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Universality in finite temperature lattice QCD

Abstract

In the lattice regularization of QCD, physical results must be independent of the choice of
lattice action. Finite temperature thermodynamics provides a very sensitive test of this
universality, providing a functional comparison between the predictions of different actions. We
study thermodynamics using Wilson's, Manton's and Villain's actions as well as the mixed
fundamental-adjoint form of Bhanot and Creutz. Our results support universality in all cases,
but indicate that in general the region of couplings in present lattice calculations requires the
inclusion of higher order effects in the perturbative solution of the renormalization group
equation.
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In the lattice regularization of QCD, physical results must be independent of the choice of
lattice action. Finite temperature thermodynamics provides a very sensitive test of this universality,
providing a functional comparison between the predictions of different actions. We study thermo-
dynamics using Wilson’s, Manton's and Villain’s actions as well as the mixed fundamental-adjoint
form of Bhanot and Creutz. Our results support universality in all cases, but indicate that in
general the region of couplings in present lattice calculations requires the inclusion of higher order
cffects in the perturbative solution of the renormalization group equation.

1. Introduction

The lattice regularization of QCD is a very fruitful method both for confinement
studies [1] and for finite temperature thermodynamics [2]. The same classical
continuum theory is, however, obtained from a wide class of lattice actions, leading
to a universality requirement for lattice evaluations: the resulting physical quantities
must be independent of the choice of action. Thus e.g. the relation between mass gap
and string tension, or between deconfinement temperature and string tension, must
become the same in the continuum limit of sufficiently small bare coupling g2,
whatever action is used in the lattice formulation.

Numerical calculations in lattice QCD are, however, performed for finite g2; in
the scaling region of the theory, such calculations are expected to give us the correct
continuum limit. Hence we must verify if universality holds within the scaling region
of specific lattice formulations.

At T=0, the string tension ¢ has been calculated in the scaling region for
different actions [3-6] x, each yielding o/A%, where A| is the lattice scale parame-
ter. Different actions lead to different values of 0/A? . so that A| = A% must depend
on x. The ratios of A} values for different x have been calculated in the weak
coupling limit g2 — 0 [7]. Comparing the ratios from the numerical evaluation with

* Alexander von Humboldt fellow.
** Present address: CERN. Geneva, Switzerland.

223



224 R.V. Gavai et al. / Finite temperature lattice QCD

the weak coupling predictions can give us some indications about the validity of
universality. It is not an unambiguous test, however, as the scaling region is generally
larger than the region of validity of the lowest order weak coupling expansion; in
other words, at finite g2, higher order terms in the g2 expansion may become
important.

At T =0, the colour deconfinement temperature T, can be chosen as relevant
physical quantity in place of o; Monte Carlo studies now yield T,/A} for different
actions [8, 9}, and we may compare these results to weak coupling predictions.

In either case discrepancies between numerical results and weak coupling ratios
may be due to higher order corrections in g2, and for these so far only estimates
exist [10]). To circumvent this difficulty, one can compare the ratios of physical
quantities, e.g. a/T2, for different actions, in order to obtain a better test of
universality.

One aim of the present paper is to carry out this test, as well as to study the role of
higher order terms in the weak coupling expansion in this context.

Moreover, in finite temperature QCD one obtains physical quantities as functions
of temperature, and this provides us with the possibility of a much more sensitive
test of universality. Calculating an observable O(7) on the lattice for different
actions now requires functional agreement over a whole range, rather than the
coincidence of two points only. The second aim of this paper is such a functional
test of umversality.

Finite temperature tests appear of particular interest in view of a recent study [6],
showing at T = 0 considerable discrepancies between Monte Carlo results and lowest
order weak coupling predictions, in the case of an action consisting of a mixture of
fundamental and adjoint gauge group representations [11]. Do these discrepancies
persist at T = 0, and do they also lead to functional discrepancies?

The plan of this paper is the following. In sect. 2, we present our results using
Wilson’s, Manton’s and Villain’s forms of the lattice action for SU(2) Yang-Mills
theory. Besides T, and o, we compare the deconfinement order parameter [12,13]
{|L|) and the energy density ¢ as functions of temperature for the different actions.
In sect. 3, we consider specifically the mixed fundamental-adjoint action of ref. {6],
determining T, as well as (|L|)(T). Sect. 4 summarizes the conclusions of our work.

