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ABSTRACT

Context. The warps in many spiral galaxies are now known to be asymmetric. Recent sensitive observations have revealed that asymmetry of
warps may be the norm rather than exception. However there exists no generic mechanism to generate these asymmetries in warps.
Aims. To provide an explanation for the generation of asymmetric warps in disk galaxies
Methods. We have derived the dispersion relation in a compact form for the S-shaped warps (described by the m = 1 mode) and the bowl-
shaped distribution (described by the m = 0 mode) in a galactic disk embedded in a dark matter halo. We then performed the numerical modal
analysis and used the linear and time-dependent superposition principle to generate asymmetric warps in the disk.
Results. On doing the modal analysis we find the frequency of the m = 0 mode is much larger than that of the m = 1 mode. The linear and
time-dependent superposition of these modes with their unmodulated amplitudes (that is, the coefficients of superposition being unity) results
in an asymmetry in warps of ∼20–40 %, whereas a smaller coefficient for the m = 0 mode results in a smaller asymmetry. The resulting values
agree well with the recent observations. We study the dependence of the asymmetry index on the dark matter halo parameters. This approach
can also naturally produce U-shaped warps and L-shaped warps.
Conclusions. We show that a rich variety of possible asymmetries in the z-distribution of the spiral galaxies can naturally arise due to a
dynamical wave interference between the first two bending modes (i.e. m = 0 and m = 1) in the disk. This is a simple but general method for
generating asymmetric warps that is independent of how the individual modes arise in the disk.
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1. Introduction

The disks in most spiral galaxies are not flat and their outer
parts often show warping of the material away from the galac-
tic midplane. Warps are mostly seen in the atomic hydrogen gas
(HI) in the outer parts of a galactic disk (Sancisi 1976; Bosma
1978), but there is also a strong observational evidence for op-
tical warps in old stars, as in NGC 4565 (van der Kruit & Searle
1981). A statistical analysis of a large number of edge-on spi-
rals has shown that optical warps are seen in a significant frac-
tion (about 40%) of the spiral galaxy disks (Sanchez-Saavedra
et al. 1990; Reshetnikov & Combes 1998, 1999).

Thus the warps are a common phenomenon and hence must
be either long-lived or be excited repeatedly. Tidal interactions
have been proposed as a triggering mechanism for warps, how-
ever since many isolated spirals- such as NGC 4565 also show
warps (Sancisi 1976), this cannot be the main triggering mech-
anism for warps. Anisotropic pressure applied by the inter-
galactic magnetic field can generate an S-shaped warp in the
galactic disk (Battaner et al. 1990). But a very high value of
the magnetic field is required to produce warp near 4–6 disk
scalelengths. Alternatively gas accretion could generate warps
repeatedly, as for example seen in the cosmological simulations
of disk formation (Semelin & Combes 2005).

One plausible mechanism to get long-lived warps is to use
the modal approach first proposed and studied by Hunter &
Toomre (1969). Sparke & Casertano (1988) (hereafter, SC88)
followed Hunter & Toomre’s (1969) approach but also included
a dark matter halo and achieved the above goal of avoiding dif-
ferential precession. They have shown that in the presence of
an oblate halo potential a system of concentric circular rings,
representing the galactic disk, is able to accomplish a config-
uration where all the rings are synchronized to precess with
a uniform precession frequency. Such modes are called nor-
mal modes, and in this case since the halo is included, it is a
modified-tilt mode of the disk because it is derived by modify-
ing the trivial tilt mode solution of the linearized equations of
motion of an isolated system of rings.

The warps were initially deduced to have an S-shaped dis-
tribution, with equal amplitudes on both sides of the mid-plane.
This makes their theoretical analysis easier. It has long been
known, however, that quite a few galaxies show asymmetric
warps so that the amplitudes on the two sides are apprecia-
bly different. For example, our own Galaxy has an asymmet-
ric warp: the mean plane bends up to 4 kpc above the plane
of the inner Galaxy on the northern side of the disk, while it
reaches down only half on the southern side and then turns
back up toward the inner disk plane (see Burton 1988). More

Article published by EDP Sciences and available at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20053892

http://www.edpsciences.org/aa
http://dx.doi.org/10.1051/0004-6361:20053892


898 K. Saha and C. J. Jog: On the generation of asymmetric warps

recent, sensitive observations have revealed that asymmetry of
warps may be the norm rather than the exception as shown
by the HI gas and optical R-band observations (Garcia-Ruiz
et al. 2002). A detailed catalog of the measure of asymme-
tries in optical warps seen in edge-on galaxies can be found in
Sanchez-Saavedra et al. (2003). Theoretically, S-shaped as well
as asymmetric warps have been shown to arise via bend-
ing instabilities in the N-body studies of Revaz & Pfenniger
(2004); also these have been proposed to arise due to gas infall
(Lopez-Corredoira et al. 2002).

