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Abstract. I review a few selected topics in lattice quantum chromodynamics, focusing
more on the recent results. These include (i) the equation of state and speed of sound,
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1. Introduction

In the continuous quest for quark-gluon plasma (QGP), which began about two
decades ago at the SPS at CERN, Geneva, and has continued in a spectacular
way at the Relativistic Heavy Ion Collider (RHIC) at BNL, New York, USA, one
now has a plethora of theoretical suggestions for signals of QGP as well as huge
amounts of data. The Large Hadron Collider (LHC) at CERN will take us to even
higher colliding energies of heavy ions than before. In the complex task of putting
the pieces of the jigsaw puzzle together to establish eventually this new phase
of strongly interacting matter from the experimental data, one needs as much of
theoretical help as can be provided. In particular, theory needs to provide reliable
estimates of various quantities, such as the transition temperature, the equation
of state (EoS) and the critical energy density needed to reach the QGP phase.
Information on various properties of QGP, such as, the nature of its excitations
and the strength of their interactions would also be crucial in the experimental
search.

Quantum chromodynamics (QCD) defined on a space–time lattice, lattice QCD,
is the only successful and reliable tool to extract the desired non-perturbative
physics from the underlying theory. This first-principles based and (essentially)
parameter-free approach should be contrasted with the results from other ap-
proaches, primarily models. Thus not only does lattice QCD lead us to the phe-
nomenon of quark confinement and spontaneous breaking of chiral symmetry (or
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the answer to why pion is so light) but it also provides us with a quantitative un-
derstanding of the spectrum of hadrons and their other properties. Indeed, these
results have been accorded an ‘iconic’ status in theoretical high energy physics re-
cently [1]. One hopes that similar reliable information on the transition to QGP
and properties of QGP will be provided by these techniques, and any experimental
demonstration of a failure of a prediction of lattice QCD, such as the transition
to quark-gluon plasma, will be tantamount to one of the best experimental evi-
dence for physics beyond the standard model, discussed rather extensively at this
workshop.

Lattice formulation of QCD associates quark fields, ψ(x), and the antiquark
fields ψ̄(x) with the site x = (x1, x2, x3, x4) of a four-dimensional hypercubic lat-
tice. The (inverse) lattice spacing a acts as the ultra-violet cut-off. Continuum
limit of vanishing a corresponds to removal of the cut-off. As in the case of the
continuum field theory, one obtains a lattice gauge theory by demanding invariance
of the Lagrangian for free quark–antiquarks (e.g. obtained by a straightforward dis-
cretization of the usual Dirac Lagrangian) under any local phase rotation of these
fields. This can be accomplished by introducing lattice gauge fields Uµ

x ≡ Uµ(x)
which are associated with a directed link from the site x to x + µ̂a.

Defining a partition function Z for these fields, akin to a complicated version of
the familiar Ising model partition function

Z =
∫ ∏

x,µ̂

dUµ(x)
∏
x

dψ(x) dψ̄(x)e−SG−SF

=
∫ ∏

x,µ̂

∏

f

det M(amsea
f , aµf)e−SG , (1)

where SG and SF are gluonic and quark actions, M is the Dirac matrix in x,
colour, spin, flavour space for fermions of mass amsea

f and aµf is the chemical
potential (in lattice units). One can compute quantum expectation values of any
physical observable Θ, which may contain fermion propagators of mass amvalence,
as averages with respect to the Z above. Thus, e.g., masses of physical particles
are obtained from the exponential decays of appropriate correlation functions. Of
relevance to heavy-ion physics, is the investigation of eq. (1) at finite temperature,
which is achieved by taking a N3

s ×Nt lattice, where Ns is the number of lattice sites
in a space direction and Nt in the time direction. This leads to volume V = N3

s ·a3

and temperature T = (aNt)−1. Clearly, one needs to have Ns À Nt.
The Monte Carlo technique to evaluate the expectation value of any physical

observable, consists of the following three steps: (1) Generate as large an ensemble
of sets of links {Uµ

x } for the whole lattice as possible, such that each set of {Uµ
x }

occurs with a probability proportional to
∏

f detMf · exp[−SG({Uµ
x })], (2) evaluate

the observable for each configuration {Uµ
x } and (3) take its average over all the

configurations in the set. Due to the enormity of the computational task to gen-
erate the set of {Uµ

x } for full QCD, i.e., for a theory with all virtual quark loops
included, one employs increasingly severe approximations with decreasing amount
of computer time. These are (i) full QCD simulations on smaller lattices, (ii) par-
tially quenched QCD simulations with amsea large and greater than amvalence and
(iii) quenched QCD simulations with amsea = ∞ (i.e. no dynamical quarks). The
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early lattice results and today’s best results are obtained in the quenched approx-
imation. However, some aspects, such as the order of the phase transition, do
depend strongly on the dynamical quark content, necessitating a judicious use of
the quenched approximation.