2. Wilson, Manton and Villain actions

In this section, we want to study the continuum limit of physical quantities
calculated on euclidean space-time lattices, using the SU(2) form of the Wilson [14],
Manton [15] and Villain {16] actions. These actions differ from each other at finite
lattice spacing a, but lead to the same classical continuum limit for ¢ — 0. Their
common feature is the dependence on a single dimensionless coupling g, which in
the scaling region of the theory is related to the lattice spacing a through the
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Callan-Symanzik equation
adg(a)/da=pB(g). (1)
Perturbation calculations yield for SU(2)
B(g)=Byg’ + Big* + B.g" +O(g°). (2)
with
B,=11/24z2 B, =17/9="*. (3)

The coefficient 8, depends on the form of the action and has so far not been fully
calculated for the cases considered here. Integrating eq. (1), (2) we obtain the
relation

_ BBy - B a {_ I 2}
aAy, {1 ( YE )g +0(g )}exp e 2B§1n(ﬂog)’ (4)

where the lattice scale parameter A is a regularization scheme dependent integra-
tion constant.

In Monte Carlo calculations, the scaling region of a given formulation is generally
taken to be that range of couplings in which physical quantities of dimension « scale
according to the leading term of eq. (4),

N B,
aAL—exp{ ZB()g 230 (B()g )} (5)

An evaluation in this range then yields physical observables in units of A;. By
universality, these quantities have to be independent of the form of the action, and
we can thus determine the ratios of the lattice scale parameters for different actions.
These can then be compared with weak coupling limit predictions for g2 — 0. Before
interpreting this as a test of universality, we have to make sure, however, that eq. (5)
is indeed applicable to the data used. The higher order corrections terms in eq. (4)
introduce (via 8,) an action-dependent correction

AL"’AL/( Bzioﬂ Blgz)- (6)
0

which, when observed over a small range of g? would appear simply as a change in
the corresponding A .

We want to show in the following that finite temperature Monte Carlo studies
provide a particularly sensitive test both of universality and of the role of higher
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order terms in eq. (4). We begin by defining the three actions to be considered in this
section. On an isotropic lattice, i.e., one with equal lattice spacings in space and time
directions, they have the common structure

S(U) =YL S(Uy). (7)

(P

where the sum is over all elementary plaquettes of the lattice; the plaquette action
Sp=S(Up) is a function of the plaquette variables Up and the dimensionless
coupling g. The plaquette variable is given by

Up= U‘/Uijk/U/:’ (8)

i

for a plaquette P = (ijk/); the U, are SU(2) elements associated to the link joining
the adjacent sites i and j. In terms of the angular variable 6, and the Pauli matrices
0;, Up can be written as

Up=1cosbp+io-npsinfp, 9

where v, is a three-dimensional unit vector specifying the remaining two Euler
angles. Using this notation, we have

S;V=i7(1—0050,,), (10)
g?
for the Wilson action [14],
sy =26z, (1)
for the Manton action [15], and

T2 o (1+ 1)sin” 'Gpsin[(/ + 1)8pJexp[ — 1/(/+2) g?]
=oll+ 1) exp[ - 41(/ +2)g?]

Sy = —ln{ . (12)

for the Villain action [16].

A quantity of essential interest for the thermodynamics of Yang-Mills systems is
the deconfinement temperature T, above which colour screening deconfines the
gluonium colour singlets. The thermodynamics of the phase transition at this
temperature can be studied in two ways. On the one hand, one can evaluate the
expectation value of a thermal Wilson loop [12, 13],

=0 T<T.
(ILI)=e Fq/7{$0 T (13)
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which is related to the free energy F, of a static quark placed into a gluonic system
of temperature 7. On the other hand, one can calculate the energy density of the
gluonic system as such [2, 8], and then determine the critical temperature from the
singularity in the specific heat. On finite lattices, the latter appears to provide a more
precise determination; it yields [8, 9] for the three forms (10-12), respectively

42.8AY
T.={ 10.5AY. (14)
27.3AY%

From these results and the requirement of a universal 7 one obtains the lattice scale
ratios shown in table 1.
At T = 0, analogous results are obtained for the string tension o [3,4, 5]

(83.3 £ 13.9)AY [3.4]
o =<{(162+05A[5] . (15)
(48.5 + 2.6)AY [5]

The corresponding A ratios are also shown in table 1.

