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Non-linear susceptibilities upto the eighth order have been constructed in QCD with 2 flavours of
dynamical quarks. Beyond leading order, they exhibit peaks at the cross over temperature, Tc. By
analyzing their behaviour in detail, we find that the dominant contributions near Tc come from a
set of operators with a remarkably simple topology. Any effective theory of QCD near Tc must be
able to explain these regularities.
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Quark number susceptibilities (QNS) in QCD [1] are interesting because they are measurable through event-to-event
fluctuations of conserved quantities in heavy-ion collisions [2]. Recent determinations of the linear QNS in lattice
QCD include those in the continuum limit of the quenched theory [5], the first results in the high temperature phase
of Nf = 2 QCD [6, 7, 10] and the first computation in Nf = 2 + 1 QCD [8]. The non-linear susceptibilities (NLS) are
a generalization introduced in [3, 4] and have been used in finding the Taylor expansion of the pressure of the QCD
plasma at finite chemical potential. The linear combinations used for pressure were also reported in Nf = 2 QCD [7].

Here we report on systematic simplicities of these quantities that we discovered in our investigation of QCD with
light dynamical quarks. These simple patterns which we find here for the first time may be consistent with weak
coupling theory in the high temperature phase of QCD. However, in the vicinity of the finite temperature cross over
at Tc, we find a different simple pattern. It seems possible to incorporate it into a simple model of the physics of the
cross over. A few of these results have been discussed in [10]. Here we complete the study of the NLS started there.

The partition function for QCD at temperature T and chemical potentials µf for each of Nf flavours, can be written
in the form

Z(T, {µf}) =

∫

DU e−SG(T )
∏

f

DetMf (mf , T, µf), (1)

where SG is the gluon part of the action and M denotes the Dirac operator. The pressure,

P (T, {µf}) = −
F

V
=

(

T

V

)

log Z(T, {µf}), (2)
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FIG. 1: χ20/T 2 varies smoothly across Tc, and behaves roughly as an order parameter, being small in the hadronic phase and
large in the plasma. χ11/T 2 is small in the hadronic phase, perhaps peaks near Tc and is not significant in the plasma phase.
Data from lattice sizes 4 × 163 (circles) and 4 × 243 (boxes) are shown.
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FIG. 2: The operator Ø11 is shown on the left with the smallest number of gluon connections between the two fermion loops.
The contribution is naively of order g6, but a computation shows that it is actually g5 log g [12]. The operator Ø2 shown on
the right is fermion line connected and hence the leading contribution shown is of order 1. The black dots denote insertions of
γ0 arising from the derivatives with respect to the chemical potential.

which is a convex function of T and µf , can be expanded in a Taylor series about the point where all the µf = 0 [3].
In this paper we examine staggered fermions with Nf = 2 and a small but non-vanishing quark mass, mu = md = m.

The N -th order derivatives in the Taylor expansion then can be taken nu times with respect to µu and nd = N − nu

times with respect to µd. This is the non-linear quark number susceptibility (NLS), which we write as χnu,nd
. This

new notation streamlines a more cumbersome notation which was used earlier. The translation table between these
two notations can be understood from the relations—

χ20 ≡ χuu = χdd ≡ χ02, χ11 ≡ χud, χ40 ≡ χuuuu = χdddd ≡ χ04, χ22 ≡ χuudd, etc, (3)

where we have used flavour symmetry to write χnu,nd
= χnd,nu

.
The Taylor expansion of the pressure can be written as

∆P (T, µu, µd) ≡ P (T, µu, µd) − P (T, 0, 0) =
∑

nu,nd

χnu,nd

µnu

u

nu!

µnd

d

nd!
. (4)

The NLS above can be written down in terms of the derivatives of Z. From the expression in eq. (1) it is clear that
the derivatives with respect to the µf land entirely on the determinants. Now, since DetM = exp Tr log M , the first
derivative gives (DetM)′ = Tr (M−1M ′)DetM ≡ Ø1Det M . Higher derivatives can be found systematically using the
additional relation MM−1 = 1, which yields (M−1)′ = −M−1M ′M−1. Our notation for operators is that Ø′

n = Øn+1,
and Ølmn··· = ØlØmØn · · ·. The expectation values 〈Ø2n+1(µf = 0)〉 = 0 by CP symmetry. The derivatives of Z can
be written in terms of expectation values of certain operators involving powers of traces of products of inverses and
derivatives of the Dirac operator. Diagrammatic methods for their evaluation were developed in [3, 9] and explicit
expressions were written down in [10].

