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Abstract. A general mathematical formulation is developed for calculating the effective
electron-electron interaction in layered crystals like YBa,Cu;0,_;, and for finding the
resulting superconducting transition temperature 7. in such systems within the framework of
the conventional BCS pairing arising from various possible excitations in the medium. This
differs considerably from the usual case of an effective three-dimensional homogeneous
system, and should be relevant in the calculation of T for the new class of high-T, perovskites
in which oxygen deficiencies in Cu-O layers and their distribution in the crystal play a crucial
role. The explicit form of the effective interaction Vi(q,, ®) in a given layer j in the unit cell of
the crystal is found to be determined not only by the true polarization function n(g,, w) of
that layer, but also of other layers. The exchange of electronic excitations of a nearby
insulating layer by carriers in a conducting layer thus becomes possible to get high T, with or
without the usual phonon exchange.

Keywords. High temperature superconductivity; layered materials; electronic plus phonon
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1. Introduction

The discovery of superconductivity with the transition temperature T, greater than
30 K in La-Ba-Cu-O system by Bednorz and Muller (1986) by the end of 1986, and the
remarkable achievement (Wu et al 1987; Zhao et al 1987, Ganguly et al 1987a, b;
Sampathkumaran et al 1987, Dhar et al 1987; Umarji et al 19{37) of abovg 90K
superconductivity in YBa,Cu;0,_; and other similar oxygen deficient pe;rovsk1tes by
March 1987, have given rise to phenomenal interest in the old field of ‘hlgh 'ternpera-
ture superconductivity (see, for an earlier review, Ginzburg and K1rzhp1ts 1982).
Various theoretical models (Rice 1987) involving both the conventional BCS
type of pairing (Mattheiss 1987, Weber 1987; Jagadish and Sinha 1987; Varma et
al 1987; Ruvalds 1987; Lee and Thm 1987; Kresin 1987) and other types of phase
transition (Anderson et al 1987; Emery 1987, Mohan.aI}d Kumar 1987) have recently
been proposed as possible candidates for explagl.mg such a high T,. Therej
is, of course, a general belief that for the BCS pairing of electrons at the Fermi
surface arising from the attractive interaction in a very narrow energy range due tlo
purely lattice phonon exchange, one cannot get T, greater than abqut 40 K A -
though, the theoretical validity of this result in the very sFrong coupling regime m.
which the dimensionless phonon-coupling constant Apy is much greater'than 2,
is stil in doubt (Ginzburg and Kirzhnits 1982), at least in any
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weak or moderate coupling theory, one has to go beyond the phonon exchange
mechanism of Superconductivity to obtain higher T,, except possibly in the case of
metallic hydrogen which has very high Debye phonon frequency. Starting from the
early suggestions of Little (1964) and Ginzburg (1964) regarding high T,-super-
conductivity due to the exchange of electronic excitations, instead of the usual
phonon-exchange, in long organic molecules and metal-dielectric interfaces, re-
spectively, the problem of high temperature superconductivity has been studied
extensively for a long time within the framework of the conventional phase transition
of the BCS theory. The order of magnitude calculation of T’ in a semiconductor-metal
sandwich presented by Allender et 4l (1973a,b) was shown to be an overestimate
(Rangarajan 1974; Rangarajan and Jha 1976; Srinivasan and Jha 1978), with the
conclusion that such a structure can give high T, only if the metal thickness is less than
2-34. However, several other possibilities (Ginzburg and Kirzhnits 1982) for obtai-
ning high T, including, e.g. our prediction of T, in the range of 100 K in a two-band
electron-hole system with carrier densities of about 10*! cm™3 and effective mass
ratios of the two carriers greater than § (Bhattacharyya and Jha 1978; Srinivasan et al
1979) arising mainly from the acoustic-plasmon (i.e. electron-hole sound) exchange,
have already been worked out within the conventional framework. It is, therefore,
natural to ask ourselves whether the superconducting transition in the newly dis-
covered 90 K superconductors is described by a completely different type of phase
transition, e.g. by the resonating valence bond model of Anderson et al (1987), or it can
still be explained within the conventional BCS framework with electronic exchange
or/and phonon exchange mechanisms for the attractive interaction.