In this paper we propose and study the generation of the
asymmetric warps in disk galaxies. We propose that an asym-
metric warp arises due to a dynamical wave interference be-
tween the first two stable bending modes (i.e. m = 0 and m = 1)
in a gravitating system. We do not deal with the orign of these
modes, we assume that some excitation mechanism – perhaps
an external perturber, extragalactic magnetic field, or gas accre-
tion, or internal bending instabilities – gives rise to both these
modes and hence we do not include explicitly any source term
in our analysis. It is reasonable that, once excited, these modes
will interact with each other. We study a general case so that
the modes need not even be triggered in a commensurate fash-
ion. A different epoch of onset for the two modes will merely
be reflected in a different initial ratio of the amplitudes of the
modes.

It was demonstrated numerically by SC88 and Sparke
(1995) respectively that warping mode (m = 1) and the bowl-
shaped mode (m = 0) are stable in a cold, thin self-gravitatiing
axisymmetric disk. The basic idea of the present paper is to use
this fact and then let these modes interfere with each other, and
see if this results in an asymmetric warp. This idea of super-
position of modes to explain the origin of asymmetric warps
was first proposed by Sparke (1995), and also more recently
by Lopez-Corredoira et al (2002) and Castro-Rodriguez et al.
(2002), but they did not work out further details.

We do not address here the other important aspect of the
warping phenomenon, namely its maintenance, which is a
long-standing problem. In the modal approach some reasons
for the reduction of warp lifetime are: back-reaction of the uni-
formly precessing disk onto a live dark matter halo (Nelson
& Tremaine 1995), and disk thickness and random motion
(Sellwood 1996), which can damp out the disk warping in
a few orbital time scales. Some numerical simulation studies
(Dubinsky & Kuijken 1995; Binney et al. 1998) have confirmed
that the dynamical friction due to the oblate dark matter halo
damps out a symmetric warp. On the other hand, the mainte-
nance problem does not arise if there is gas accretion of ∼few
M�yr−1 repeatedly generating warps as discussed above.

In this paper, we have isolated and studied one well-defined
physical aspect of the problem, namely that if the m = 1 and
m = 0 modes are excited due to any of the mechanisms men-
tioned above- namely, tidal interaction, or gas accretion, or
bending instabilities, then it is inevitable that these will get su-
perposed and we study the resulting behavior. Further, even if
these modes are short-lived, if these can be excited repeatedly,
then we can explain why a large fraction of spiral galaxies show
asymmetric warps.

In Sect. 2, we formulate the equations for m = 0 and m = 1
cases, and give the numerical scheme for solving these, and
also specify the input parameters for the disk and the halo. The
results are described in Sect. 3, and Sect. 4 summarizes the
conclusions from this paper.

2. Formulation

2.1. Dynamics of bending modes

We consider various possible bending modes in a cold, self-
gravitating, thin axisymmetric disk in the presence of a rigid or
non-responsive dark matter halo. The disk, with a radial surface
density profile Σ(r), rotates in the equatorial plane (z = 0) of
the spheroidal dark matter halo with angular speed Ω(r) about
the halo’s symmetry axis (r = 0). Here (r, ϕ, z) are the circular
cylindrical polar coordinates. The dynamical system described
above is the same as in SC88 and most of the formulation fol-
lows SC88.

The dynamical equation of a small bending of the disk per-
pendicular to its unperturbed plane (z = 0) is given by(
∂

∂t
+ Ω(r)

∂

∂ϕ

)2

Z = Fself + Fhalo (1)

where the small bending is described by a single function
Z(r, ϕ, t) and Fself is the vertical force due to the bent disk
itself. Fhalo is the vertical restoring force near the disk plane
(z = 0) due to the dark matter halo.

We consider the small bending of the disk normal to its
plane as resulting from the linear superposition of different
bending modes each described by an azimuthal wave number
m. So the linear superposition allows us to write

Z(r, ϕ, t) =
∑

m

Amzm(r, ϕ, t). (2a)

In the above relation Am is a constant number which denotes
the coefficients of superposition and

zm(r, ϕ, t) = �{hm(r)ei(ωmt−mϕ)} (2b)

describes the bending mode of the disk with azimuthal wave
number m, where hm(r) is the unmodulated amplitude of the
mth mode. Thus, the total amplitude of the mth mode in the
superposition is given by Am hm(r).

