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Abstract

We report the first investigation of the QCD transition temperature, Tc, for two flavours of

staggered quarks with unequal masses at lattice spacings of 1/4T . On changing the u/d quark

mass ratio in such a way that m2
π0/m2

π± changes from 1 to 0.78, thus bracketing the physical value

of this ratio, we find that Tc remains unchanged in units of both mρ and ΛMS.
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Lattice simulations of QCD with dynamical quarks aim to generate weights for the Eu-

clidean path integral

Z =
∫

DU exp[−S]DetMuDetMd, (1)

discretised on a space-time lattice. Here U are gauge fields which enter the action S and the

determinants of the Dirac operatorM for both u and d flavours. This leads to the well-known

doubling problem in the chiral limit. Several solutions are known and have been used fairly

extensively. One is to work with Wilson quarks, for which chiral symmetry is broken through

an irrelevant operator at finite lattice spacing and recovered in the continuum. Among the

new solutions is the domain wall definition of quarks [1] in which the theory is extended to

five dimensions, and by suitable tweaking of this extended action chiral symmetry is obtained

on a four dimensional slice through the lattice when the length of the fifth dimension is sent

to infinity. Another recently discovered solution is the overlap definition [2], in which chiral

symmetry is intact but its generator and the Dirac operator are non-local at finite lattice

spacing, but become local in the continuum.

In this study we used the solution popular in finite temperature studies— staggered

quarks. These have an exact continuous chiral symmetry at all lattice spacings, a, and in

the continuum limit give 4 degenerate flavours in 4-dimensions. Two degenerate flavours are

obtained by the prescription

DetMuDetMd =
(

DetMstag

)1/2

, (2)

where Mstag is the determinant for a single staggered quark field.

In this paper we introduce two staggered quark fields and define two flavours by the

prescription

DetMuDetMd =
(

DetMstag(u)DetMstag(d)

)1/4

, (3)

which we call 1+1 flavours. When the two quark masses are degenerate, this definition

gives the same weight in the partition function of eq. (1) as the definition in eq. (2). The

new prescription allows us to handle problems involving breaking of vector SU(2) flavour

symmetry, such as unequal masses for the u and d quarks (which we explore in this paper)

and putting isovector chemical potential on the lattice [3].

Our strategy here is to proceed in two steps— first to compare 2 flavours with 1+1 flavours

of degenerate light quarks, and next to lift the degeneracy by giving unequal masses to the
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FIG. 1: Run time histories of 〈ReL〉 on 4 × 83 lattices for 1+1 flavours of staggered quarks at

several couplings close to βc. The dark lines correspond to runs at βc. Of the two lighter lines, the

upper always corresponds to a simulation at β > βc. The thermalisation time is not more than

100 trajectories. βc can be easily identified by eye from the long autocorrelation time τ .

quarks (we shall use the notation m = (mu + md)/2). In each case we simulate the finite

temperature theory on 4 × 83 lattices for several m. We study the real part of the Wilson

line, 〈ReL〉, the quark condensate, 〈ψψ〉 = (〈uu〉 + 〈dd〉)/2 and the related susceptibilities

χL = V
(

〈

(ReL)2
〉

−
〈

ReL
〉2

)

,

χF = V
(

〈

(TrM−1)2
〉

−
〈

TrM−1
〉2

+
〈

(TrM−2)
〉

)

= χm + χπ, (4)

where χm is the chiral susceptibility defined in [4] and χπ is the pion susceptibility of [5].

χF has the simple stochastic estimator [6]

χF/V =
〈

(r†M−1r)2
〉

−
〈

r†M−1r
〉2
, (5)

where each r is a complex random vector with each component drawn from a Gaussian

distribution of unit width and the bar denotes an average over such an ensemble. We

also study the integrated autocorrelation time, τ [7], of 〈ReL〉 and 〈ψψ〉, measured self-

consistently over runs of length of at least 30τ . βc can be defined by peaks in χL, χF and
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FIG. 2: 〈ReL〉 and 〈ψψ〉 as functions of β for m = 0.025 (triangles) 0.05 (circles), 0.1 (boxes)

and 0.15 (pentagons). The lines join centers of the measured data points. There is no significant

difference between the measurements with md/mu = 1 (dashed lines) and 2 (full lines). However,

when md/mu = 10 (dotted line), there is a significant shift in βc.