Because of the initial conflicting experimental data on various important physical
parameters relevant to the transition, mainly due to uncontrolled but important
variations in the preparation of the new ceramic superconducting materials with

- varying oxygen deficiencies, it has been difficult to examine critically most of the

theoretical proposals presented recently. However, with improved reliability in experi-
mental data, ie. in the observation of the isotope effect in La-Ba-Cu-O system,
consistent determination of the ratio 2A/kgT,, where A is the superconducting gap
parameter, etc., one should soon reach a stage at which some of these possibilities can
be set aside. As one examines the available experimental data today, one does not see
any overwhelming reason to abandon our search for finding the correct mechanism
for superconductivity in these new class of materials within the conventional BCS
pairing theory. While one must continue to examine and explore possible alternative
theories, there s still a great need for investigating more critically various possibilities
in model systems, as close to the actual class of the 90 K superconducting materials as
possible, within the conventional framework. It is in this spirit that we begin with this
paper a theoretical investigation of superconducting transition due to the exchange of
various excitations, both electronic and ionic, in crystals whose unit cell consists of
approximately two-dimensional layers in the x- ¥ plane (the plane of a and b axes) with
relatively weak coupling between the planes in the vertical z-direction (c-axis). It is
known that the periodic unit cell of YBa,Cu,0,_;, 0<6 <0.5, can be conveniently
described by six such layers, the crystal consisting of planes of Y, Cu-O, Ba-O, oxygen
deficient Cu-0O, Ba-O, Cu-O,Y,... . The layered structure and the amount of oxygen

deficiency in Cu-O planes seem to control the value of T, in a crucial sense. For such
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a special 3-dimensional (quasi 2-dimensional) system, it is necessary to obtain the

effective interaction between the electrons and the resulting superconducting 7, in a

manner different from the usual approximately homogeneous systems. For a crystal
with equally-spaced alternate metallic and insulating molecular layers, this point has
already been discussed earlier by Bulaevskii and Kukharenko (1971).

In §2 of this paper, a mathematical formulation of the theory of superconducting
transition in layered crystals is presented. Discrete Fourier representation has been
used to solve the coupled equations for the effective electron-electron interaction
between different layers in the crystal, which one obtains in a simple diagrammatic
perturbation theory. Once the two-dimensional true polarization functions ;(g;, )
for different charge carriers in each layer j are known, the effective interaction
V(a,, ) for electrons within the layer j can be obtained without any difficulty. The
effective interaction V;;(g,, ) is shown to contain contributions not only from the
polarization function 7; of the layer, but also from the polarization function of the
other layers in the unit cell. Thus a considerable enhancement of T, or even the
primary occurrence of the transition in a conducting layer becomes possible with the
help of, e.g. exciton exchange in a nearby insulating layer. The nature of the
polarizability functions 7;, including possible consequences are discussed in §3.

2. Mathematical formulation: Effective interaction in layered crystals and
equation for 7.

The first important step in the calculation of the superconducting transition tempera-
ture in any metal or alloy is the determination of the effective electron-electron
interaction in the system. Although, in a crystal this involves the complete knowledge
of the inverse dielectric tensor matrix &;;'(q+G, g+ G’, w) in the reciprocal lattice
vector G-space, it is often approx1mated by an effective 3-dimensional longitudinal
dielectric function ¢~ ! (g, w) of a homogeneous medium. In a layered or an anisotropic
structure, this approximation can at best be made only for the motion in the plane of
the layers (the x-y plane). In such a case, the relevant longitudinal dielectric function
and the effective interaction are obtained in the form ¢~ '(q,, ®,z,2’) and ¥(g,, ®,z,2'),
respectively, where g, is the magnitude of the 2-dimensional wave vector in the plane
of the layers. Note that this effective interaction ¥, which we would like to calculate
here, is between the carriers in the actual system, which could be either electrons or
holes (or both), although we may continue to use the word “electrons”. In what
follows, we will formulate this problem by assuming that the layers in the crystal are
vanishingly thin. If the actual spread of the charge distribution for these layers in the
vertical direction becomes crucial, we would have to modify this approach suitably.
Instead of discrete Fourier series used here, we will then have to use the usual
continuous Fourier transform for solving the problem.