A transition temperature of Tc ∼ 170 MeV for two-flavour QCD has been earlier
estimated [2,3]. The transition seems to be continuous. For three light flavours, the
transition temperature seems to be lower by about 20 MeV [3], bracketing our world
of two light and one heavy flavours, by that amount. Similarly, equation of state
(EoS) has been predicted by lattice QCD. Other quantities, notably the Wróblewski
parameter λs, which measures the strangeness enhancement in heavy-ion physics,
have also been predicted [4] by lattice QCD. These earlier results were obtained
either in quenched approximation or on coarser Nt = 4 lattices for full theory.
Thrust of the new results in the recent past has been on (i) employing larger lattices
to achieve continuum limit and to lighter quarks, (ii) more complex observables,
such as speed of sound, transport coefficients, fluctuations and susceptibilities, J/ψ-
dissolution/persistence, dileptons etc. and (iii) theoretically more challenging T–µ
phase diagram. An interesting comparison of predictions of conformally invariant
QCD-like theories with lattice results has also been made.

For reasons of both time and interest, I have chosen to limit this review to a
few of the above-mentioned selected topics. A quick overview of the basic lattice
gauge theory can be found in [5] or many textbooks. In the next sections, I intend
to discuss only the recent results, leaving out many technical details. A short
summary is provided at the end. Let me emphasise here that one has witnessed
recently a lot of activity in model building to explain the lattice QCD results.
These include quasiparticle models, hadron resonance gas, quarkonia from lattice
QQ̄ potential, sQGP and coloured states. Many of them can, and eventually did,
form interesting topics for working group discussions, leading even to a paper on
the archive eventually.

2. Properties of QGP

In this section I shall review the recent progress made in the past few years in
pinning down various properties of QGP using the lattice approach. These have
been chosen for their direct connection with the experimental heavy-ion physics.

2.1 Equation of state and speed of sound

Equation of state plays a critical role in a variety of aspects of heavy-ion collisions.
Thus estimates of the energy density at Tc are required to choose the appropriate
heavy-ion colliding energy. Recently results for the pressure and energy density
for Nt = 6 lattices at nonzero temperature QCD with 2+1 flavours of improved
staggered quarks were reported [6]. Using improved gauge action and improved
staggered quark action to eliminate the cut-off effects at O(a2) and with the heavy
quark mass ms fixed at approximately the physical strange quark mass but with
the two degenerate light quark masses mud = 0.1ms or 0.2ms, it was found that
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Figure 1. Recent results for EoS on Nt = 6 lattices from refs [7] (left) and
[6] (right).

the results were in agreement with those on Nt = 4 lattices, as seen on the right
panel of figure 1.

Using another improved action, similar results were obtained by another group [7]
for quark masses corresponding to physical meson masses. These are displayed in
the left panel of figure 1. Again, one sees small changes compared to the Nt = 4 case.
In particular, the critical energy density, ε(Tc) is ∼6T 4

c still. One note of caution
though is that the spatial volumes in physical units (such as inverse pion mass) are
rather small and some changes may therefore be expected in true thermodynamic
limit.

Velocity of sound, Cs, in QGP and dense hadronic media is a crucial input to
many phenomenological studies based on the hydrodynamical approach. The pres-
ence of elliptic flow was established in this way and has been regarded as a key
evidence in favour of the collective behaviour of the produced matter. Estimates
of Cs in the transition region have recently been obtained using a new approach [8]
which relates it to the temperature derivative of the anomaly measure ∆/ε, where
∆ = ε − 3P . Combining further with a new method to obtain ε and P by an
improved operator method, which leads to positive pressure on all lattices at all
temperatures, Cs as well as the specific heat Cv were obtained [9] in the continuum
limit.