The general dynamical equation for the bending mode with
the azimuthal wavenumber m is then obtained by substituting
the form given by Eq. (2b) into Eq. (1):[
(ωm − mΩ(r))2 − νh

2(r)
]

hm(r) =

G
∫ ∞

0
Σ(r′)H(r, r′)[hm(r) − hm(r′)]r′dr′

+G
∫ ∞

0
Σ(r′)Km(r, r′)hm(r′)r′dr′. (3a)

The angular speedΩ(r) appearing in above equation gets a con-
tribution from the warped disk as well as from the dark mat-
ter halo described in Sect. 2.3. The definitions of H(r, r′) and
Km(r, r′) are as follows:

H(r, r′) =
∫ ∞

0

1

[r2 + r′2 − 2rr′cosψ + z0
2]

3
2

dψ (3b)
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Km(r, r′) =
∫ ∞

0

1 − cos(mψ)

[r2 + r′2 − 2rr′cosψ + z0
2]

3
2

dψ. (3c)

These functions can be further expressed in terms of complete
elliptical integrals. Note that for the bowl-shaped mode (m =
0), the function K0(r, r′) vanishes.

Equation (3a) is obtained by substituting in Eq. (1) the
following:

F m
halo(r, ϕ, t) = −νh

2(r)zm(r, ϕ, t) (4a)

where νh is the vertical frequency due to the dark matter halo
in the unperturbed disk plane.

F m
sel f (r, ϕ, t) = −G

∫ ∞

0
Σ(r′)r′dr′

×
∫ 2π

0

[zm(r, ϕ, t) − zm(r′, ϕ′, t)]
[r2 + r′2 − 2rr′ cos(ϕ − ϕ′) + z0

2]
3
2

dϕ′. (4b)

In the above equations z0 is the softening parameter introduced
to make the integrals regular at r = r′. z0 can be interpreted
as a finite thickness of the disk. The above integral Eq. (3a)
can be solved by recasting it into a matrix-eigenvalue problem.
On a uniform grid with N radial points the resulting eigenvalue
equation for the mth mode takes the form

[
ωm

2 − 2mΩ(ri)ωm

]
hm(ri) =

N∑
j=1

Λi jhm(r j), (5a)

where

Λi j = Mi j + δi j

(
νh

2(r j) + νdc
2(r j) − m2Ω(r j)2

)
(5b)

Mi j = ∆rGΣ(r j)
[
H(ri, r j) − Km(ri, r j)

]
r j, (5c)

and

νdc(ri) = G
∫ ∞

0
Σ(r′)H(ri, r

′)r′dr′. (5d)

The above Eq. (5a) can be rewritten in a more compact form:
(
ωm

2I + ωmR + Λ
)

hm = 0, (6)

where I, R and Λ are the three N × N real square matrices. hm

is the eigenvector corresponding to the eigenvalue ωm.
The matrix elements are Ii j = δi j, Ri j = −2mΩ(r j)δi j and

Λi j as shown above in Eq. (5b).

2.2. Asymmetric warp

The bowl-shaped mode is an axisymmetric bending of the disk
and the integral-sign warping mode is anti-symmetric in the az-
imuthal angle (ϕ). In the linear regime each of the two bending
modes behaves much like an independent oscillator in the sys-
tem, so that we ignore any kind of energy cascading. This is
shown to be valid in the last paragraph of Sect. 3. By making
a linear combination with proper time dependence of the two
bending modes we are able to produce an asymmetric bending

mode of the initially assumed axisymmetric disk. Thus accord-
ing to Eq. (2a) the asymmetric bending mode is described by

Zasym(r, ϕ, t) = A◦z◦(r, ϕ, t) + A1z1(r, ϕ, t)

= A◦�{h◦(r)eiω◦t} + A1�{h1(r)ei(ω1t−ϕ)}. (7)

So that at any time t = τwe can analyse the behaviour of the re-
sulting asymmetry. It was proved that the m = 0 mode and the
m = 1 mode in a disk described above are stable (see Hunter
& Toomre 1969), and their stability was further confirmed by
numerical work (see SC88, Sparke 1995). Our numerical work
also confirms the earlier result. Thus the resultant asymmetric
bending mode can be assumed to be stable and it establishes
a classic example of dynamical wave interference pattern in a
gravitating medium. The degree of asymmetry in the disk bend-
ing depends on the amplitude of the bowl-shaped mode which
can be controlled by the free parameter A◦ in the problem. Thus
by varying A◦ one can in principle produce a rich class of asym-
metries that are seen in the observations. Recent observations
show that asymmetric warps are indeed common and they ex-
ist in poor environments too (Garcia-Ruiz et al. 2002). This
suggests that tidal interactions are not the only process that can
produce an asymmetric warp. With our approach, we show how
an asymmetric warp can be generated purely from the internal
disk dynamics- assuming that these modes are generated due to
some mechanism.