τ . Within the accuracy of our determinations, they agree. We also make zero temperature

measurements of the plaquette, P , and the masses of the pion, mπ, and the rho meson, mρ,

at βc on 84 lattices (we confirm that the lattice is large enough for these measurements by

checking that the zero temperature measurements are independent of boundary conditions).

The measurement of P at T = 0 also allows us to extract αS [8] and hence to convert a into

a physical length scale in order to extract Tc/ΛMS.

Our measurements have been taken at bare quark masses, am = 0.15, 0.1, 0.05 and 0.025

for degenerate flavours. For non-degenerate flavours with md = 2mu we have only worked

with the first three values of m. We have also investigated md = 10mu with am = 0.15.

The simulations have been performed with the Hybrid-R algorithm [9]. This algorithm is

based on a molecular dynamics (MD) evolution which treats degenerate 1+1 and 2 flavours

differently. Hence, the agreement in the results of these two cases, which we show later, is a

good test that the numerical treatment of the discretised MD evolution is free of errors at

the level of accuracy we achieve. The trajectory lengths have been taken to be one unit of

molecular dynamics time, and the MD equations have been integrated over this range in 100

steps. Some typical run time histories of 〈ReL〉 are shown in Figure 1. Run time histories

of other quantities are similar. The slow but large fluctuations visible in some of these runs

are typical of critical slowing down, and therefore yield estimates of βc.
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FIG. 3: The Wilson-line susceptibility χL as a function of β for m = 0.05 (circles), 0.1 (boxes) and

0.15 (pentagons). The lines join centers of the measured data points for md/mu = 2 (full lines)

and 1 (dotted lines).

Our measurements of 〈ReL〉 and 〈ψψ〉 are collected in Figure 2. Clearly there are no

statistically significant differences between the measurements with degenerate quark masses

and for md/mu = 2. From these figures it is also clear that βc is not sensitive to variation of

md/mu in the range 1–2. From our measurements of masses, detailed later, it turns out this

range of bare quark mass ratios includes the range of m2
π0/m2

π+ between 1 and roughly 0.8.

Since the physical pion masses [14] yield m2
π0/m2

π+ = 0.935, which is inside this range, we

may conclude that the shift in βc due to realistic vector SU(2) flavour symmetry breaking

is negligible at the level of accuracy we can reach. A significant downward shift in βc is seen

when the ratio md/mu is made as large as 10,

The measurements of autocorrelations yield strong peaks, sometimes as high as 300 MD

time units, at couplings which we identify as βc. These runs were extremely time consuming,

since some of them required more than 104 trajectories for reliable estimates of the suscep-

tibilities shown in Figures 3 and 4. These also peaked at the same values of β, and are our

primary means for the identification of βc. Very good agreement between measurements of
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FIG. 4: The susceptibility for the chiral condensate, χ〈ψψ〉, as a function of β for m = 0.05 (circles),

0.1 (boxes) and 0.15 (pentagons) and for md/mu = 2. The lines join centers of the measured data

points. The 〈uu〉 susceptibility is shown except at the lightest am where the 〈dd〉 susceptibility is

also shown for comparison (dotted line).

χL for md/mu = 2 and 1 indicate that there is no shift in βc. The only exception is the

value of χL near βc for am = 0.15, where the difference can be attributed to the factor two

difference in statistics between the runs with md/mu = 2 and 1— the former have both

larger statistics and χL. In Figure 4 we show χF , which also peak at the same βc, but unlike

χL have stronger quark mass dependence.

Our estimates of βc for 1+1 flavours are shown in Table II. Measurements of βc with

the 2 flavour definition of staggered quarks have been made earlier in [10] on 4× 83 lattices

with am = 0.1, 0.05 and 0.025. Estimates of βc have also been made on lattices with

Nt = 4 for am = 0.025 and 0.0125 in [11]. These earlier results are fully in agreement

with our measurements. Recall that studies on fixed volumes cannot decide the order of the

transition, or indeed whether the peaking of the susceptibilities are due to a phase transition

or a cross-over. That requires a study with varying volumes— a work that is outside the

scope of this investigation and left for later.
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am md/mu All 3:13 5:11 All (2 mass)

