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ABSTRACT

.

Using Monte Carloc methods, we show that the finite
temperature deconfinement phase tramsition in 2(3)
lattice gauge theory is of first order by presenting
evidence for the coexistence of the two phases in the
transition region. A similar study for the 2(2)
theory, however, failed to yield any such evidence,
thus indicating the corresponding transition to be of

higher order.
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Recent investigations of finite temperature gauge theories using
Monte Carlo methods on lattices, have yielded interesting results. The
existence of a deconfining phase transition for SU(2§ and SU(3) 1lattice
gauge theories, known previously st streng coupling s has been shown to
exist also for intermediate values of couplings 2743 y Which allowed an
extraction of physical values for the transition temperature of the corres—
ponding continuum theories using renormalization group arguments. It is, of
course, desirable to understand more about the nature of these deconfining
rhase transitions and the most natural question cne would like to ask *to this
end is about the order of the phase transition. Predictions about the order
of the deconfinement phase transition in & host of pure lattice gauge theories
have been made by Svetitgky and Yaffe 4 . They argue that due to the fact
that the deconfinement phase trensition can be characterized by the sponta—
neous breakdown of a global symmetry, i.e., the Z(N) centre symmetry for
SU(N) groups, the order of the phase transition for SU(N) and Z{N) gauge
groups should be the same. Relating the (d+1) dimensional gauge models at
finite temperature to a d dimensional spin model with the same global sym-—
metry they predict the order of the phase transitions in models with a global
2(2) or Z(B) symmetry to be second or first order, respectively. On the
basis of Monte Carlo studies it has been recently claimed that the deconfine-
ment phase transitions in SU(?) and SU(B) are indeed second and first

5), basically using the sharpness of the 8U(3) +transi-

order, regpectively
tion as a criterion for its first order nature. However, we would like to
emphasize that Monte Carlo simulstions of lattice gauge theories allow a clear
distinetion between discontinuous asnd continucusg phase transitions. The co—
existence of iwo phases at temperatures arcund the critical temperature Tc,
characteristic for a discontinuous phase transition can be shown in Monte
Carlo runs at fixed temperature using different start configurations. This
has been observed by Creutz et al. in their study of Z{N) gauge theories at

&
zero temperature .

The aim of our work is to see to what extent the order of finite tem—
perature phase transitions can be determined through a search for coexisting
phases. We have studied Z(2) and 2(3) lattice gauge theories in three
space dimensicns for this purpose. The critical behaviour of these models
is expected to be related to that of a 34 Ising model and a2 34 three—gtate
Potts model, which yield second and first order transitions, respectively 7).
Our analysis may, therefore, serve as a check of some of the basic predic—
tions of Ref. 4). Alternatively, combined with results such as those of
Ref. 5), our analysis may test the relevance of the underlying global gymme-—

try group for the order of the deconfinement transition.
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The thermodynamics of z(N) gauge theories in three space dimensions

can be obtained from the partition function

Z = Tr e PFH (1)

8),9) onlﬁr, B=1/T is

the inverse temperature and the Hamiltonian H is given by

where the trace is to be taken over physical states
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Here the plaguettes and links are defined in a three-dimensional cubic lattice

and the operators ﬁﬁ o and 6H . which are associated with a link joining
? ]
neighbouring points ™, W+ satisfy the following conditions
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éhe above Hamiltonian is gelf-dual for all N, the self~dual point
being +vy=1. Further, for N=2 and 3, the cases of cur interest, it is
identical to the Hamiltonian of the N state Potts model whose finite tem—
perature behaviour has been discussed by Goldschmidt and Shigemitsu 9), using
large N expansion., Figure 1 shows their generic phase diagram for both
Z(E) and Z(B), redrawn in our notation. These models have three different

9)

or nothing is confined, labelled in Pig. 1 as B, M, C, respectively. At

phases in which either only "electric" charges or only "magnetic" charges
zero temperature, self-duality predicts a phase transition at yc=‘1, separa—
ting the phases E and M. At finite temperatures and v > 1, however,
there is a deconfinement phase transition which separates the phases E and
¥. Due to the similarity of this phase transition with what one has in

su(¥) gauge theories, we will be interested in the following in the decon—

finement transition of electrxic charges.