2.3. Disk-halo system

We have adopted a truncated exponential disk with a cos2 ta-
pering as introduced by SC88:

Σ(r) = Σ0 e−r/Rd r ≤ rtrun

= Σ0e−r/Rd cos2

⎧⎪⎪⎨⎪⎪⎩
π

2
r − rtrun

rout − rtrun

⎫⎪⎪⎬⎪⎪⎭ rtrun ≤ r ≤ rout

= 0 r ≥ rout (8)

where Rd is the exponential disk scalelength and Σ is the disk
surface density. The gradual truncation of the disk avoids spuri-
ous modes (SC88). In the calculations (Sect. 3), we have taken
rout and rtrun to be fixed at 6 and 5 disk scalelengths respec-
tively.

The flattened dark matter halo is taken as a screened
isothermal halo which gives an asymptotically flat rotation
curve (de Zeeuw & Pfenniger 1988):

ρ(r, z) =
ρ◦

1 + (r2 + z2

q2 )/R2
c

(9)

where Rc is the core radius and q is the halo flattening
parameter.

The terminal velocity of dark matter halo is given by:

vt = 4πGρ◦Rc
2q

sin−1
√

1 − q2√
1 − q2

· (10)

2.4. Numerical details

Equation (3a) is a linear integral equation which is equivalent
to an infinite dimensional eigenvalue Eq. (6). To simplify this
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problem, a galactic disk of finite radius (rout) is approximated as
a system of N uniformly spaced rings. Then the resulting prob-
lem reduces to an N-dimensional eigenvalue problem in the
eigenvalue ωm and N-dimensional eigenvector hm describing
the shape of the bent disk. This requires the solution of an N×N
matrix. The softening parameter z0 is introduced to make the
self-gravitating integral (Eq. (4b)) regular along the diagonal
line of the N-dimensional matrix. We have carried out the nu-
merical computation for different values of the matrix dimen-
sion N. We note that the eigen frequency of the ground state
of either mode (m = 0 and m = 1) is not very sensitive to the
matrix dimension N or the softening parameter z0 in the prob-
lem. Numerical results show that as the value of N increases
or the softening z0 decreases, the ground-state eigen-frequency
ω1 of the warping mode (m = 1) reduces extremely slowly.
For example over an augmentation of 200 rings the change in
ω1 ∼ 5.0%. For convenience we have taken N = 80 for our
calculations. A similar calculation was done for the case of the
bowl-shaped mode (m = 0) but it did not show any definite
trend unlike the m = 1 case. But the change in the frequency
(ω0) occurs only in the third decimal place and its quite arbi-
trary. The insensitivity of the ground-state mode frequencies
(ω0 and ω1) on the softening is obvious because these are the
integral properties of the disk.

However the ground-state mode shape, hm, in either case
is quasi-sensitive to the softening parameter. A smooth bend-
ing of the disk was obtained for typical values of the softening
z0 ∼ inter ring spacing. We note that a large value of the soft-
ening reduces the value of the self-gravitating integral, hence
it becomes inefficient to make all the rings precess in a syn-
chronized manner, thus any resultant warping is dissolved. On
the other hand if z0 = 0 it is obvious that the self-gravitating
integral diverges numerically. Since we are not interested in in-
vestigating the structure of the either mode in the resolution
∼ inter-ring separation, we keep the softening parameter z0 ∼
inter-ring spacing and this gives us a satisfactory result for the
mode shape. The sensitivity of the mode shape on the softening
is understandable because a global mode shape depends on the
local details of the disk.

For m = 0, i.e. bowl-shaped mode, the eigenvalue Eq. (6)
is linear in ω0

2. But for m = 1, i.e. a warping mode, the prob-
lem reduces to a quadratic eigenvalue problem (known as QEP
in the literature) in ω1. The standard way to solve the QEP (6)
for the m = 1 mode is to reduce it to a generalized eigenvalue
problem (GEP) of the form Ax = ωmBx of twice the matrix di-
mension 2N see Bai et al. (2000). This GEP is commonly called
a linearization of the QEP (6). We solve the linearized QEP nu-
merically by using standard technique for diagonalization. For
further details about solving QEP the readers are referred to
Guo (2004) and Higham & Kim (2000).