0.025 1 amπ 0.422 (2) 0.419(4) 0.42 (1) 0.419 (4)

1 amρ 1.16(4) 1.4 (2)

0.05 1 amπ 0.587 (4) 0.579(6) 0.585 (8) 0.579 (6)

2 amπ+ 0.588 (2) 0.582(2) 0.583 (5) 0.581 (2)

2 amπ0 0.535 (4) 0.521 (3) 0.516 (5) 0.516(4)

1 amρ 1.29(5) 1.4 (1) 1.1 (4)

2 amρ+ 1.31(5) 1.5 (2)

2 amρ0 1.31(5) 1.5 (3)

0.10 1 amπ 0.815 (5) 0.805(9) 0.80 (2) 0.80 (2)

2 amπ+ 0.818 (3) 0.811(2) 0.811 (3) 0.811 (2)

2 amπ0 0.740 (6) 0.717 (3) 0.707 (4) 0.705(6)

1 amρ 1.41(5) 1.4 (3)

2 amρ+ 1.39(4) 1.4 (2)

2 amρ0 1.38(4) 1.4 (3)

0.15 1 amπ 0.973 (2) 0.972 (3) 0.978 (4) 0.970 (3)

2 amπ+ 0.982 (2) 0.971 (2) 0.968 (3) 0.968 (3)

2 amπ0 0.885 (7) 0.852 (4) 0.838 (2) 0.823(7)

1 amρ 1.44(3) 1.32 (3)

2 amρ+ 1.47(3) 1.47 (5)

2 amρ0 1.45(3) 1.50 (3)

TABLE I: Meson masses from fits to the form shown in eq. (7) with one or two masses. The range

of t to which the correlation function is fitted is indicated in the column header. The entries for

mπ and mρ are measurements with degenerate quark masses. The remainder are for md = 2mu.

We consider the underlined entries to be our best estimates of the meson masses.

We turn now to measurements at zero temperature. For this part of the work we generated

configurations on 84 lattices at the coupling βc for the value of am under study. The

autocorrelations of 〈ψψ〉 were found to be less than 5 MD time units in all cases, and the

thermalisation time was less than 50 trajectories. We discarded the first 50 trajectories and
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stored 50 configurations separated by 5 trajectories in each of these simulations.

Meson correlators were computed on the stored configurations by inverting the staggered

Dirac operator with appropriate masses. For mu 6= md, the flavour combinations which give

the meson propagators are—

Cπ+(r) = 〈M−1
u (0, r)M−1

d (r, 0)〉

Cπ0(r) =
1

2

[

〈M−1
u (0, r)M−1

u (r, 0)〉 + 〈M−1
d (0, r)M−1

d (r, 0)〉
]

, (6)

where r labels a point of the lattice with respect to the chosen origin. The correlator for

π− is obtained by flipping the roles of the u and d quarks in the expectation value on

the right. The analogous combinations for the ρ have the usual staggered fermion phase

factor. The correlators, and hence the masses, for opposite charge states are identical. For

degenerate quark masses, the propagators in all the charge states are identical. As usual,

these correlators are summed over spatial slices to give the zero momentum propagators.

am βc m2
π+/m2

ρ+ m2
π0/m

2
π+ Tc/mρ+ Tc/ΛMS

0.050 5.325 (25) 0.20 (2) 0.78 (2) 0.194 (7) 1.2 (2)

0.100 5.375 (25) 0.34 (2) 0.76 (1) 0.177 (6) 1.3 (2)

0.150 5.400 (25) 0.44 (2) 0.72 (1) 0.172 (4) 1.3 (2)

TABLE II: A summary of our measurements with md = 2mu. These measurements are statistically

indistinguishable from measurements with md = mu (except for the ratio m2
π0/m2

π+ which is then

identically unity). In the limit of physical m, Tc = 175 ± 6 from extrapolation of Tc/mρ and

Tc = 167 ± 9+15
−14 MeV from extrapolation of Tc/ΛMS .

Meson masses were obtained by fitting these zero momentum correlators to the form

C(t) = A cosh
[

m
(

L

2
− t

)]

+ A′ cosh
[

m′
(

L

2
− t

)]

, (7)

or the corresponding single mass formula obtained by dropping the second term. We explored

the stability of the fits by changing the range of t over which the single mass form was fitted,

and by comparing the result with the two mass fits.

