling may be again, from
above, beyond the dip structure. Furthermore, the de-
viations from asymptotic scaling seem to be small for
B > 5.3 (corresponding to AB=0.5 at 8=15.8) com-
pared to 8> 6.0 in the pure SU(3) case. Bearing in
mind the ongoing analysis of the scaling behavior of
the pure SU(3) gauge theory, which still needs im-
provement and analysis on larger lattices and at larger
B, it is clear that better data on larger lattices are
necessary to confirm our findings and to clarify further
the detailed structure of the 8 function of full QCD.
In particular, since the difference between the asymp-
totic-scaling predictions of the quenched theory and
the full theory is only 22% one may need estimates of
AB with about one fifth the error of what we have in
Fig. 1 in order to distinguish clearly between the two.
We had typically 5000 iterations of the full theory at
each B, and yet, as a result of the observed overshoot-
ing of the AB at 8=6.0, such a clear distinction was
not possible. If the overshooting persists in a more de-
tailed analysis, then the onset of asymptotic scaling
might well be delayed until 8=5.7.

The first analysis of the B8 function of full QCD
presented here, however, clearly suggests a pro-
nounced dip structure even in the presence of dynami-
cal fermions. Of course, the structure of the dip, or
even its presence, has no direct relevance to the practi-
cal calculations of, say, the hadron masses or the
heavy quark potential. What would be relevant there
would be the 8 at which asymptotic scaling sets in,
which, as discussed above, may be at 8=15.3. Never-
theless, in the general context of understanding how
the theory goes over from the strong-coupling regime
to the asymptotic-scaling regime and whether this
crossover can be somehow smoothed by, say, modifi-
cation of the action, it is interesting to note that the
dip seems to be a more universal feature than previ-
ously thought. In the case of pure gauge theory the
occurrence of the dip has been related®? to the pres-
ence of a second-order phase transition in the
fundamental-adjoint coupling plane. Monte Carlo
data® seem to support this quantitatively. In the pres-
ence of dynamical fermions the number of flavors, ny,
introduces a new coupling in the effective action. One
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may now need to trace the phase diagram in this ex-
tended space of couplings to find out why it affects the
B function of the full theory in approximately the
same way as for n,=0. It has been argued that a non-
trivial phase structure in the ng-8 plane appears with
a second-order critical point for (n;,8) ~ (8,4.67
+0.1). AB(B) should have a zero at this point. For
np < 8, it could lead to a dip structure in AB similar to
the one observed in our simulations. In addition one
would expect that the dip becomes deeper as 7 is in-
creased to 8. Indeed, the data!® for the scaling
behavior of the chiral condensate in the ny=4 theory
also suggest a narrow dip. It would be interesting to
find a relation between the phase structure in the
fundamental-adjoint plane of the pure gauge theory
and the ny-8 plane of the theory with dynamical fer-
mions. It may even be that the fermions act effective-
ly as an adjoint gauge term in the action in addition to
a renormalization of the fundamental coupling.
Finally, we exhibit in Fig. 2 our data on Wilson
loops on the 8* lattice (at 8=15.6) along with that qb-
tained in the pure SU(3) theory on a same size lattice

4.0 -

3.0F

-tn W(I,J)

FIG. 2. —InW(1,J) as a function of J for various /. Th¢
crosses show the pure SU(3) of Ref. 2 at #=5.8 while iH¢
circles display our data at 8=5.6 for the theory with thre®
light dynamical flavors. The error bars on all the points 3

smaller than or comparable to the size of the points the™
selves. £
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(at 8=5.8). The couplings have been so chosen that
the plaquette value is about the same in both cases.
The pure SU(3) data are well known to be consistent
with a linear plus Coulomb term in the potential.*!!
Pursuing the idea of such a potential in the full QCD,
one naively expects screening to replace the confining
linear term: or— (o/w)(1—e~#"), with u~! as the
screening length. Since —In W directly measures the
potential, and since the potential decreases faster in
the full theory as r increases, one should see a sys-
tematic trend: The —InW data for the full theory
should always lie below corresponding pure SU(3)
data, and the difference between the two should in-
crease as the loop size grows. Figure 2 is in accord
with this picture, lending one more support, albeit
qualitative, to the fact that the pseudofermion method
is able to include the fermion feedback correctly.
Agreement of the data in Fig. 1 with the asymptotic-
scaling prediction is a more quantitative check of this
fact, although at present we have been able to check
this at only the lo level.

To conclude, we have presented first results on the
numerical, nonperturbative determination of the g8
function of QCD with three light flavors using the im-
proved ratio method. The staggered-fermion formal-
ism and the pseudofermion method were employed to
simulate the full theory. Our results suggest a dip
structure in AB that is analogous to the one seen in the
quenched theory. Furthermore, our data seem to sug-
gest that the deviations from asymptotic scaling may
be rather small for 8 > 5.3.
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