3. Results

Recent observations have shown that the galactic disks bend
with a variety of shapes starting from symmetric “S” shaped
warps to asymmetric warps and also “L” shaped and “U”
shaped warps (Sect. 1). We next show that this rich variety of
warp shapes observed can be explained naturally right from

Fig. 1. The ground state mode shapes and their sensitivity w.r.t. disk
edge for the two modes m = 0 and m = 1. The mode amplitudes are in
arbitrary units. The solid, dashed and dotted lines are for rtrun = 5.0,
5.5 and 5.95 respectively and rout = 6.0. Here, the dark matter halo
flattening q = 0.7 and the core radius Rc = 2.0.

the internal disk dynamics by a superposition of the m = 1 and
m = 0 modes. The superposition picture proposed and studied
here is verified for a few cases in the results from the N-body
simulations, and there is evidence for an asymmetric warp aris-
ing due to a superposition of m = 1 and m = 0, or m = 1 and
m = 2 modes (Revaz & Pfenniger 2005, personal communi-
cation), this requires further study using N-body simulations.
Since we superpose two modes, the range of values spanned
cover the two frequenciesω0, ω1, the superposition amplitudes
A0, A1, and the two phases. The unmodulated amplitudes h1

and h0 (see Eq. (2b)) are free upto a linear multiplication factor.
These and the frequencies are obtained from our modal analy-
sis. The ratios of ω0/ω1 are seen to vary from 8–20 when the
flattening of the dark matter halo (q) varies from 0.5 to 0.9.
(See the discussion at the end of this section.) We do not have
any a priori physical basis to choose the values of A0 and A1,
these are set by the generation process of the modes – hence
we cover a reasonable range for these.

All the numerical calculations are done in units of G =

Md = Rd = 1 where Md is the disk mass. In order to show
the basic results first, we have fixed the dark matter halo pa-
rameters at Rc = 2.0 (in units of Rd), ρ0 = 0.0117 (in units of
Md/R3

d) with a halo flattening parameter q = 0.7. These give
rise to the terminal velocity of the halo as vt = 0.68 (in units of√

GMd/Rd).
In order to check our numerical calculations with the previ-

ous works by SC88 and Sparke (1995) we have reproduced the
ground state mode shape for the modes m = 0 and m = 1 for
some typical disk and halo parameters as can be seen in Fig. 1.
The amplitude of these modes are measured with respect to the
inner disk plane and these we call as the unmodulated ampli-
tudes. In addition to this, Fig. 1 also shows the sensitivity of the
amplitudes of these modes with respect to disk edge. To study
the sensitivity we have varied rtrun keeping the disk outer edge
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Fig. 2. A plot of the bending amplitude of asymmetric warp versus ra-
dius, for various values of the parameter ζ = A0/A1 denoting the ratio
of the superposition amplitudes, at an epoch t = τ◦/8. As ζ increases
to 1, the asymmetry becomes prominent. Here, the dark matter halo
flattening q = 0.7 and the core radius Rc = 2.0.

fixed. The solid, dashed and dotted lines are for rtrun = 5.0,
5.5 and 5.95 in both the figure panel. The disk density starts
deviating from the exponential from r = rtrun and smoothly ta-
pers to zero at r = rout. The dotted curves show the behaviour
of the modes when the disk is almost abruptly truncated and
in this case too the two modes m = 0 and m = 1 behave in
the same way. Also note that the amplitudes of m = 0 modes
are slightly less than that of m = 1 modes. The eigen frequen-
cies corresponding to these ground states are not quite sensitive
to the behaviour of disk edge which can be seen from the SC
formula for the modified tilt mode (Eq. (21) in SC88). This ac-
tually confirms what we get numerically for the m = 1 mode.
However for the m = 0 modes the eigen frequencies vary from
0.1315 to 0.1296 as rtrun varies from 5.0 to 5.95.