Both the T, and the /o ratios are compared in table 1 with the weak coupling limit
prediction for g2 = 0 [7]. In both cases, we have order of magnitude agreement, but
also clear discrepancies. To see whether these might be due to higher order terms in
eq. (4), we consider the dimensionless ratio

R=Vo /T, (16)
for the three actions. From eq. (14) and (15) we obtain
Ry =19440.33, (17a)
Ry =154+0.05, (17b)
Ry=1.78+0.10. (17¢)
TABLE |
From o From T, From theory* From theorv'
Ay /AY 5.14 + 0.87 4.08 3.07 3.33
AY/AY 299+ 0.19 2.60 2.45 2.92

*With g2 = 0, from ref. [7].
T With higher order corrections. from ref. [10].
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Since these results agree, as also noted in ref. [9], within the quoted errors, we
conclude that universality in fact holds and that the observed deviations from the
weak coupling limit are indeed finite-g effects.

So far, our test of universality consisted in the comparison of numerical ratios.
Finite temperature thermodynamics, as already mentioned, gives us a further and
much more sensitive test: using different actions, we can compare corresponding
physical quantities over an entire range of temperatures. We have, therefore, studied,
for each action, both the thermal Wilson loop {|L|) and the energy density ¢ of the
gluon system, on a 103 x 3 lattice for g2 values leading to temperatures around T..

In fig. 1, we show (|L|) for the three actions as a function of T/T_, with T, given
by eq. (14). The data points seem to fall on a universal curve over the whole
temperature range considered. In some sense this observed action-independence of
(|L|) is rather astonishing. For, strictly speaking, {|L|) by itself is not a physical
quantity although it has been widely used [12, 13] in finite temperature studies as a
deconfinement order parameter. As mentioned in eq. (13), it describes the free
energy of a static quark and as such still contains the divergent self-energy term
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Fig. 1. Thermal Wilson loop as a function of T/T,. calculated on a 3 X 102 lattice for Wilson action ( X ),
Manton action ( #) and Villain action (O). Here T is the temperature of the SU(2) gluon matter while 7,
is the deconfinement temperature.
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typical of a point charge [17]. In order to extract the true order parameter from it,
and thus test universality, one has to compute this divergent contribution and
subtract it from F. For our purpose, however, it suffices to argue that the divergent
contribution is independent of action. Unfortunately, we do not have a rigorous
argument to show this, but intuitively it is expected to be so. The divergence is
related to the vanishing size of the point charge, and hence the divergent contribu-
tion is expected to be independent of temperature. If this be so, one can subtract [18]
the free energy F_ at a fixed temperature T, from F, at all T to get rid of the
self-energy contribution. Thus

F(T) = = Tln (| L])}r,.

pqphys= Fq — Fq(To)s

so that
/T _ pphys
ALY /(L 7ar,) ™ =e  F/T,

is the true order parameter. Since our {|L|) data themselves fall on a universal
curve, it follows that also the order parameter is universal.

However, in view of the important rdle played by (|L|) as deconfinement order
parameter in finite temperature QCD, the subtraction scheme for the self-energy
term should be studied in more detail; work in this direction is in progress and will
be reported elsewhere [19].

In fig. 2, we show the energy density € of the SU(2) gluon matter as a function of
T/T. The data points shown here are obtained by subtracting space-like and
time-like plaquette averages [2,8,9]; higher order corrections, proportional to the
derivatives of g?, are not included, since they have not yet been calculated for
Manton and Villain actions. Here, too, one sees that the data fall on a universal
curve for all three actions.

From the functional universality of (|L|) and ¢ we can conclude even more
strongly that the deviation of lattice parameter ratios from their weak coupling limit
must be due to higher order corrections of the form (6).

The influence of the action dependent term 8, has been estimated [10]; for our
lattice parameter ratios one finds

AY/AY =3.07(1 + 0.047g?), (18a)
AY /A =2.45(1 + 0.077g2). (18b)
At g* = 2, which corresponds both to the temperature and o values in question, this

leads to the corrected values included in table 1. The corrections are clearly seen to
reduce the discrepancies, as expected.
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We conclude: for Wilson, Manton and Villain actions, universality is well sup-
ported by finite temperature thermodynamics. Present lattice sizes, which require g?
to be in the “cross-over region” of T = 0 studies, lead to small but noticeable effects
from higher order terms in the scaling relation (4).

3. The fundamental adjoint action

In this section, we want to consider the action obtained by generalizing Wilson’s
form to include a term corresponding to the adjoint representation of the SU(N)
colour group [11]. For SU(2) it is defined as

Sa=BY (1 —cosfp)+BaY sin’fp, (19)

P (P}

where we have used the conventional notation 8, 8, for the lattice couplings; in the
continuum limit

g7 i=(iB+1Bs). (20)

This action has a considerably richer phase structure [11] than the pure Wilson
action, as shown in fig. 3. It is therefore of great interest to see if universality also
holds in this more general case.