We report on results obtained using the configurations generated in the study reported in [10]. Details of our
simulations and statistics can be found there. These results have been obtained on lattices with temporal extent
Nt = 4, and varying Ns, with the spatial volume being large. The quark mass has been fixed in physical units to be
such that mπ/mρ = 0.31 ± 0.01, about 50% larger than in the real world, making this the smallest quark mass at
which NLS have been studied. Details of how the temperature scale is set on the lattice can also be found in [10]. In
physical units we find that the cross over temperature, Tc is mρ/Tc = 5.4 ± 0.2.

The volume dependence of Tc has been remarked upon in [10]; we see evidence of some volume dependence in the
bare coupling at the cross over, but the scale has larger uncertainties, so a finite size scaling study of the shift of Tc

with V performed at these lattice cutoffs a will not be very useful. However, strong finite volume effects on the NLS
were found when the spatial lattice extent was too small, Ns < 4Nt. In the remainder of this study, therefore, we
concetrate on the NLS obtained with Ns = 16, using data obtained with Ns = 24 to make cross checks of the results.
At Tc, the finite volume shift in the results is significant, but become negligible on moving slightly away— to 0.95Tc

or 1.05Tc, for example.
The two leading terms in the series, the diagonal QNS, χ20, and the off-diagonal QNS, χ11, have been computed

before. For completeness we display results from [10] in Figure 1. Note that χ11 = (T/V )〈Ø11〉, which is a quark-line
disconnected diagram. Also, one can see that χ20 − χ11 = (T/V )Ø2, which is quark-line connected. Diagrammatic
representations of these are shown in Figure 2. Recall that for T > Tc, these diagrams have been computed in weak
coupling theory, giving reasonable agreement with the lattice results [12, 13, 14].

A counting rule for the minimum number of gluon lines needed in a quark-line disconnected diagram was obtained
in [12] by noting that effectively the diagrams are Abelian, and Furry’s theorem holds, i.e., the number of γµ insertions
must be even. Among these must be counted the insertions of γ0 arising from taking derivatives with respect to the
chemical potential. For Ø11 one gluon exchange is ruled out for reasons of gauge invariance, two by the counting rule,
and hence three gluons are needed, as shown in Figure 2.
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FIG. 3: χ40 (boxes) peaks at Tc, and the peak is entirely due to the term in (T/V )〈Ø22〉 (circles), as shown on the left. After
subtracting this out, one gets a much smoother function (circles in the right panel), which agrees well with (T/V )〈Ø4〉 (boxes).
Data are from lattice sizes 4 × 163.
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FIG. 4: One of the contributions to the operator Ø22 is shown on the left with the smallest number of gluon connections
between the two fermion loops allowed by the counting rules of [12]. Other contributions correspond to permuting the gluon
lines and operator insertions along each quark line, while keeping the loop topology fixed. The operator Ø4 shown on the right
is fermion line connected and hence of order 1. These diagrams are expected to give accurate results in the plasma phase.

In figure 1 some volume dependence is visible in the immediate vicinity of Tc. The high temperature behaviour of
χ20/T 2 is consistent with our earlier results in [6], and, therefore, is compatible with the predictions of [12, 13]. The
results on χ11/T 2 are also completely compatible with earlier results in [6] after correcting for a division by an extra
factor of (T/V ) for χ11/T 2 reported there. Comparison with the recent results of [7, 8] are harder to perform since
the actions and quark masses are different.

At the fourth order, there are five operators— Ø4, O31, Ø22, Ø112 and Ø1111. The last four are quark-line discon-
nected operators. The connected parts of the operators enter into the expressions for the NLS [3, 10]. In this paper,
we decompose the NLS into connected parts of these operators, such as (T/V )〈Ø22〉c. Since comparisons are always
with connected parts, we indulge in slight notation-abuse by dropping the subscript often. We remind the reader of
the definitions of the connected parts at the fourth order—

〈

Ø1111

〉

c

=

[

〈

Ø1111

〉

− 3

〈

Ø11

〉2
]

,

〈

Ø112

〉

c

=

[〈

Ø112

〉

−

〈

Ø11

〉〈

Ø2

〉]

,

〈

Ø22

〉

c

=

[

〈

Ø22

〉

−

〈

Ø2

〉2
]

. (5)

〈

Ø31

〉

and

〈

Ø4

〉

are connected pieces by themselves; the former by virtue of the fact that 〈Øn〉 = 0 for odd n, the

latter because it is the largest loop at this order. In [3, 10] we have shown that each distinct operator topology is a
physical observable in a version of QCD with appropriate number of quark flavours.