In Fig. 2 we have shown four subplots of an asymmetric
warp generated with various values of the controlling parame-
ter ζ = A0/A1 which we will use as an indicator of the relative
strength of the bowl-shaped mode. A0 = 1.0 and A1 = 1.0 con-
notes that the bowl-shaped mode and the ’S’ shaped warping
mode both are present with their full unmodulated amplitudes,
hm (see Eq. (2b)). These plots are made for an epoch of τ0/8 as
an illustrative case, where τ0 = 2π/ω0 is the characteristic time
scale in the problem and ω0 is the ground state eigenfrequency
of the bowl-shaped mode. As we move from Figs. 2a to 2d,
the value of the controlling parameter ζ increases, that is, the
relative strength of the bowl-shaped mode increases. Since in
our analysis bowl-shaped mode is the only cause of asymmetry
in the bending, we can see from Fig. 2d, that the warp is most
asymmetric i.e. the degree of asymmetry is the highest.

In Fig. 3, we have produced asymmetric warps at different
epochs (t) keeping the controlling parameter ζ = 1.0. The val-
ues of the sampling times t were so chosen that as we move
from Figs. 3a to 3d, we see the diverse phenomena of disk
warping including symmetric as well as asymmetric ones. This
is due to the characteristic oscillation of the disk in a bowl-
shaped mode. The disk oscillates from “cupped upward” to flat,

Fig. 3. A plot of the bending amplitude of the asymmetric warp ver-
sus radius, at different epochs t. As t goes through the cycle of the
bowl-shaped mode it generates various kinds of disk warping from an
asymmetric to a symmetric and then an asymmetric case. Again, the
dark matter halo flattening q = 0.7 and the core radius Rc = 2.0.

to “cupped downward” and back again with its typical ground
state frequency ω0. During this flexing of the disk it gets a
chance to interfere with the S-shaped mode of the disk and this
produces a rich class of dynamical asymmetric figures. In a
real galaxy the bowl-shaped mode may decay due dissipative
effects. Even then the mild asymmetries in disk warping which
are seen in observations can be considered as a signature of the
bowl-shaped mode.

In the above two figures (Figs. 2–3) we have shown the
warping of the disk with respect to the inner unwarped disk
plane because in actual observations the warping is quantified
based on measurements with respect to the inner disk plane.
Next, we define a quantitative measure of the asymmetry seen
in a disk galaxy, the asymmetry index, as follows (see also
Sanchez-Saavedra et al. 2003):

αasym =
|αright − αleft|
αright + αleft

if α2
right + α

2
left � 0 (11)

where αright is the angle between the line joing the centre to the
outer most point on the right hand side of the particular warp
and the inner disk plane. αleft is defined similarly. Thus αasym is
the normalized or fractional value of the asymmetry. In terms
of this definition, the results in Figs. 2 and 3 give an asymme-
try of αasym ∼ 0.2 − 0.4. Thus our results for asymmetry agree
with the typical range of measured values in Sanchez-Saavedra
et al. (2003) and the asymmetries when measured from the fig-
ures given in Appendices (A and B) in Schwarzkopf & Dettmar
(2001). For example the value of asymmetry index for the
S-shaped asymmetric warp(galaxy name- AM 1134-323(R))
when measured from Fig. 6 in Schwarzkopf & Dettmar (2001)
gives a value 0.33. This agrees closely with what we get from
Fig. 2. Of course true comparisons with observations is a bit
tricky because of the free parameters (A0 and A1) involved in
our problem. Our basic idea is to show that with this modal
superposition approach, one can reproduce various asymmetric
warps that are seen in observations.
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Clearly when αright = αleft the asymmetric index αasym van-
ishes. This implies a purely symmetric warping of the disk.
Note that Eq. (11) avoids the possibility of αright and αleft be-
ing simultaneosly zero as the case is not physically meaningful.
When αright = 0 or αleft = 0 we obtain unity value of the asym-
metric index. So αasym = 1 (maximum asymmetry) denotes a
perfectly “L” shaped warping of the disk. This can be called a
one-sided warp. The values of αasym vary from 0.0 to 1.0. It is
obvious that most of the geometrical shapes of galactic warps
seen in observations can be classified using a single parame-
ter αasym. Jimenez-Vicente et al. (1997) used a different set of
3 parameters to describe the shape of warps. However neither
their model nor αasym alone can describe the peculiar shape of
the warp of our Galaxy. But αasym being a single parameter is
very useful in depicting the underlying asymmetries in warps.
Given the extreme importance of this parameter, we next study
the dependence of αasym on the dark matter halo parameters.