The problem of the evaluation of the partition function, Eg. (1), can
be reformulated into that of the calculation of the partition function of a
Z(N) gauge theory defined on a (341 )—dimensional Buclidean hypercubic lattice,

10),11)

using standard techniques For N=2, 3 the partition function takes

on a particularly simple form



2 =lm > expl-agX (1-Rellttitt)-gcag > (1-Reuu
Ve {u, .} B{Ps} I ax{"ﬁ e Ull)_'l,(z;)

where aB==26/NB andé the coupling g(aE,Y) is given by

Nagy/(N-1)
_ N=1 e +N-1 J -
% X177y l"[. N Y/ IN-1)_ 1 ; N=2,3. (5

In Eq. (4) {PS}, {Pﬂ} denote the set of all plaquettes containing respec—

tively zero or two links in the newly added inverse temperature direction angd
U

¢ L
taking on the values

} is the set of all link variables in the {3+1)-dimensional lattice,

u% = exp{ilwk/w} , k=01 ..,N-7. (o)

The trace operation in Eq. (1) restricts the U's in the B direction as

below :

uth’,ﬁ,o u(ﬁ,ua),o (7)

The confinement region of electric charges is characterized by an order para-
meter which is zero in this regime and non~zero ctherwige. For this purpose
one uses the expectation value of the thermal Wilson loop

N,
<L@> =< T u (8)

k=1 (l.-:,k],o

where (... denotes thermal averaging : (x) =2~ nrxePH, As I{n) trans—

forms non~trivially under global Z{N) transformations, a non-vanishing

expectation value signals a spontaneous breakdown of this gloval symmetry.

Using a 83x4 lattice, we have studied the above order parameter in
the vicinity of the deconfinement phase transition for both Z(2) and Z(B)
lattice gauge theories. At zero temperature (B:aﬁ this transition occurs
at the self-dual point yc=1 and has been shown t0 be first order 6 .« For
finite but low temperatures the phase boundary is still at yc:=1, as cal-
culated in Ref. 8), and the phase transition from the electric into the

magnetic confinement phase is still expected to be of first ocrder. At
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sufficiently high temperature, however, we expect Yo > 1 and moreover, the
Z(Z) transition is supposed to be no longer of first order but of second
order, whereas the one in Z(B) iz still expected to be of first order 4).
Therefors, we should always be able to find a region of-couplings and tempe—
ratures whers one observes the coexistence of the deconfined phase ((L>>>O)
and the confined phase ((L)'vo) indicating a first order phase transition,

except for the case when Yo > 1 for Z(Z).

In order to verify first whether for large enough B one still has a
first order transition at vy=1, we fixed vy=1 and chose P=0.75 for
btoth Z(Z) and 2(3). Using a standard heat bath algorithm 12), we let the
lattice evolve from ordered and randocm start configurations. Figures 2a and
b show the results of this calculation for the order paramster (|L|> for
z{2) and (ReL3> for Z(3) *). One clearly sees that the system equili-—
brates quickly and exhibits a distinct two-phase behaviour. We thus confirm
vhe results of Ref. 9) about the position of the transition and also the nalve
expectation that the transition continues to be first crder 4 . We progressi-
vely decreased B in both the cases and found similar results as in Fig. 2 for
a substantial range of B, although the fluctuations in the random (confinement )
phase seem to become increasingly bigger as we lowered B still further. At
B=0.5 in the case of Z(2) and B =0.65 in the case of Z(3), we found
that the coexistence of the phases was no more to be seen at y=1: 1instead
both the ordered and random start soon approached each other and (lL[)
[}ReLBE] was distinetly bigger than zero, as we show in Figs. 3%a and 4a, res-—
pectively. Clearly, for these values of B and vy 1in the respective cases,
one is in the deconfined phase (phase ¢ in Fig. 1) and the deconfining tran—
gition at these P values was no more at +vy=1. To determine the vy at
which the transition takes place, we fixed the B value in each case and in-
creased now v. In both the Z(?) and Z(B) cases, we found that at v =
= 1.05 the system, when allowed to equilibrate from an ordered and random
start, approached towards the random phase, with (|L|> [ZReLBEI vanishing-
1y smell in each case, as shown in Figs. 3e and 44, respectively. Thus v =
=1.05 at B=0.,5 [E =O.6i] clearly corresponds already to the confining
phasgse for the z(2) EZ(BH theory.

*)}  Because og the exact Z(N) symmetry of the problem du> ror z(2)
and {Rel y for Z(B) is a convenieng guantity to consider in Monte
Carlo simulations on finite lattices 2 ,33. Here L denotes an
average of L{W) over the lattice after each iteration.
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In order to find out the phase transition point in each case, and
check whether the transition is still of first order on the boundary of the
phases E and ¢ (Fig. 1), we fixed B at the respsctive value used above
and then varied v in very small steps in the range 1.0 < vy < 1.05, At
each pair of 8, v values, the behaviour of the system evolving from an
crdered and a random start was compared. We found a narrow region of v
values (&y'v0.0025) for the case of the %(3) theory where one observes
coexisting phases, as we show in Figs. 4b and 4c¢ for y=1.03 and 1.0325,
respectively. For the case of Z(E), however, we found no such behaviour
for any v value. As we show in the three typical rung near the $ransition
point in Figs. 3b, 3¢ and 38 there were always very large osecillations in
both the phases, but even if one averaged over the oscillatory behaviour,
the mean (JLJ> from the two start configurations approached each other,

*
showing thus an absence of any coexistence of two phasges .