For definiteness, as an example, we will consider without any loss of gcnerahty the
case of YBa,Cu;0,_,, while formulating the method of obtaining effective inter-
action in a layered crystal (see figure 1). Let us label different layers perpendicular to
the vertical c-axis by running integers n. In a given unit cell N, different layers may be
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Figure 1. The unit cell of YBa,Cu30, and labelling of different horizontal layers, The

vertical distances between different layers in the crystal are also labelled. Here, approximate-
ly, L=1165 4, :

labelled by N, j (j=0, 1,2,3, 4,5, 6), with the layer N, 6 same as N + 1,0, because of the
periodicity. This implies that the running label n can be rewritten as

n=6N+j; j=(0,1,2,3,45; N=012, ... (1)
where the z-coordinate of the nth layer is given by
z,(N,)=NL+R,, R,=0 )

where L=R; is the periodicity of the crystal in the vertical direction and R ; 1s the
distance of the jth plane from the Oth plane in the unit cell, Although, the exact
beginning for the numbering of layers and starting of unit cells are arbitrary, in any
unit cell we assign j=0 for the bottom Y-plane, j=1 for the first full Cu-O plane, j=2 -
for the first Ba-O plane, j=3 for the oxygen deficient Cu-O plane, Jj=4 for the second
Ba-O plane, j=5 for the second full Cu-O plane and J=6 for the top Y-plane (see
figure 1).

For fixed g, and w, the bare Coulomb interaction between electrons in z—z'
representation is given by "

2me?

t

° V(O)(qt’ w, z,, ~Zn’)E V(o)(qta n, n1)=

exp(“qtlzn—zn'l) (3)
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Figure 2. Perturbation diagrams to obtain the effective interaction ¥ between the electrons
(carriers) in different horizontal layers » and #'. V@ corresponds to the bare Coulomb
interaction (see text) and the running index n=6N+j,N=0,1,2 ... 00,j=0,1,2,3,4,5for
six distinct layers in a given vertical cell N.

Note that in the usual 3-dimensional homogeneous case, a further Fourier transform
of the above expression with respect to z—z' leads to the well known form for the bare
Coulomb interaction 4ne?/q?, ¢*=g2+4q?. In a simple diagrammatic perturbation
theory (see figure 2), the effective interaction ¥ between the electrons is obtained by
solving the equations

Viq,, w, n, n)= V(O)(q” n,n')
—Z; V(a)(qta n, n")n,,n(q,, w) V(Qta @, n“’ n,)’ : (4)

where 7,(qg,, w) is the polarization function (operator) of the nth layer, with the
periodicity m,,¢=m,, etc. In the random-phase approximation, this can be simply
taken to be a sum of different contributions from independent carriers in the plane. If
we redefine our interaction functions in terms of layer labels N, j, instead of n, as

V©(g,, 6N +j, 6N'+])= V(g0 N, N')
2

e A
exp[ —¢/(N—N")L+R;;

t

Vg, @, 6N +j, 6N' +j)= V(g o, N, Ny, R;;=R;—Ry, G

1; ©)

(4) can be rewritten in the form
0 5
Vi (4, o, N, N'Y=V$(g,, N, N')—-NZ . ZO Vg, N, N")m;.(q,, )
r—= jlr=
X I/j”j’ (q:, w, N”s NI) (7)

Using the discrete Fourier representation with respect to the variables N— N/,
defined by

g6)= 3 gN—N)exp[—i(N—N], ®)

N—-N'=~-
2r 46 X
g(N—N)= J — g(6) exp[i(N —N")6]. )
0 2n ’

Equation (7) can be reduced to the form

J

s , '
i=o
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where for brevity we have suppressed explicit g,, @ dependences of ¥, ¥ and . Here,