T TV rvverg T T T v rrrTg v T T 1T rrrr

T
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Fig. 2. The energy density of the SU(2) gluon matter versus 7/T,, calculated on a 3 X 10* lattice for
Wilson action ( X ), Manton action ( *) and Villain action (O). T, T are the same as in fig. 1. The dotted
lines shows the Stefan-Boltzmann limit for the energy density: e = +72T*,
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Let us denote the lattice scale parameter for the action (19) by A%; it has been

studied at T = 0 by Bhanot and Dashen {6]. In the weak coupling limit, A} is related
to the pure Wilson action scale A by

AY /AL = exp{1577B, /[22( B + 28,)]} . (21)

In the scaling region of eq. (19) one can thus obtain a prediction for the scale
parameter of the pure Wilson action

Ay, = Atexp{1577/[22(2 + B/BA)]). (22)

provided the weak coupling form (21) is applicable in the region of couplings
considered. If this is the case,

Ago=Apy o= AV, (23)

should hold as consequence of universality.
In ref. [6] it is found, however, that

Agoarn =(30203)x10 o, (24)

which is a factor four lower than the value of A} obtained in refs. [3,4] and shown in
eq. (15). Furthermore, A,/A, was seen to decrease parabolically towards unity as

) \
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Fig. 3. The phase diagram of the action defined by eq. (19) (from ref. [11]). The dashed lines are first
order transition lincs. The dotted line shows the region of calculation of ref. [6]. while our calculations
span the region covered by both the solid and dotted lines.
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B — 0. The discrepancy shown by eq. (24) and the functional dependence of Az on
B4 led Bhanot and Dashen to question the validity of universality in the cross-over
region of the coupling (g? around two), where these results were obtained.

To see if these effects persist at finite temperature, we have calculated the order
parameter {|L|) as function of temperature, choosing 8, = 1.21 as in ref. [6]. and
varying 8 from 1.45 to 2.45; in ref. [6], 1.52 < B < 1.6, so that the 8 range we
consider here is quite a bit larger (see fig. 3). The physical temperature in units of
Ag, - is obtained in terms of B, B, by use of the renormalization group relation
(5). eq. (20) and eq. (21).

Data were obtained for the mixed action (19) and the pure Wilson action (10) on a
123 x 6 lattice. Each data point is an average over more than 1000 iterations after
attaining thermal equilibrium. The rather large lattice size was necessary to cover
near T, the B interval of ref. [6] and to reduce finite size effects. In fig. 4a, we
compare {|L|) for the Wilson action with {|L}) for the mixed action, plotting both
as a function of T/A%, where we have used the universality relation (23). Except
possibly at high T, the two curves disagree both pointwise and in functional
behaviour. Using the empirical value (24) of ref. {6] rather than the universality limit
(23) yields fig. 4b. The curves are now closer to each other in the region T/AY =
50-100 (where 8 lies in the range used in ref. [6]), but the functional disagreement
persists.

Finite temperature calculations thus confirm the shift of A, _,,, by a factor i
with respect to the weak coupling value and in addition show functional differences
between the two actions. What is the reason for these discrepancies?

0S| °
[ ]
.
x
<l «
x
x .
x .
0.25p- < °
x
x .
x
0.0 1 [ ] 1 1
10 102 10° 10
w
T/AL

Fig. 4a. Thermal Wilson loop (|L}) as a function of T/AY, calculated on a 6 X 122 lattice for Wilson
action ( X) and the mixed fundamental-adjoint action () at 8, = 1.21. For the latter, eq. (23) has been
used to obtain 7 in the units of AY.
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Fig. 4b. Same as fig. 4a, but using cq. (24) to obtain T in the units of AY for the mixed action.

As in sect. 2, in the comparison of lattice scale ratios at finite g> with their weak
coupling limits, we have here in egs. (5,/20) neglected higher order corrections in g2.
For tests of universality in sect. 2, we could avoid this problem either by comparing
T. and yo directly, or by rescaling the A values over a restricted region of finite g?
by a constant factor, in order to approximate a correction of form (6). In the present
section, the situation is more complex, since any corrections can depend on the two
variables B and B,. The B, dependence of Ay observed in ref. [6] and the functional
discrepancies for the {|L|) curves at fixed 88,, shown in fig. 4, indeed suggest such a
behaviour.

