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Probing the quark-gluon plasma with a new Fermionic correlator
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We present the first measurement of a new correlation function of Fermion bilinears in finite
temperature QCD with and without dynamical quarks in a quantum number channel in which non-
trivial correlations are known to be present for purely gluonic operators. We find that the Fermion
correlator vanishes for T ≥ 3Tc/2, in agreement with the expectation for weakly interacting quarks
in a quark-gluon plasma.
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The Relativistic Heavy Ion Collider (RHIC) in BNL,
New York and the Large Hadron Collider (LHC) in
CERN, Geneva may yield a new state of matter, called
Quark-Gluon Plasma (QGP), which could have existed
in our universe a few microseconds after the Big Bang.
It is a theoretically challenging task to deduce from first
principles as many properties of the plasma as possible.
Such a program may help in devising clear and unique
signals of QGP.

Lattice simulations of Quantum Chromo Dynamics
(QCD) have provided a robust approach based on first
principles towards this end. Such simulations of field
theories in equilibrium at finite temperature (T ) use a
discretisation of the Euclidean formulation for partition
functions—

Z(β) =

∫

Dφ exp

[

−

∫ 1/T

0

dt

∫

d3xL(φ)

]

, (1)

where φ is a generic field, L the Lagrangian density,
and the Euclidean “time” runs from 0 to 1/T . The
path integral is over field configurations which are pe-
riodic (anti-periodic) in Euclidean time for the Bosonic
gluon (Fermionic quark) fields. Due to a lack of sym-
metry between the space and Euclidean time directions
in eq. (1), this problem has only a subgroup of the full
4-dimensional rotational symmetry of the T = 0 Eu-
clidean theory. Since the partition function above con-
tains equal weights for all configurations which are re-
lated by these symmetries, only those operators which
transform as scalars under this reduced symmetry group
have non-vanishing expectation values.

For the lattice discretised problem the symmetry
groups reduce to discrete subgroups of the continuum
symmetry groups. It is useful to write the partition
function of eq. (1) as the trace of the transfer matrix
in one of the spatial directions. Correlation functions
along that direction can then be classified by the irre-
ducible representations (irreps) of the symmetry group
of the transfer matrix. Unlike operator expectation val-
ues, correlation functions are generally non-vanishing in
all representations— not just the scalar. At T = 0, the
symmetry group of the transfer matrix for QCD using the

staggered Fermions for quarks has been studied exten-
sively, and the representations of corresponding Fermion
bilinear correlation functions are well known [3]. The
symmetries and representations of screening correlation
functions at finite temperature have been worked out re-
cently [4].

The main point of this last analysis is that the sym-
metry group of the T > 0 transfer matrix is smaller than
that of the T = 0 transfer matrix. As a result, the T = 0
irreps reduce further at finite temperature. All correla-
tion functions block diagonalise under the isometry group
of the spatial slice of the thermal lattice, the dihedral
group Dh

4 . As an example, a correlation function in, say,
the z-direction of any vector (V) or pseudo-vector (PV)
operator, (Vx, Vy, Vt), in the T = 0 theory breaks up into
two scalar (A+

1 ) irreps of Dh
4 , the components Vt and

Vx + Vy, and a B+

1 irrep Vx − Vy . This happens for glu-
onic Wilson-loop operators such as plaquettes, and also
for the quark bilinears operators [4].

The plaquette operators, restricted to a z-slice, trans-
form as a PV set at T = 0 and provide a good example
of this reduction. The combinations Pxy and Ptx + Pty

transform as the A+

1 (scalar) component of the PV and
have non-vanishing expectation values at finite temper-
ature. On the other hand, Ptx − Pty transforms as the
B+

1 [5]. Due to the reasons given earlier, this last ex-
pectation value must vanish, and we show later that it
does. However, the correlation function need not, and,
indeed, does not. Non-trivial screening has been observed
through gauge-invariant gluonic correlation functions [5]
in all the other quantum number channels (labelled by
the irreps of Dh

4 ) as well.