We show our results for the QNS χ40 in Figure 3, where we also plot the connected part of (T/V )〈Ø22〉 multiplied
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FIG. 5: χ11 (boxes) and (T/V )〈Ø33〉 (circles) obtained on a 4 × 163 lattice.

by the coefficient with which it enters into χ40. This operator appears to take care of the peak in the QNS near Tc.
In Figure 3 we have also shown the difference between these two quantities. The peak disappears and the remainder,
in the high temperature phase, is saturated by (T/V )〈Ø4〉. Like Ø2, this expectation value is also like an order
parameter, being small in the low T phase, and large on the other side of Tc.

In this range of temperatures, the two major contributions to the fourth order QNS are from Ø4 and Ø22. We
also find this kind of peak in χ22, where it again matched the peak in (T/V )〈Ø22〉. No other QNS at this order has
contribution from this operator, and also show little sign of a comparable peak near Tc. Ø4 gives no contribution to
any other QNS, and, compatible with this, we see that all other 4th order QNS are very small above Tc. A similar
behaviour is also seen on the 4 × 243 lattice.

It is interesting that the counting rules of [12] show that the two largest contributions above Tc should come from
precisely these operators. Ø4 is of order 1, and the connected part of Ø22 shown in Figure 4 is naively of order g4.
In comparison, Ø31 is of order g6, Ø112 is of order g8 and Ø1111 is of order g12. These naive powers may be modified
into some logarithms in the computation.

At the sixth order we have eleven topologically distinct operators Ø6, Ø51, Ø42, Ø33, Ø114, Ø123, Ø222, Ø1113,
Ø1122, Ø11112 and Ø111111. The determination of the NLS are also significantly more expensive than the linear QNS,
requiring many more vectors in the stoachstic evaluation of the traces [10]. One result is that the measurements are
more noisy at higher orders. Nevertheless, it is possible to make significant statements about the structure of these
operators.

One interesting point, illustrated in Figure 5, is the qualitative similarity between χ11 and (T/V )〈Ø33〉. Both are
small in the high T phase, possibly peak in the vicinity of Tc, and are comparable to other operators in the low T
phase. We have previously argued that the increase in the ratio χ11/χ20 with decreasing T implies that the fermion
sign problem becomes more severe, thus restricting the usefulness of all the recent methods which have been developed
to handle this problem. The observation in Figure 5 extends this argument to finite chemical potential.

However, at higher temperatures, such contributions are small. The dependence of χ60 on T is shown in Figure 6.
The peak at Tc is due to contributions from Ø222, as we demonstrate by plotting along with this the values of χ42

normalized so that the two have equal contribution from Ø222. The difference is small; for T > Tc it is saturated by
Ø6, which is much smaller than the peak, but much larger than Ø222. The operator Ø24 also peaks at Tc, but the
value at the peak is negligible in comparison with Ø222. Power counting shows that Ø6 is of order 1, Ø24 is of order
g4, but Ø222 is of order g6. The form of the operators is shown in Figure 7. This is the lowest order at which we first
find explicitly that the perturbative power counting of the high temperature phase does not extend down to Tc.
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FIG. 6: In the first panel we show χ60 (circles) and 5χ42 (boxes) as found on a 4 × 163 lattice. The two are normalized such
that they have equal contribution from Ø222. The second panel shows (T/V )〈Ø6〉T

2 on 4 × 163 (circles) and 4 × 243 (boxes)
lattices. Note the difference in the scales of the two figures.
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FIG. 7: One of the contributions to the operator Ø222 is shown on the left with the smallest number of gluon connections
between the two fermion loops allowed by the counting rules of [12]. Other contributions correspond to permuting the gluon
lines and operator insertions along each quark line, while keeping the loop topology fixed. The operator Ø6 shown on the right
is fermion line connected and hence of order 1. These diagrams are expected to give accurate results in the plasma phase.