6/L corresponds exactly to the wavevector g, of the usual Fourier transform re- -

presentation, restricted to the first Brillouin zone. In terms of 6 x 6 matrices ve y
and 7, with matrix elements V% V;; and =,5;;, respectively, the above equation can
be solved immediately in the form

Vig, o, 0)=[1+V“(q, O)n(g,, @)1~V g, 6) (11)

where [ is the 6 x 6 unit matrix. Explicitly, the matrix elements of ¥ are

27me? o
o [exp(—q.R;;)P(O)+exp(q.R;; )N©O)]; j>j
Vida,, 0)= ‘ (12)

2

27ne
p [eXP(‘Ierj')P(— 0)+exp(— qR;IN(=0)];, j<j
1

with _,
Vg, 0=V (g, —0)=V (g, 6), (13)
P(6) =Mi;o exp(—g,LM) exp(~ iM6)
=exp(if)[exp(if) —exp(—q,L)] ", (14)
NO)= 3 exp(—g.LMexp(iM)
=exp(—q,L) [exp(—if) —exp(—q,L)] . | (15)

Once the polarization functions 7;(q;, w) for the six layers are known, in principle

{11)—(15') determine the effective interaction completely. For the required effective
Interaction for electrons or holes inside a given layer, we find

2 de
ij(‘]n w)= ij(‘]n w, N, N)=f o ij(‘]u w, 0)
0

3 [do_ _ '
=j,,§=:o f 7 [0 0,01 Vg, 0), | (16)

where we have defined 2 6 x 6 dielectric function matrix by the relation

&qrs 0, 0)=1+ Vg, O)n(g,, ), " 17

the inverse of »\{hich is required to find the matrix V4., w, 6), via (11). Explicitly, in
tern35 of determinants of matrices pf<i-J> and ¢, where M<“ is obtained by replacing
the ith column of ¢ by the Jth column of ¥® je.

MSED = Ejoprs J'#I
el e 1)

7J
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| the complete solution of (15) for V is given by

Vi, o, 8)=det M“’”/det €. (19)
For example, the complete form of V3i(q,, w, 0) is
V33(gp @, )
1+ov,m, Vi, Vdn, V(o) Viin, Vidns
Vign, 1+vmy Vin, V] Vidn,  Vidn,
Vidm, V&r,  l4vm, VI VOr, VO ‘
=det :(200) O 2 2474 275 | dete (20)
V9 Vi Vir, v, V@n, V&
V“’)n V‘i"l’n1 V@n, V8 1+v,m, Vn,
Vign, V@n, V@rn, V& VEn, 14uvms
where we have used the short notation
2me?
0, )=V =V =V{§=V]=V{= )+ N(6)]
t
e? ‘
tanhg, L [1+sech ¢, Lcosf] 1. (21)

t

Note that g6) is a nondiagonal matrix because of which the effective interaction
within a given layer j is governed not only by the polarizability function n; of that
layer, but also by the polarizability functions of other layers in the cell. In other words,
the effective interaction in a conducting layer is affected, e.g. by excitons in a nearby

insulating layer.
For finding the superconductmg transmon temperature 7, arising from the motion
of electrons or holes in a conducting layer j, one has to find the nontrivial solution of

the BCS gap equation

(k)= —; =k =k, w={-L)Ak)
x tanh(&'/2k,T.)/2¢', (22)

where & and & are single-particle energies corresponding to 2-dimensional in-plane

wavevectors k, and ki, respectively, measured from the Fermi-energy of the carriers.
As in the case of the usual three-dimensional homogeneous system, the effective
interaction V;(/k,—ki, w) can be averaged over the: angles between k, and k;, ie.
equivalent to averaging over ¢, for fixed k, and k;, since q* =k? + k;* — 2k k| cos ¢. This
implies

_ 1 2n
Vi@, 0)=V;(E, f')=2*7; L do V;{g,, 0=¢—C)