Lattices with large temporal extent, Nt = 8, 10 and 12, and spatial sizes up to
Ns = 38 were used in the quenched approximation to obtain the results shown in
figure 2. One sees in the left panel that Cv ∼ 4ε for T ≥ 2Tc but its value is not
close to the ideal gas limit. On the other hand, the speed of sound shown on the
right, C2

s , is close to the ideal gas limit by 2Tc. Interestingly, it does not seem to
show any structure near Tc, whereas the specific heat does hint at a peak at Tc. It
has been argued that fluctuations in pT may be able to unravel the specific heat
and its peak from heavy ion data. More theoretical studies are needed to sharpen
this idea and to obtain a precise experimental measure. The above lattice results
are encouraging for such studies.
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Figure 2. Cv/T 3 and 4ε/T 4 (left) and C2
s (right) as a function of T/Tc for

quenched QCD in continuum from ref. [9].

An exciting and curious agreement of the entropy density s computed for
quenched continuum QCD has been reported [9] recently with that obtained us-
ing strong coupling prediction in the supersymmentric Yang–Mills theory in the
temperature range of 2–3Tc. The latter predicts [10] s/s0 = f(g2Nc), where
f(x) = 3

4 + 45
32ζ(3)x−3/2+ · · · and s0 = 2

3π2N2
c T 3 is the ideal gas entropy density. In

contrast, s0 = 4
45π2(N2

c − 1)T 3 for quenched QCD (i.e., without supersymmetry).
Nevertheless, the prediction does seem to do well both in normalization and the
shape in spite of the badly broken supersymmetry for the lattice results. Under-
standing this and extending it to even lower temperatures where weak coupling
methods do fail would be very exciting indeed.

2.2 QGP – (almost) perfect liquid?

From the measured azimuthal angle distribution of various particles produced in a
collision, one extracts a quantity called elliptic flow, v2. Phenomenological stud-
ies of v2(pT) show it to be consistent with QGP displaying ideal hydrodynamical
behaviour [11]. Indeed, from the small deviations, one can derive [12] a bound on
the shear viscosity, η, of QGP: Γs/τ0 = 4

3η/sTτ0 ≤ 0.1, where τ0 is the formation
time. This suggests a very small value for the dimensionless ratio, η/s, whereas
perturbation theory leads to a large value for it, giving rise to the description of
QGP produced at RHIC as being an almost perfect and strongly coupled liquid.

Kubo’s linear response theory permits the determination of the transport coeffi-
cients, such as η, in terms of equilibrium correlation functions. In particular, one
needs the correlation function of the energy–momentum tensor. This is obtained
on lattices in x-space and transformed to the momentum space, i.e. obtained at
discrete Matsubara frequencies. In order to extract the transport coefficients, which
are determined by the behaviour of the retarded correlation functions at small fre-
quencies ω, one continues these in the complex ω-plane. Figure 3 displays the
latest results [13] on the desired ratio η/s on lattices as large as 243 × 8 but in
QCD without dynamical quarks. Also shown are the estimates from perturbation
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Figure 3. Ratio of shear viscosity and entropy density for quenched QCD
[13].

theory and an analytic bound from supersymmetric QCD which is fairly close to
the bound from hydrodynamics quoted above. The lattice results start from being
close to these bounds in the vicinity of the transition and show a tendency of going
towards the larger perturbative value as temperature increases. Calculations on
larger lattices and with inclusion of dynamical quarks are needed to confirm these
results and to make them more precise. Nevertheless their proximity to the bound
from the heavy-ion data is very encouraging.

2.3 Anomalous J/ψ suppression

Suppression of the most famous quarkonium, J/ψ, has been widely known as a
signal for QGP production in heavy-ion collisions and a lot has been learnt [14]
since the early data on this subject. Recently, the NA50 Collaboration from CERN
came out with their precise results. Moreover, J/ψ suppression has been observed
at the RHIC in BNL as well. A brief summary of these latest results [15] from
CERN and BNL and their comparison with model predictions are given below:

• Sulphur–uranium and peripheral lead–lead (Pb–Pb) results for the ratio of
J/ψ production cross-section to that of Drell–Yan behave as expected from
extrapolations of proton–nucleus data. Glauber model with an absorption
cross-section of 4.18±0.35 mb for the J/ψ, determined from p–A data, decided
these expectations.