Screening masses obtained from correlation functions
built out of staggered Fermion field operators have also
been extensively studied in the past [6–8]. The correla-
tors which have been measured in the past are the A+

1

from the scalar (S) and pseudo-scalar (PS) channels, and
A+

1 combinations of the vector (V) and pseudo-vector
(PV) channels. The two A+

1 correlators descending from
S and PS see a lower screening mass (µ) than those de-
scending from the V and PV. The latter are consistent
with the expectation from free Fermion field theory—
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µa = 2 sinh−1

(
√

(ma)2 + sin2

(

π

Nt

)

)

, (2)

where a is the lattice spacing, m the quark mass, and Nt

is the number of lattice sites in the Euclidean time direc-
tion (T = 1/Nta). Even some other measurements, such
as those of “wavefunctions”, which seemed to indicate a
more complicated picture [9], can be understood in terms
of weakly interacting quarks [10]. Here we re-examine the
screening masses with the complete decomposition of op-
erators into irreps of the finite temperature invariance
group. In particular, we report in this letter the results
of the first measurement of the B+

1 correlation function
constructed from local Fermion bilinears (see Table III
of [4]) and compare our results with those obtained with
gluonic operators.

We have simulated QCD with four light degenerate fla-
vors of quarks at temperatures above the phase transition
temperature, Tc, on lattices of size 4×102×16, using the
Hybrid Monte Carlo (HMC) algorithm [11]. The longest
direction, Nz, was chosen to be four times the Euclidean
time direction, Nt, so that correlations could be followed
to a distance of 2/T . One simulation was performed at
T = 3Tc/2 with the coupling β = 5.1 and the quark
mass m = 0.015/a where a is the lattice spacing. The
second simulation was made at T = 2Tc with β = 5.15
and m = 0.01/a. With our choice of Nt = 4, a = 1/4T .
The temperature identifications are made using previous
measurements of the critical coupling on lattices with
larger values of Nt [12]. Companion runs were made
in quenched QCD on lattices of the same size at cou-
plings corresponding to 3Tc/2 and 2Tc for the quenched
theory using a Cabbibo-Marinari pseudo-heat-bath algo-
rithm [13].

We thermalised the HMC simulation at 3Tc/2 with two
different runs— one starting from an ordered gauge con-
figuration, and the other from a pure gauge configuration
thermalised at 2Tc. Agreement in measurements of all
thermodynamic quantities was used to decide on ther-
malisation. The plaquette average turned out to be the
most stringent test, since it is the least noisy. At 2Tc

thermalisation was tested by checking that a run start-
ing from an ordered gauge configuration gave the same
thermodynamics as one starting from a thermal 3Tc/2
configuration.

Once thermalisation was achieved, two runs were made
at each temperature— one with a trajectory length of
one molecular dynamics (MD) time unit, and another
with a trajectory length half as long. At 3Tc/2 statis-
tics were collected from 875 such configurations gener-
ated using the long trajectory, and 285 with the short
trajectory. Previous studies have shown that the physics
is much simpler at 2Tc. We did smaller runs at this
temperature— collecting statistics of 445 configurations
with the short trajectory length and 100 with the long
trajectories.

The question of autocorrelations is important when-
ever statistical inferences are to be made. It was found
that autocorrelations of local operators, such as plaque-
ttes, were the same with the two different trajectory
lengths mentioned above. However, with any simulation
algorithm that undergoes critical slowing down, short dis-
tance operators are decorrelated faster than those which
are dominated by large distance scales. Thus, the effec-
tive number of measurements of short distance operators
is not the same as that for extended operators. This is
most problematic for correlation function measurements,
where the correlator at different distances may have en-
tirely different autocorrelations. These are usually diffi-
cult to measure directly and a different approach to the
problem seems necessary.

If the errors in Fermion bilinear correlation functions,
∆C(z), are evaluated with the assumption that there are
no autocorrelations, then they depend systematically on
the separation z. We found that for sufficiently large
statistics, ∆C(z) falls exponentially with z and its loga-
rithmic slope is almost independent of statistics. Hence
it is possible to quote a single number as a figure of merit
for decorrelation—

D =
∆C(Nz/2)

∆C(0)
. (3)

D is usually larger than unity, and depends on the
specifics of the simulation algorithm and its tuning. Since
smaller values of D are preferable, tuning the algorithm
should be done to minimise this.