We shall here pursue two alternatives: we shall consider the effect of higher order
corrections recently estimated [10] for eq. (21), and we shall study if A o/ Ap, at fixed
Ba with decreasing g2 approaches unity, which it should if deviations are finite g2
effects.

In ref. [10], the dominant next order corrections to eq. (21) are estimated to yield

Ao/Ag =[1+(0.107 +20.188-2) g?],

- B/ [2(B+284)]. (25)

r

In ref. [6]. the ratio A,/A, was calculated at a fixed value of the string tension
a( B, B,); we have therefore calculated this ratio in the same way, using eq. (25). The
result is shown in fig. 5, together with the curve for a¢%s = 0.14 from ref. [6]. We sec
that the higher order corrections of eq. (25) account for all deviations at 8, <0 and
for 50% or more of the observed discrepancies at 8, > 0.
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We note that the higher order corrections in eq. (25) are quite large, in contrast to
the small modifications in egs. (18). The deviations here are thus expected to be
larger than for the actions considered in sect. 2.

To test whether the deviations of A,/A, from unity at finite B, are a conse-
quence of finite coupling, we study the behaviour of this ratio for increasing
temperature, i.c., for decreasing g2. If our conjecture is right, we expect the ratio to
approach unity with g2 — 0. As our calculations of (|L|) cover an extensive range
of B values, we can carry out such a test: we calculate the ratio Ay/Ag _ ), for
which a given value of (|L|) using the mixed action coincides with the same value
using the Wilson action. (For example, the points for {|L|) =0.25 coincide when
the ratio A,/Ap _,,, is approximately four, see fig. 4.) The result, plotted as a
function of 4/g2, is shown in fig. 6. Here 4 /g* corresponds to the temperature for
the Wilson action; the conclusions remain unchanged, however, if we use the mixed
action instead. We thus observe that Wilson and mixed actions at sufficiently large T
indeed lead to the same physical results.

These two independent checks lead us to conclude that the discrepancies between
the results from the mixed and the pure Wilson action are in fact also due to the
neglect of higher order terms in the scaling relations (5/22) and not to a violation of
universality.

In closing this section, we comment briefly on two other alternatives to account
for the results of ref. {6]. It has been suggested [20], that instead of including higher
order terms in g2. one should resum the perturbation series with 1 /N as expansion
parameter. While this does seem to provide the observed decrease of Ay _;,, in

Ao 1A,

[EN

Fig. 5. .1o/Ag, as a function of B,. The open circle and the curve show the results of ref. [6], while the
full points exhibit the predictions of weak coupling expansion (eq. (25)).
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Ao/Ap, 121
w
T

2.0 25 30 35 40
4/g?

Fig. 6. Ay/Ag, 12 as a function of 4/¢*. The dashed linc is the prediction of the lowest order of the
weak coupling expansion.

comparison to A, for B =1.6, it does not yield the difference in the functional
behaviour of {|L|). In a second proposal [21}, it is suggested that weak coupling
results of any kind are not applicable near the end point of the transition line in fig.
3, where the calculations of ref. [6] are carried out. There instead, the Monte Carlo
data are to be described in terms of a higher order strong coupling expansion. We
cannot exclude this alternative; note, however. that the pure Wilson action appears
to be in accord with scaling in the g” region considered, and the ratio A o/Ap, as
seen in fig. 6, seems to approach unity rather smoothly. This does not suggest a
change of regimes from strong to weak coupling in the g? range considered by us.

4. Conclusions

Comparing the finite temperature thermodynamics obtained with Wilson’s,
Manton’s and Villain’s actions for the SU(2) Yang-Mills system. we have found
universal behaviour, both point-wise, for \/;/Tc. and functionally. for (|L|) and ¢
in their dependence on T/T.. In the g? region considered, there are deviations,
however, to the validity of lowest order perturbative solutions to the renormalization
group equation.

A similar situation appears to arise for the mixed fundamental-adjoint action. We
reproduce at finite temperature the discrepancies with respect to the Wilson action,
as observed by Bhanot and Dashen [6]; morcover. the two actions are found to yield
different behaviour as function of temperature. These discrepancies are, however,
removed to 50% or more already by a partial inclusion of the next order in g*;
moreover, for decreasing g? at fixed B,. they are found to disappear.
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We thus conclude that it is indeed meaningful to evaluate physical quantities even
in the cross-over region of the coupling. The neglect of terms beyond g° in the
perturbation solution of the renormalization group equation may, however, not be
generally possible in such regions.
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