• Pb–Pb central data on the other hand, show anomalous suppression with
respect to the corresponding expectations.

• The ψ′/DY ratio is not compatible for even S–U and peripheral Pb–Pb with
similar expectations from proton–nucleus (with an absorption cross-section of
7.6 ± 1.12 mb).

• Thus, ψ′ anomalous suppression sets in earlier than J/ψ.
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• Theoretical models that were successful in describing the above SPS, CERN
data predicted too much suppression at RHIC compared to what was observed
by PHENIX at RHIC.

The impressive sets of data from CERN and RHIC have attracted a lot of atten-
tion from lattice experts. The original Matsui–Satz idea of J/ψ suppression was
based on simple quarkonium potential models and an ansatz for the temperature
dependence of the potential. It seems very important to check whether similar
conclusions follow from the underlying theory, QCD, with as few assumptions as
possible. Recognition of the so-called MEM (maximum entropy method) as a tool
to extract the spectral functions of mesons from the temporal correlators computed
on the lattice has permitted a fresh assessment of the original idea. Figure 4 ex-
hibits the spectral functions [16] of the ηc, J/ψ and the χ states in quenched QCD
at various temperatures.

As seen on the right panel, the peaks for χc do not show any significance beyond
the error bars by 1.1Tc, i.e. they do seem to dissolve in agreement with the potential
model estimate but the left panel shows persistence of J/ψ and ηc up to 2.25Tc;
they seem to melt away only by 3Tc. Similar results have been obtained by other
groups [17], although differences persist on the precise melting temperature for
J/ψ. In addition to the need to iron them out, by requiring larger lattices, uniform
criteria and a comparison at the correlator levels, one has to also include dynamical
quarks in these computations in quenched QCD. There is a lot more work to do
but one can still ask whether these results should lead to changes in expectations
of the suppression patterns as a function of temperature or the colliding energy
since only a fifth to a third of the observed J/ψ come from the states which do
melt soon after the transition. Another interesting question is about quarkonia
moving in the heat bath. One may expect them to see more energetic gluons,
leading to more dissociation at the same temperature as the momentum increases.
Preliminary results [18] show this to be indeed true for even J/ψ and ηc. However,
the effect seems significant both below and above the transition, leading one to
wonder whether it plays any role in the anomalous suppression seen in the heavy-
ion collisions.
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Figure 4. Spectral functions of ηc, J/ψ (left) and the χ states (right) in
quenched QCD [16] at various temperatures indicated.
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3. QCD phase diagram

Lattice QCD at nonzero baryon density may help us in understanding, or even de-
riving, an interesting physical phenomena, namely, color superconductivity, which
may find applications in the astrophysics of strange quark stars. From a theoret-
ical viewpoint, it is, of course, crucial in completing the µB–T phase diagram of
QCD. Both the numerical and the analytical methods used at finite temperature
are inadequate in this case due to the fact that the fermionic determinant detM(µ)
is complex for µ 6= 0, commonly referred to as the sign (or the phase) problem.
Various models, notably the Nambu–Jona–Lasinio and the random matrix model,
have played a big role in shaping our understanding of the QCD phase diagram.
However, there have been some new exciting developments in the recent past for
small µ. Most earlier attempts comprised of exploring first the zero temperature
axis, where the problem is hardest. Recognizing this the latest strategy has been
to work for small µ in the vicinity of the quark–hadron transition, and study its
behaviour as µ is turned on. Various methods [19,20], such as the re-weighting
method, a Taylor expansion in µ, analytic continuation from imaginary µ, have
led to similar qualitative results. I will provide a flavour of these results by briefly
mentioning here our results obtained by Taylor expansion, referring the reader to
the original works in [19,20] for a detailed comparison.