2 [lth (ql,é &)
= , 123
nﬁk,_kud ‘DRI =g —(E—K T )
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so that the energy-dependent BCS gap equation is given by
Ai(8)=—[d&' N,(&) V;5(&, &) A tanh(E'/2k, T, )/2¢ (24)

where N (&)=d%k;/4n2d¢' is the 2-dimensional density of states for one type of
spin only in the layer j. In the simplest spherical effective mass approximation,
ke=(kf;-+2m*E /212, ki=(Kkf;+2m*& /W)M? and N(&)=m¥/2nh?. For k, and k, close
to the Fermi surface, (18) can be simplified further to obtain '

NiEVWi& &)=N,Ve—-¢)

—_ mf 2kﬁdq ij(‘]n w=£_él) a= m;k ’él'—é]
SRt @k —g) ke

(25)

Once, with the use of the solution (19), V(4. w) of (16) is known in the form which can
be split into contributions from the exchange of different excitations (phonons,
excitons, plasmons, etc.),

Viilge, ©)=3 V¥ (g, ») (26)

v

having poles at the relevant longitudinal mode frequencies, the usual coupling

constants 4,, to be used in any superposed square-well model to solve (24) (Srinivasan
et al 1979), are given by

‘ po__2N0) [P VO (g, 0=0)
‘l = _'N V(-v) = JY JJ t3 27
v J(O) Ji (O) T J\o dqt (4k%j_qt2)1/2 ( )

with N;=m*/2nh? in the spherical effective mass approximation. The usual conven-
tion of defining the coupling constants to be positive for attractive interactions has
been used. The individual range of these interactions in the square-well model is, of
course, determined by the corresponding maximum frequency of the longitudinal
excitation for g, ~ 2kp; and the Fermi energy Ep; (see Srinivasan et al 1979 for defining
left and right cut-offs). Of course, if one is willing to solve the gap-equation (24)
numerically, with or without the simplification (25), the task of splitting the effective
interaction ¥}; into individual contributions V' of (26) is not necessary. Nevertheless,
this splitting and the knowledge of the corresponding coupling constants A, deter-
mined by (27) will be extremely useful for understanding the physics of the problem. In

what follows, we discuss the next step necessary to tackle the question of finding 7. in
layered erystals.

3. Polarization functions of layers and general discussion

In the preceding section, we have obtained an explicit expression for the effective
electron—electron interaction in layered crystals, like the new high-T, oxygen deficient
perovskites. The resulting form for the gap-equation for determining T, due to carriers
in a,given conducting layer has also been derived. In principle, the calculation of T . 1In
such quasi-two-dimensional systems by solving this gap equation (24) is straightfor-
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ward if we know the polarization functions 7;(g,, w) of each of the layers which
determine V(£ — &) with the use of (16), (19) and (23) or (25). A realistic calculation of ;,
however, requires the knowledge of single-particle electronic band structure states of
the carriers in that plane. In the absence of such detailed knowledge at present, in
what follows, we can only discuss some extremely simplified forms for these functions,
and their possible consequences in determining T..

For the electronic part of the polarization, it can be shown that in the limit w— co,
g,—0, the intraband “bubble” polarization function in any given two-dimensional
conducting layer is given by —(g2/m*»?)n,, where n,=n, L is the surface-density of the
carriers in the layer (n, is the volume carrier density). This implies that in the high
frequency limit, (2re?/g,)n(q,—0, 00)— —(w%/w?)(g,L/2) for a conducting layer, where
w,=(4nn.e?/m*)!/* is the usual plasma-frequency parameter of the carriers. Similarly,
for =0, -0, (2ne*/q,) m(q~0,0)~(q}r/a?)(.L/3), where gfy=~6mn.e’/Ep. For
interband transitions from a full band to an empty band with a gap frequency @,, in
the limit g,—0, 2ne?/q)n™ ~w?(q,)(q.L/2) (0%(q,)—»?*)~*, where o, is related to an
effective “plasma” frequency of the full band. Thus, in a simple approximation, it is
‘possible to take the polarization function for a conducting layer to be of the form

2ne? w?.q,L/2
T g, o)
g T Guigl—o?)