-2.5

-2.0

-1.5

-1.0

-0.5

 0

 0.5

 1.0

 0.5  1  1.5  2  2.5
T/Tc

χ.
10

−4

χ80

7χ62

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0.5  1  1.5  2  2.5
T/Tc

(T
/V

) 
O

 T 8
4

FIG. 8: In the first panel we show χ80 (circles) and 7χ62 (boxes) as found on a 4 × 163 lattice. The two are normalized such
that they have equal contribution from Ø2222. The second panel shows (T/V )〈Ø8〉T

4 on a 4 × 163 lattice. Note the difference
in the scales of the two figures.



6

-1000

-500

 0

 500

 1000

 0.5  1  1.5  2  2.5

χ

T/Tc

(T/V)O    T4
26

(T/V)O    T4
44

FIG. 9: The connected parts of the expectation values of Ø26 (circles) and Ø44 (boxes) as found on a 4 × 163 lattice. The
expectation values are normalized by T/V and rendered dimensionless through a multiplication by T 4.

This pattern recurs at the eighth order, as we display in Figure 8. There is a peak in some of the susceptibilities
at Tc, but this can be ascribed to Ø2222. The high temperature phase is dominated by a non-vanishing value of Ø8,
which is much lower than the peak. Other operators at the eighth order which may peak at Tc are Ø26 and Ø44. As
we illustrate in Figure 9, they indeed have interesting behaviour near Tc. However, these operators are numerically
negligible compared to the value of Ø2222. In the high temperature phase the power counting rules show that Ø8 is
of order 1, Ø26 and Ø44 are of order g4, whereas Ø2222 is of order g8. The pattern of dominance near Tc therefore has
nothing to do with power counting in g.

In summary then, we have found a very pleasing pattern for the NLS. In the hadronic phase, all operators seem
to have comparable expectation values. This is not unexpected. In the hadronic vacuum, at T = 0, many different
operators have vacuum expectation values, which are all typically expected to be of similar order. Above Tc, we have
an extremely simple pattern, in which the NLS are dominated by the operators with a single quark loop, Øn, and the
expectation values (T/V )〈Øn〉T

n−4 are all in the range of 1–2. This pattern seems to be organized by weak-coupling
power counting arguments, but it would be useful to have precise estimates of these operators through perturbative
computations.

It follows from this observation, that the pressure at finite chemical potential has contributions from all even terms,
but the numerical importance of the terms decreases factorially at high temperature. As shown in [15], in a free
field theory at finite µ, the pressure can be separated into a quark piece and an antiquark piece, each of which has
contributions to all even orders in µ, which cancel to give a pressure which contains only terms upto order µ4. These
small terms in the pressure can be thought of as little shift in these pieces caused by a weak coupling, such that the
cancellation becomes incomplete. Such a mismatch between particle and antiparticle is possible because a chemical
potential explicitly breaks CP invariance.

The most unexpected regularity that we have found is in the vicinity of Tc. Here, the NLS are dominated by a
composite operator which is made up of appropriate numbers of fermion loops with two γ0 insertions in each, i.e., with
an appropriate number of Ø2. Our observation suggests that it may be possible to write down effective long-distance
theories in which this composite bosonic operator is treated as a field operator whose expectation value shows the
correct cross over behaviour. In that case 〈Ø22〉c would be the susceptibility of this field, and being proportional to
the temperature derivative of 〈Ø2〉, would peak, as observed. The expectation value 〈Ø222〉c would be proportional
to the next derivative of 〈Ø2〉. Then the T -dependence of these quantities at µf = 0 would have the shapes shown
Figure 10.

In an effective 3-d spatial Landau theory of the form that we suggest, Ø2 can be taken to be a two point function built
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FIG. 10: The expectations for the NLS near Tc based on an effective theory of QCD near the phase transition in which the
composite operator Ø2 is identified as the order parameter.

from one polarization of a vector operator. Under the symmetries of the transfer matrix that builds the equilibrium
correlation functions, i.e., the screening correlators, this polarization mixes with the scalar [16]. It has been suggested
that the scalar crucially impacts the physics of the phase transition in the chiral limit [17], because of the fact that
it becomes massless at that point. This is the situation in the chiral limit; it would be interesting to see predictions
from such models for the behaviour of these NLS at finite quark mass.
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