The values of D obtained depended on the channel be-
ing studied: the largest values of D were found in the A+

1

irreps coming from the V or the PV, and the smallest in
the B+

1 irreps. In each channel, we found only a weak
dependence of D on the number of measurements— indi-
cating that it is a direct measure of the efficiency of the
algorithm.

We found that the long trajectories (1 MD time unit)
give about half the value of D as obtained with the
shorter trajectory. Since it takes twice as long to run
the longer trajectory, the computational effort, E =
D× (CPU time), involved in getting equal statistical er-
rors is the same for these two trajectory lengths. How-
ever, the analysis of correlated errors in screening mass
measurements is simplified with the longer trajectories.
In test runs with trajectories 2.5 MD time units long, we
found no further decrease in D, and hence an increase
in E. Such a dependence of E on trajectory length is
characteristic of the HMC simulation algorithm [14]. In
the dynamical QCD simulations, we found D to lie in the
range 250 to 1000. The quenched simulations were signif-
icantly easier to decorrelate— the value of D was lower
by a factor of roughly 40 compared to the full theory sim-
ulations. This information on autocorrelations has been
incorporated in all our statistical analyses.
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In Table I, we report our measurements of screening
masses for the known A+

1 correlators. Our results are
in very good agreement with previous measurements in
the quenched theory at Nt = 4 [8]. There is also a re-
markable agreement between the A+

1 screening masses
obtained from the quenched and the dynamical Fermions
simulations at both temperatures. The four A+

1 irreps
coming from the V and PV channels gave degenerate
screening masses which agree extremely well with the free
field theory estimate in eq. (2). The A+

1 correlators in the
S and PS channels gave smaller screening masses, which
increase marginally with T .

Hadron mass measurements in 4-flavor QCD at quark
mass, ma = 0.01 and β = 5.15, corresponding to our runs
at 2Tc, have been performed before [15]. A comparison
with these T = 0 measurements, listed in the last column
of Table I, shows that our finite temperature screening
masses are completely different—

µ(T )

m(T = 0)
≈

{

3 (A+

1 from PS),
2 (A+

1 from V).
(4)

In contrast, earlier measurements for Nt = 8 lattices
yielded µ/m ≈ 1 for the A+

1 screening mass in the vector
channel V [7]. This made it difficult to argue for a ther-
mal effect, although µ agreed with eq. (2) even in that
case. The present measurement resolves this problem.
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FIG. 1. The B+

1 correlation function obtained from the V
channel operators. Boxes denote data for dynamical QCD
simulations for 3Tc/2 and circles for 2Tc.

Our main new result is the first measurement of the
correlation function in the B+

1 channels. Correlators in
this irrep obtained with PV and V are identical up to a
sign, configuration by configuration. Hence we restrict
our attention only to the B+

1 coming from the V. We
found that the B+

1 correlation functions vanish to the
best of the measurement precision (see Figure 1). The
correct statistical procedure is to quote the χ2 value for
the fit of the data by a correlation function which is iden-
tically zero. We found

χ2/DOF =

{

7/15 (3

2
Tc, dynamical),

11/15 (2Tc, dynamical).
(5)

The quenched runs gave very similar results—

χ2/DOF =

{

7/15 (3

2
Tc, quenched),

5/15 (2Tc, quenched).
(6)

The numbers in eq. (5) have been obtained with the
statistics collected in the longer of the two runs made
at each temperature. The HMC simulations with smaller
statistics also gave very similar results at both these tem-
peratures.

One possible explanation for these remarkable results
is an exact symmetry between the x and y directions,
configuration by configuration. If this were so, then non-
scalar operators would vanish, not only on the average,
but identically. As a result, the correlation function in
all but the scalar channel would also vanish.

We test for this symmetry by correlation functions of
the B+

1 plaquette operator, discussed earlier. Its average
must vanish, and does—

〈Ptx − Pty〉 =

{

(−0.6 ± 1.8) × 10−4 (3

2
Tc, quenched),

(5.5 ± 3.8)× 10−5 (2Tc, quenched).