+mieme (q,, ) [cond. layer] (28)
where, in terms of the ionic plasma frequency Q}; the ionic part of the polarization
arising from their vibrations in the plane j may be taken to be, —(Q2;/w?)(q.L/2).
Similarly, for an insulating layer

2me? 2

—— 7[-( , a))z__.__.'l__
q o (UJZ—"COZ)

(q,L/2)+m™° [insul. layer] (29)

J

Now that we have a preliminary knowledge of the nature of polarization functions,
it is possible to examine their consequences in determining the effective interaction V;
for a conducting layer and the resulting T,, by guessing whether in a given crystal, a
particular layer is conducting or insulating. However, at this stage of uncertainty in
the actual physical parameters of these layered crystals, we would like to resist th_c
usual strong temptation of making an extremely crude calculation of T, to show that it
is in the correct ball-park. A reliable calculation of T,, even for the usual super-
conductors, is known to be quite delicate, and we would leave this task to a later
publication. However, before closing this paper, what we would like to do is to
demonstrate more clearly the fact that electronic excitation in an insulating layer can
lead to an additional attractive interaction between carriers in a conducting layer, €.g.
in the oxygen deficient C,-O layers in YBa,Cu;0,_;. ‘

For the purpose of obtaining a physical picture of the effect of insulating layerson a
conducting layer, let us assume that only three layers in each unit cell, one central
conducting layer with two identical insulating layers on its either side at the' same
distance d, are important. In other words, let us assume that only significant
polarization functions, e.g. are m5(4:, o) for the layer 3, which is supposed to pe
conducting, and 7(q,, ®)=74 (g, @) for the insulating layers 2 and 4. Other polariz-
ation functions 7y, @, and 7s can be put to zero in (20) for V33, for the sake of




(20) gives
1 + UDTCZ V2(03) VZ(EL) Ty 1 + Uonz V:g%)ﬂ:; Vz(?;?nz -1
V33(9:, 0, 6) =det Vign, Ve Vidn, | det Vign, 1 +v,my Vi,
| V8 VR lhem| | vien oy +o,1,
| (30)

where v, = V()= p(o - Vi is given by (21) and Vi=V@=yox= VEX* and V*
=V{J* are obtained from (12) by putting R,y =R.,=d and R ,=2d. The extra
interaction A V33(4:, o, ) for the carriers in the conducting layer duye to the presence
of the two insulating layers can then be obtained from the above expression by
subtracting from it a term obtained by putting ni* =0 ip (30), 1. subtracting the single-

’

layer interaction term vo/(1+w,75). This, to the lowest order terms in 7, leads to

~LV9P+ V9P (g, o) 3
45300 0, 6)= (140, ) 2 (g, ) T G1)

Explicitly, one thus gets the desired expression

AVs(g,, , 6= 2" [ 2tanh? thISXP(—qrd)+eXP("Q)Sinhq‘dCoseChthlz]
304, @, 6) = @ [1+(2ne?ns/q) tanhgq,L +sechgq,Z cosf]2

2 in .
y [27re nl J (32)
q;

~ For a form of 3 (g, @) similar to (29) for the excitonic part, the above expression
gives an attractive interaction for frequencies @<a,, the longitudinal excitonic
(electronic excitation) frequency. Since itg Tange can be much higher than the usual
phonon frequencies, even in YBaZCu3O7_,,, this can indeed lead- to higher T,,
provided the cut-off factor eXp(—2q,d), for large interlayer separation, is not very
small compared to 1. Since the average interaction ME—¢&) of (25), entering in the
Superconducting gap equation, is highly weighted towards .= 2k (much more in our
quasi-two-dimensional case than the usua] three-dimensiona] case), it implies that for
the maximum impact of well-defined electronjc excitations in the insulating layers on
T, for carriers in the conducting layer, 2 ked~1. For interlayer separation d of the
order of 2 A, this means that k, should be of the order of about 2 x 107 cm ™1, j.e. the
layer carrier density n_~ 1014 m™2 For low volume carrier densities (n
=n,/L~102! cm ™), reported in the new high-T, Superconductors, this situation
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