The Taylor expansion method has several advantages over the others. Prime
amongst them is the ease of taking continuum and thermodynamic limit. As men-
tioned in the Introduction, one has to take these limits for the results to have any
relevance to the real world of experiments. The re-weighting method, for example,
has a factor that grows exponentially with lattice size and also has no systematic
control over discretization errors. Analytic continuation to real µ is also done term
by term in a small µ-expansion. Employing the Taylor expansion, we [21] studied
volume dependence at several T to (i) bracket the critical region and then to (ii)
track its change as a function of volume. A strong volume dependence was found
which changed the critical point obtained earlier by other methods substantially.
The lattices we used were 4 ×N3

s , with Ns = 8, 10, 12, 16, 24, enabling us to vary the
volume V = N3

s a3 at fixed temperature, i.e. fixed a. Our dynamical simulations for
staggered fermions with two light dynamical (Nf = 2 of mass m/Tc = 0.1) quarks
were made using the well-known R-algorithm with a trajectory length scaled ∝ Ns.
From [22], it is known that the transition temperature is Tc/mρ = 0.186 ± 0.006
and the choice of our quark mass corresponds to mπ/mρ = 0.31± 0.01. While it is
still high compared to the real world, it is one of the smallest pion mass so far used;
lowering pion mass further necessitates even larger volumes than we were able to
employ. Our simulations were made at T/Tc = 0.75(2), 0.80(2), 0.85(1), 0.90(1),
0.95(1), 0.975(10), 1.00(1), 1.045(1), 1.15(1), 1.25(2), 1.65(6) and 2.15(10). Typical
statistics used was 50–100 in (max) autocorrelation units.

Defining µf as the chemical potential for a flavour f = u, d, s and µ0 = µu+µd+µs

and µ3 = µu−µd as baryon and isospin chemical potentials, the respective density
and susceptibility can be obtained from eq. (1) as

ni =
T

V

∂ lnZ
∂µi

, χij =
T

V

∂2 lnZ
∂µi∂µj

. (2)
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Setting µf = 0 after taking the derivatives, nf = 0 but χij are nontrivial. The
diagonal χ’s are found [23] to be

χ0 =
1
2

[
O1(mu) +

1
2
O2(mu)

]
, (3)

χ3 =
1
2
O1(mu), (4)

χs =
1
4

[
O1(ms) +

1
4
O2(ms)

]
. (5)

Here Oi are traces of products of M−1, M ′ and M ′′ and are estimated by a
stochastic method: Tr A =

∑Nv

i=1 R†i ARi/2Nv, and (Tr A)2 = 2
∑L

i>j=1(Tr A)i

(Tr A)j/L(L− 1), where Ri is a complex vector from a set of Nv, subdivided in L
independent sets. Further details can be found in [21,23].

Denoting higher order susceptibilities by χnu,nd , the pressure P has the expansion
in µ:

∆P

T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=

∑
nu,nd

χnu,nd

1
nu!

(µu

T

)nu 1
nd!

(µd

T

)nd

.

(6)

From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point. Successive estimates for the

radius of convergence can be obtained from these terms using rn =
√
|χn

B/χn+2
B | or

ρn = [|χ0
B/χn

B|]1/n. We used terms up to 8th order in µ, i.e., estimates from 2/4,
4/6 and 6/8 terms of the series eq. (6).

The ratio χ11/χ20 can be shown [21] to yield the ratio of widths of the measure
in the imaginary and real directions at µ = 0. This argument for the measure of the
imaginary part of the fermionic determinant can be generalized to nonzero µ with
some care, by constructing similarly as above the coefficients for the off-diagonal
susceptibility, χ11(µ).

Before going on further to the results on the critical point, let us take a detour
of interest to the current heavy-ion experiments. Quark number susceptibilities
(QNS) which contribute the first nontrivial term in the above Taylor expansion also
have their own independent physical and theoretical relevance. They are crucial for
some signatures of quark-gluon plasma such as fluctuations of charge and/or baryon
number, and production of strangeness. Their additional theoretical importance is
due to the check they provide on resummed perturbation expansions or any other
scenario for the high T phase.

3.1 The Wróblewski parameter and baryon-strangeness correlation

Here we will touch upon two different aspects of the physics hidden in the QNS.
Ideally, one needs to obtain QNS in the continuum limit to extract any quantity
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Figure 5. Comparison of lattice results on the Wróblewski parameter for
quenched QCD with results from CERN and BNL (left). Corresponding full
QCD results as a function of T/Tc (right). Taken from refs [4,24] respectively.

of interest for heavy-ion collisions. It has recently been shown that one can con-
struct [24] robust ratios which have negligibly small theoretical and experimental
systematic error. The primary amongst them is the Wróblewski parameter. De-
fined as the ratio of the strange particles and the non strange particles produced in
a collision, it has been studied widely as a measure of the strangeness production.
Interestingly, most heavy-ion collision data seem to yield a factor two higher value
for it than other hadronic collisions. Using the continuum values for QNS, and
under certain assumptions [4], one obtains λs(Tc) = 2χs/(χu +χd) ≈ 0.4–0.5 which
compares remarkably well with its latest RHIC value 0.47 ± 0.4, as shown in the
left panel of figure 5. While these results were obtained in quenched QCD in the
continuum limit, also the full QCD results [24] shown in the right panel but on a
small temporal lattice (Nt = 4) are in very good agreement with these, as expected
of a robust ratio.