(7)

However, the corresponding correlation function does not
vanish. The same configurations used in the Fermionic
correlator measurements lead to gluonic B+

1 correlations
which are clearly non-zero.
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FIG. 2. The B+

1 correlation function obtained from the pla-
quette operators. Filled circles denote data for 3Tc/2 and
open for 2Tc.

This correlation function is exhibited in Figure 2 for
the quenched QCD simulations. Since the correspond-
ing screening mass is large [5], the correlation function
is somewhat noisy at large distances but it is clearly
very different from zero at small distances. The test
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of a vanishing value of this correlation function gives
χ2/DOF ≈ 800. Thus the gauge configurations under-
lying our measurements have a strong configuration-to-
configuration asymmetry between the x and y directions,
allowing the gluonic B+

1 correlators to survive.
Another possibility is that we have accidentally chosen

an operator which has small overlap with the lowest B+

1

eigenvector of the transfer matrix. One way to test this is
to work with other operators. It is often the case that the
overlap on the lowest eigenvector improves by delocalis-
ing the operator in some way. We constructed the “me-
son” operators using quark propagators computed with
fuzzed links. This fails to improve the B+

1 correlation
function. We conclude that there must be a dynami-
cal reason for the vanishing of the B+

1 correlator in the
high temperature phase of QCD, when measured using
Fermion bilinears.

The numerical agreement of the screening masses ex-
tracted from the exponential fall-off of the A+

1 -correlators
with free field values of eq. (2) has been used earlier to
argue that one sees weakly interacting quarks in the high
temperature phase of QCD. In the free-field theory limit,
the Fermionic B+

1 correlators studied here would van-
ish. Consequently, our observations can be seen as ad-
ditional evidence for the weakly interacting picture. In-
deed, comparing the χ2 values, we find that the B+

1 ef-
fective coupling in the quark sector is approximately 40
times smaller than that in the gluon sector, assuming the
overlaps to be similar. Since the vanishing or existence of
a correlation function is easy to observe, we believe that
the B+

1 correlator is a qualitatively better indicator of the
non-interacting nature of the quarks in the quark-gluon
plasma.

The drawback of this picture of non-interacting
Fermions is well-known— the A+

1 irreps coming from
the S and PS channels are not degenerate with those
coming from the V and PV channels. A plausible ar-
gument to understand this phenomenon is to note that
the A+

1 correlator coming from the S channel mixes with
the glue sector of the theory. As a result, the screening
mass in this channel will be contaminated by those in
the gluonic A+

1 sector, of which the lowest is the Debye
screening mass, mD. In quenched simulations at 3Tc/2,
mD/T = 2.8± 0.2 [5]. Since the screening mass for the S
channel lies in between mD and the V channel mass, as
seen in Table I, it is consistent with such a conjecture.

We employed staggered Fermions for this investigation.
It would be interesting to confirm these results for the
Wilson Fermions as well. The symmetries of the lat-
tice are, of course, independent of the type of Fermions
employed and the group theoretic arguments apply with
small modifications. In particular, the break-up of the
zero temperature spectrum under the Dh

4 group proceeds
without change, although the actual operators realising
the irreps do change.

To summarize, we have used a new Fermionic corre-
lator to demonstrate that the quarks in the quark-gluon
plasma are weakly interacting already at temperatures
as low as 3Tc/2. The particular correlator we used is a
much better probe of Fermion interaction strength than
those used earlier.
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Channel 3Tc/2 2Tc T = 0

S A+

1 0.91(3) 1.07(4) 0.60(5)
PS A+

1 0.91(3) 1.07(4) 0.303(2)
V A+

1 1.39(7) 1.35(6) 0.71(6)
PV A+

1 1.39(7) 1.35(6) 1.4(1)

TABLE I. Screening masses in units of the lattice cutoff,
1/a = 4T . The T = 0 masses quoted here were measured [15]
with the same lattice spacing and quark mass as the runs at
2Tc.
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