Figure 4 shows the variation of the asymmetry index, αasym,
due to the variation in q, the flattening parameter of the dark
matter halo for a fixed value of the controlling parameter
(ζ = 1) and at an epoch t = τ0/8 as a special case. As the
flattening parameter of a halo of fixed mass is varied its cen-
tral density, ρ0, and the core radius, Rc are bound to change.
Therefore we need to calculate the ρ0 and Rc as functions of q.
By imposing two constraints: the mass within a thin spheroidal
shell(Binney & Tremaine 1987, p. 54) and the terminal veloc-
ity (vt, see Eq. (10)) of the halo should be independent of q, we
obtain ρ0(q) and Rc(q) in terms of their spherical counterparts
as (see Narayan et al. 2005):

ρ◦(q) = ρ◦(1)
1
q

(
e

sin−1 e

)3

, Rc(q) = Rc(1)

(
sin−1 e

e

)
(12)

where e = (1 − q2)1/2. As the halo becomes more flattened
(smaller q), the resulting asymmetry αasym goes down which
means that the warp becomes more symmetric. Conversely, as
the halo becomes more spherical the asymmetric index αasym

goes up showing that asymmetric warps are more likely to be
found in a less oblate dark matter halo. This can be explained
as follows. As a constant-mass halo is flattened, the ground
state eigenfrequency (ω0) of the bowl-shaped mode increases,
so that the disk flexes up and down more rapidly. Therefore
the characteristic timescale (τ0) of the mode decreases and
thereby its unmodulated amplitude reduces faster at the mea-
sured epoch, this in turn reduces the asymmetry of the warps.
While this figure illustrates an important physical point from
the model, its direct observational verification is not possible.

In Fig. 5 we plot the variation of the asymmetry index,
αasym, with the core radius Rc of the dark matter halo (given
in units of Rd), again for a fixed value of the controlling pa-
rameter (ζ = 1) and at an epoch t = τ0/8 and for a halo flat-
tening of q = 0.75. In contrast to Fig. 4, here as Rc increases,
the halo mass within a given radius goes up. Figure 5 shows
that asymmetry in warps are likely to be more in a halo with
a smaller core radius; while as Rc increases, αasym goes down.
This is because as Rc and hence the halo mass increases, the
frequency ω◦ of the bowl-shaped mode is raised, and this re-
sults in a smaller intrinsic or unmodulated amplitude of the

Fig. 4. A plot of the asymmetry index, αasym, versus q, the dark matter
halo flattening. As the halo becomes more spherical, the asymmetry
in warps goes up. Here, the dark matter halo is flattened in such a way
as to conserve the ratio of halo mass to disk mass within optical radius
of the disk, and the terminal velocity of the halo.

Fig. 5. A plot of the asymmetry index, αasym, versus Rc, the dark matter
core radius. This shows that as the halo core radius and the halo mass
increase, the asymmetry in warps reduces. Here, the dark matter halo
flattening is kept constant at q = 0.75.

bowl-shaped mode. So in absence of an appreciable amplitude
of the bowl-shaped mode, the resulting asymmetry in the disk
bending also reduces. This result of decreasing asymmetry in
warps for higher mass galaxies is in agreement with observa-
tions (Castro-Rodriguez et al. 2002), which further supports
our model.

The variation of the asymmetry index αasym on the halo
mass can be seen from the Fig. 5. It is explained above that as
Rc/Rd increases and hence the halo mass increases the asym-
metry index goes down. While as the halo mass decreases the
amplitude of warping mode (m = 1) starts decreasing and in
the limiting case when the dark matter halo is absent m = 1
mode turns out to be a trivial tilting of the disk. And it is hard
to generate m = 0 mode in the absence of a dark matter halo.
Thus in the limiting case when halo mass is tending to zero, the
asymmetry index starts falling down to zero and however as we
have checked that this happens when Rc/Rd starts becoming a
fraction which is not a physically acceptable regime of Rc/Rd

for any reasonable disk-halo system known.
So far we have considered a screened isothermal (ρ ∝ r−2

at large radii) dark matter halo, producing a flat rotation curve,
for the generation of asymmetric warps. The flaring of HI in
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Fig. 6. A plot of bending amplitude versus radius which shows an
L-shaped asymmetric warp produced, by setting A0 = 0.55 and
A1 = 0.20 at an epoch t = τ◦/8. The dark matter halo flattening is
kept at q = 0.76 and Rc = 2.0.

the outer region of our Galaxy favours a dark matter halo with
a steeply falling density profile (ρ ∝ r−3 or r−4 at large radii)
(Narayan et al. 2005). Note that ρ ∝ r−3, at large radii, is the
popular NFW density profile (Navarro et al. 1996) for the dark
matter halo. We have checked that the amplitudes of the two
modes (m = 0 and m = 1) and their ground state eigen frequen-
cies behave in a similar fashion in both cases when ρ ∝ r−2 and
ρ ∝ r−3 or r−4 at large radii. Hence we can say that qualitative
behaviour of the asymmetry would remain similar. However we
would like to carry a detailed investigation of the asymmetric
warp with respect to differnet halo profiles in a future work.