The detailed comparisons are given in Table I. For the flavour symmetric pion and the

π+, there is a clear stable mass for fits over the range 3 ≤ at ≤ 13. For the π0 the mass
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extracted from the two mass fit lies below that obtained from single mass fits. In all cases

we took the lowest estimate to be the value of the mass. For the various ρ, the fit errors are

larger and we accept the single mass fit over the full range of t as our best estimate of the

mass. The 1+1 flavour masses obtained with mu = md are fully consistent with previous

measurements for 2 flavours [10].

We draw attention to the fact that the mass splitting between the charged and uncharged

ρ is not visible within measurement errors, and both these masses are equal to that obtained

with degenerate quarks. However, the splitting between the neutral and charged pions is

clearly visible. Interestingly, the latter are statistically indistinguishable from the pion

mass measured with equal quark masses. Breaking SU(2) flavour symmetry only results in

lowering the π0 mass.

From our extraction of amρ, we extracted the ratio Tc/mρ = 1/Ntamρ. These estimates

are collected in Table II. The ratio Tc/ΛMS increases marginally as am decreases, due to

the small decrease in the measured values of amρ, We have extrapolated these estimates to

the values of am for which the physical value of mπ/mρ is obtained, through the form—

mρ = a+ bm+ · · · . (8)

For the value of am where the physical value of mπ/mρ is obtained, we find Tc/mρ =

0.227 ± 0.008. This gives Tc = 175 ± 6 MeV. Mutually consistent values of Tc are obtained

using the 2-flavour data of [10], and our 1+1 flavour data with md/mu = 1 as well as 2.

Alternatively, the lattice spacing can be traded for ΛMS by using our measurements

of the plaquette, P , to extract the running coupling, αS, and using this in the 2-loop β

function. This procedure was introduced in [8] and later used to determine Tc/ΛMS from

the 2 flavour data for realistic quark masses in [12]. With such an analysis, the values of

Tc/ΛMS extracted from our measurements in the 1+1 flavour case agree completely with the

previous values at the same am. Extrapolation of our 1+1 flavour results to quark masses

which give the correct value of mρ/ΛMS, yield Tc/ΛMS = 0.49±0.02, as in [12]. Then, using

the 2-loop value of ΛMS = 343+31
−28, as appropriate below the charm quark threshold [14], we

obtain Tc = 167± 9+15
−14 MeV (where the first error comes from Tc/ΛMS and the second from

ΛMS). The two estimates of Tc are totally compatible with each other, and also from other

estimates using improved actions [15].

The above method depends on the expansion of P at T = 0 in a series in αS. Since this

9
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FIG. 5: The relation between the lattice spacing and β, shown in terms of the dependence of T/Tc

on β for Nt = 4 lattices. The circles denote estimates from measurements of P . Squares denote

estimates from measurements of βc on lattices with different Nt [16].

is scheme dependent [13], the extraction of Tc/ΛMS can have large uncertainties if the cutoff

is large. To estimate these, we have extrapolated the temperature scale to smaller lattice

spacings and compared to direct measurements of the scale. At the smallest m = 0.025/a

we have made a few T = 0 runs at larger β to estimate the lattice spacing through a

measurement of P . Since the lattice spacing, a, is an outcome of this computation, a series

of runs is needed to tune m. The scale determined in this way can be converted into a

temperature scale for simulations with Nt = 4 at the corresponding β. This is shown in

Figure 5. The temperature scale for Nt = 4 can also be calibrated by direct measurements

of βc at larger Nt. For 2 flavours of quarks and m = 0.025/a, such measurements have been

performed [16]. These results are also plotted in Figure 5. The good agreement between

the two methods of setting the scale implies that the lattice spacings are fine enough for

2-loop scaling to work. As a result, we expect that Tc/ΛMS obtained here are relevant to

the continuum limit.

The major remaining uncertainties are in the extrapolation to zero quark mass, and in
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possible power corrections in a to various quantities we have measured. The question of the

order of the phase transition needs a finite size scaling study and has not been addressed

here. A detailed study of these issues lies outside the scope of this paper, and is left to the

future.
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