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Impact of Z2 monopoles and vortices on the deconfinement transition
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Suppressing Z2-monopoles shifts the line of deconfinement transitions in the coupling plane of the SU(2) lattice
gauge theory with a mixed Villain form of action but it still continues to behave also like the bulk transition line.
Separate deconfinement and bulk phase transitions are found on the same lattice, suggesting the two to be indeed
coincident at higher adjoint couplings. Universality is restored when both monopoles and vortices are suppressed.

1. UNIVERSALITY

Since most numerical lattice field theory inves-
tigations are necessarily carried out for a finite
value of the lattice cut-off a, it seems impera-
tive that universality of the results so obtained
is verified by employing other forms of lattice ac-
tions. A study of the universality of the decon-
finement transition for SU(2) gauge theory, which
has already been extensively investigated for the
Wilson action[1], was made in Ref. [2], for the
Bhanot-Creutz action [3]

S =
∑

p

[

βf

(

1 −
TrfUp

2

)

+ βa

(

1 −
TraUp

3

)]

(1)

Here the summation runs over all the plaquettes
of the lattice and the subscript a(f) indicates that
the trace is taken in the adjoint (fundamental)
representation. Later, a Villain form of action[4],
defined by

S =
∑

p

[

βf + βv −
(βf + βvσp)TrfUp

2

]

(2)

was also used[5] for similar studies with essen-
tially similar results, where σp are auxiliary Z2-
variables defined on the plaquettes and the parti-
tion function has an additional sum over all pos-
sible values of the σp variables as well. The Wil-
son action corresponds to setting βa or βv to zero
above. Simulations[2,5] on N3

σ ×Nτ lattices with
Nτ = 4 showed surprising results for the above
actions. While the second order deconfinement

transition point for the Wilson action entered the
coupling plane as a line of second order transi-
tions, the transition turned first order for large
enough βa or βv. The order parameter for the de-
confinement transition acquired a nonzero value
discontinuously there and the exponent of the cor-
responding susceptibility changed from the Ising
model value of about 1.97 to 3. If the change of
the order of the deconfinement transition were to
persist at a finite βa with increasing temporal lat-
tice size Nτ , i.e., in the continuum limit, it would
be a serious violation of universality. On the other
hand, the line of deconfinement transitions was
found to coincide with the known bulk transition
lines[3,4]. Additional studies with varying Nτ fur-
ther revealed that the line scarcely moves in the
region where a strong first order deconfinement
transition is observed[6].

Inspired by the results[7] for the SO(3) lattice
gauge theory, we investigated the finite tempera-
ture phase diagram of the mixed action (2) with
suppression of the Z2-monopoles and vortices by
addition of chemical potentials for them. These
terms are irrelevant in the naive continuum limit.

2. MONOPOLES AND VORTICES

The Z2-monopoles are suppressed[7] by the ad-
dition of a chemical potential term, λ

∑

c (1 − σc),
to the mixed Villain action (2). The summation
runs over all the elementary 3-cubes of the lat-
tice, and σc =

∏

p∈∂c σp. Note that in the classi-
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cal continuum limit one still obtains the same λ-
independent continuum relation, 4g−2 = βf +βv.
Following the SO(3) results, we took λ = 1 for
our simulations in the entire βf - βv plane. Our
each iteration consisted of heatbath sweeps for all
the gauge links, followed by those for the Z2- vari-
ables. A fraction of the links (arbitrarily chosen
to be 1

4
) were Z2-rotated subject to a probability

determined by the βf term at the end of each iter-
ation to reduce the otherwise enormous autocor-
relations for large λ simulations. Measurements
were made after every iteration. Using hysteresis
runs of 15000 iterations per point we mapped out
the phase diagram on an 83 × 4 lattice.
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Figure 1. The phase diagram for the action (2)
with monopole suppression on an 83 × 4 lattice.

For βv > βf , first order transitions, with dis-
continuities in both the average plaquette P =
〈1

2
TrfUp〉 and the fundamental Polyakov loop

〈|Lf |〉, were observed. These transition points are
shown by filled circles in Fig. 1. Since 〈|Lf |〉 be-
comes nonzero discontinuously at these couplings,
it clearly indicates a first order deconfinement
phase transition. A second order deconfinement
phase transition coincident with a first order bulk
phase transition, signaled by the discontinuity in
the average plaquette at the same location, is also
possible. This general behavior is very similar to
what was observed for λ =0 [5]. In contrast to
that case, however, one now also has a first or-
der phase transition for βv < βf , as shown in
Fig. 1. Here the observable Pa = 〈1

2
σp.TrfUp〉

displays a sizeable discontinuity. A qualitatively
new feature of the phase diagram in Fig. 1 thus
is the absence of any end point for the transition
line because of the new line of transitions coming
from the large βf side along which the deconfine-
ment order parameter is nonzero on both sides of
the transition.