The large fluctuations which one observes in the order parameter, as
in Figs. 3b-3d, further indicate that the transition in the case of 7(2)
is perhaps of higher order. It is, of course, not possible from these data
to determine whether it is indeed of second order, as claimed in Ref, 4),
although one can, in principle, check their prediction by calculating quanti-
ties such as the specific heat; a diverging peak (on finite latfices, one
can see an increase in its height with increasing size of the lattice) at

the transition point should be observed if the transition is of second order.

We have shown the deconfinement phase transition in 7z{2) ana Z(B)
lattice gauge theories, i.e., the transition between the phases E and C
of Fig. 1, to be continuous and of first order, respectively. As pointed out
earlier, the implications of these results for SU(2) aug 8SU(3) are quite
interesting and it would thus be nice to see whether such coexistence of
phases can also be found for the SU(3) thecry which is also predicted to
have a first order transition on the basis of exactly the same arguments
which predict the 2Z(3) +ransition to be of first order 4 . Though sc far
no evidence has been presented in the literature for coexisting phases in the
case of SU(3) to support the claim that its transition is of first order,

we understand that work is in progress and will be reported soon 5)’13).

We thank T. Celik, P. Hasenfratz and H. Satz for discussions.

*) We have performed the same exercise at many more v values in the
range 1 <y < 1.05, All the figures look similar to Fig. 3b=3;
cnly the oscillations get smaller, as one moves away from ~~1,029.



-6 -

REFERENCES

1)
2)

6)

7)
8)

9)
10)
11)
12)
13)

A.M. Polyakov, Phys.Letters 72B (1978) 477;
L. Susskind, Phys.Rev. D20 (1979) 2610,

L. McLerran and B. Svetitski, Phys.Letters 98B (1981) 195;
J. Kuti, J. Polényi and K. Szlachanyi, Phys.Letters 98B {(1981) 199; )
J. Engels, F. Karsch, K. Batz and IL. Montvay, Phys.Letters 101 B (1981

89.
K. XKajantie, C. Montonen and E, Pietarinen, Z.Phys. C9 (1981) 253.
B. Svetitsky and L.G, Yaffe, Nuclear Phys. B210 [#367] (1982) 423.

J. Kogut, M. Stone, H.W, Wyld, W.R. Gibbs, J. Shigemitsu, S.H. Shenker
and D.K. Sinclair, Phys.Rev.Letters 50 (1983) 393,

M. Creutz, L. Jacobs and C. Rebbi, Phys.Rev.Letters 42 (1979) 1390;
Phys.Rev. D20 {1979) 1915.

J.5. Knak Jensen and 0.G. Mouritsen, Phys.Rev.Letters 43 (1979) 1736.

J. Kogut, R.B. Pearson, J. Shigemitsu and D.K. Sinclair, Phys.Rev. D22
{10h0) 2047,

Y.Y. Goldschmidt and J. Shigemitsu, Nuclear Phys. B200 [FS4] (1982) 149.
M. Suguki, Progr.Theor.Phys. 56 (1976) 1454.

J. Engels, F. Karsch and H. Satz, Nuclear Phys. B205 [FSS] {1982) 545,
M. Creutz, Phys.Rev. D21 (1980) 2308,

T. Celik, J. Engels and H. Satz, in preparation.

3639696

FIGURE CAPTIONS

Figure 1 = The schematic phase diagram for Z(2) and Z(B) lattice

gauge theories at finite temperature in three space dimen-

sions. The notation is explained in the text.

Figure 2 : The order parameter for a random and ordered start at vy=1

and low temperature @ =0.75, i.e.,
(a) {(JL]> for z(2); and

(b) (ReL®) ror z(3).

Pigure 3 The evolution of the order parameter (|L|> for the 2z{2)

theory from random (dashed line) and ordered (full 1ine)
start configurations at B =0.5 and

{a) v=1.0;3

{(b) y=1.023;

¢) y=1.025;

d) v=1.03; and

) y=1.05.
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Figure 4 ¢ Same as Fig. 3, but for (ReL3> of the Z{3} theory at
B=0.65 and
(a) v=1.03

(b) y=1.0%;
(¢) y=1.0%25; and
(d) v=1.05.
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