In Fig. 6 we show one of the extreme form of asymmetry
of warp shapes, namely an L-shaped mode (see above discus-
sion following Eq. (11)). In principle this can be achieved by
reinforcing the net amplitude of bending resulting from the su-
perposition of the two modes to zero on one side of the disk.
We get an approximately L-shaped mode for A0 = 0.55 and
A1 = 0.20 for the usual input values of q = 0.76 and Rc = 2.0.
Clearly the root of such an extreme form of asymmetric warp
lies in the fine balancing between the two modes in the process
of superposition. Nearly 5 % of the asymmetric warps observed
have this structure (Sanchez-Saavedra et al. 2003), which can
be explained by our approach.

Another form of deviation from an S-shaped distribution is
a U-shaped warp, which comes about naturally when the am-
plitude A0 of the bowl-shaped (m = 0) mode is enhanced w.r.t.
the amplitude A1 of the warping (m = 1) mode (see Fig. 7).
Nearly 7% of the asymmetric warps observed have this struc-
ture (Sanchez-Saavedra et al. 2003). A little juggling of A1 and
A0 values is required to obtain the L-shaped and the U-shaped
modes, unlike the case of the other asymmetric warps. This
perhaps explains their lower observed frequency.

Thus our approach can naturally produce the variety of
asymmetry seen in disk galaxies, including the peculiar L-
shaped and U-shaped warps. The resulting values of asym-
metry (Figs. 4–5) agree with the range of observed values
(Sanchez-Saavedra et al. 2003 and Schwarzkopf & Dettmar
2001).

In order to compare the resulting asymmetry with the ob-
served values, it is useful to obtain the true value of τ0. We have

Fig. 7. A plot of bending amplitude versus radius which shows an
U-shaped asymmetric warp produced by setting A0 = 1.0 andA1 = 0.1
at an epoch t = τ◦/8. The dark matter halo flattening is kept at q = 0.76
and Rc = 2.0.

checked that this lies in the range of ∼0.5–1.0 Gyr and τ1 lies
in the range of ∼6–12 Gyr, for the realistic galaxy models with
a range of Rd ∼ 2−3 kpc, MD, the disk mass ∼2–6 × 1010 M�,
Rc ∼ 2Rd, q = 0.7 and the ratio of the halo mass to the disk
mass is ∼1.4 within the outer radius (∼6 Rd). The ratio of the
frequencies ω0/ω1 is ∼10, note that this value is obtained for
q = 0.7. For other values of q the ratioω0/ω1 varies. Numerical
calculations yield a range of values varying from 8–20 for q
varying from 0.5 to 0.9 respectively. In the absence of any dis-
sipation, the superposition of the two modes will show a cycli-
cal variation and hence the above values represent the typical
asymmetries seen. Even if there is dissipation, so long as there
is a regeneration of the modes (see Sect. 1), then such asymmet-
ric warps can recur and hence can be seen effectively over much
larger timescales. We note that since the natural frequencies of
the two modes are so different, we are justified in treating the
problem as a simple linear superposition rather than having to
take account of the mode coupling.

4. Conclusions

We propose and study the origin of the asymmetric warps in
spiral galaxies as arising due to the superposition of the stan-
dard S-shaped warps (m = 1 mode) and a bowl-shaped warp
(m = 0 mode). This is a simple but general model for gener-
ating asymmetric warps that is independent of whether these
modes arise due to tidal interaction, or gas accretion, or bend-
ing instabilities, or any other perturber. We do a modal analysis
of a disk embedded in a dark matter halo, and obtain the solu-
tions for these two modes which are then linearly superposed.
In the characteristic oscillation of the m = 0 mode, the disk os-
cillates from “cupped upwards” to flat, to “cupped downwards”
and back again. During this flexing of the disk, it gets a chance
to interefere with the S-shaped (m = 1) mode of the disk, and
this produces a rich class of dynamical, asymmetric warps. The
results obtained naturally explain the wide variety of asymmet-
ric warps observed in spiral galaxies, including the peculiar L-
shaped and U-shaped warps.
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