As a continuation of the deconfinement tran-
sition on the Wilson axis, we looked for a de-
confinement transition at βv = 0.3, 0.5 and 0.7.
The transition point was located approximately
from the sharp but continuous rise of 〈|Lf |〉.
From the peak heights of the |Lf | - susceptibil-
ity, χ|Lf |, on N3

σ × 4 lattices for Nσ = 8, 12 and
16, its critical exponent was obtained at each βv.
A linear fit to ln (χ|Lf |)max = ω ln Nσ gave
ω = 1.91±0.02, 1.87±0.05 and 1.92±0.05 for βv =
0.7, 0.5 and 0.3, respectively. They indicate sec-
ond order transitions and are in agreement with
the βv = 0 exponent and the Ising model expo-
nent. The average plaquette 〈P 〉 from these runs
was smooth everywhere, and the corresponding
susceptibility peaks did not sharpen with Nσ at
all, indicating a lack of bulk transition at these
points. These transition points, shown in Fig.
1 by triangles, are therefore pure finite temper-
ature transitions. Similar results for Nτ=6 are
also shown.
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Figure 2. 〈|Lf |〉 and its susceptibility as a func-
tion of βf at βv = 0.7.

The λ = 1 simulations for the mixed Villain
action thus lend a strong credibility to the hy-
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pothesis that the deconfinement transition line for
possibly a large range of Nτ merges with the bulk
transition line. Since the latter branches out in
this case and exhibits no end point, the merger is
easy to observe numerically: the small βv region
has only a deconfinement transition line and the
large βf region has only a bulk transition line,
while they seem to be coincident for βv ≥ 0.7.
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Figure 3. The deconfinement transition points
in the (βf , βv) plane for Nτ = 4 (circles) and 6
(diamonds) lattices.

A possible litmus test of the coincidence sce-
nario is to see two separate transitions on the
same lattice. Fig. 2 shows the results of such
a test at βv = 0.7 on 83 × 4 lattices. It shows the
susceptibility, χ|Lf |, obtained from the longer run
mentioned above along with the order parameter
〈|Lf |〉 obtained from a hysteresis run from a hot
start. It clearly shows a second order deconfine-
ment transition taking place first at βf ∼ 2.1, fol-
lowed by a bulk phase transition later at βf ∼ 2.2.

In order to suppress the Z2-electric vortices
in addition to the magnetic monopoles, we
added to the action (2) another irrelevant term,
γ

∑

l (1 − σe), where σe =
∏

p∈∂̂l
σp. For suffi-

ciently large γ, one expects that the bulk tran-
sition line in Fig. 1, caused presumably by the
condensation of electric loops, will also be sup-
pressed. As λ → ∞, the monopole term is frozen
and the plaquette variables σp are replaced by
products over corresponding Z2-link variables.

Following the same procedure as above, and
using a heat-bath algorithm for both the gauge

and Z2-variables, we studied the phase diagram
on Nτ = 4 and 6 lattices for (λ, γ) = (∞, 5.).
Fig. 3 shows the only transition points found,
which are Ising-like second order deconfinement
transitions and obey βf + βv ≈ βW

c , where βW
c is

the deconfinement transition point for the Wilson
action. The transition lines are also consistent
with the expected continuum limit behavior of
this action.

3. CONCLUSIONS

Our numerical simulations for the monopole-
suppressed action showed an interesting phase di-
agram which was different from that of the origi-
nal theory. Nevertheless, it too had the paradox-
ical coincidence of bulk and deconfinement tran-
sitions. The bulk transition line in this case had
no end point and the change of the order of the
deconfinement phase transition occurred as the
two lines merged. We showed the presence of two
phase transitions on the same finite lattice in the
vicinity of the point of merger (See Fig. 2).

A further suppression of the Z2 electric vor-
tices got rid of the bulk transitions completely
and yielded only lines of second order deconfine-
ment transitions, in agreement with universality.
Since the terms added to the action in the process
do not contribute in the naive continuum limit,
one can formally attribute the anomalous behav-
ior of the deconfinement transition lines for both
the mixed actions to the presence of bulk transi-
tions.
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