QNS can also be put to use in studying the correlation between quantum num-
bers K and L through the ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 ≡ χKL

χL
. Again being ra-

tios, these too are expected to be theoretically and experimentally robust. Such a
strangeness-baryon number correlation, CBS = −3(χBS/χS), was proposed [25] as a
distinguishing test between the various models/pictures of quark-gluon plasma near
Tc. This, or the similarly defined strangeness-electric charge correlation, CQS, is ex-
pected to be unity if quarks are the sole carriers of these quantum numbers (others
being very heavy). On the other hand, the so-called sQGP model of Shuryak–
Zahed [26] predicts these to be 0.66 and 1.2 respectively. Our lattice results [24]
are exhibited in figure 6.

While one sees very different values for both CBS and CQS below Tc, their rapid
approach to unity clearly indicates the presence of quark-like degrees of freedom
immediately above Tc. In particular, the object which carries unit strangeness also
has a baryon number of −1/3 and a charge of 1/3, just like a strange antiquark
would. We have found that a variation of the strange quark mass, ms/Tc, between
0.1 and 1.0 does not alter either the value for T ≥ Tc, or its T -independence. A
natural explanation of the T -behaviour arises if strange excitations with baryon
number become lighter at Tc. T -independence further suggests existence of a single
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such excitation. Such a picture is tantalizingly close to the canonical expectations
of a transition from hadrons to quarks.

3.2 The critical point

Using both the definitions the radius of convergence in §3 for the terms up to 8th
order in µ in pressure (6th order in baryon number susceptibility), one obtains
successively better estimates order by order. This can be done on each spatial
volume, leading to a study of the volume dependence of the radius of convergence.
Figure 7 shows the results for both ρn and rn on the smallest (83) and largest (243)
lattice.

Our results on the smaller lattice are consistent with the earlier estimate using
re-weighting method. We observe strong finite size effects around Nsmπ ∼ 6 but
our results on the largest lattice suggest a good stability with respect to an increase
in the order of the expansion. Extrapolation in n leads to the following estimate
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for the critical point: µE/TE = 1.1± 0.2 at TE = 0.95Tc. Similar estimate has also
been obtained recently for the re-weighting method, although the quark mass used
(and hence the mass of the pion) was smaller in that case [27]. Another attempt
to look [28] for the critical point using terms only up to 6th order did not find any
critical point but they used much larger quark masses (mπ/mρ ∼ 0.7).

4. Summary

Lattice QCD predicts new states of strongly interacting matter and is able to shed
light on the properties of the quark-gluon plasma phase. One of the major de-
velopments of the recent past in lattice QCD is the firming up of the QCD phase
diagram in µ–T plane on small Nt. Different fermions and different methods of
simulations for nonzero µ, all lead to a good agreement on the qualitative as well as
the quantitative aspects. All estimates of Tc, and (TE, µE) are mutually consistent
when compared with the right quark masses and in the thermodynamic limit. Our
estimate for the critical point is µB/T ∼1–2, as shown in figure 8. Also shown in
the figure is a freeze-out curve [29], converted to a value of Tc appropriate to our
computation. Such a curve results from the analysis of the heavy-ion data on parti-
cle yields. The required collision energy to reach the appropriate point are marked
in the figure, which indicate the exciting possibility of discovering the critical point
in a low-energy RHIC run in the near future.

Various physical quantities have been obtained in the continuum limit in the
quenched approximation to QCD. These include the equation of state, the specific
heat, the speed of sound in the neighbourhood of Tc and the quark number suscep-
tibilities. While the former are needed in hydrodynamical analysis of the particle
spectra, and the resultant collective flow, the latter (QNS) are directly relevant to
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the physics of quark-gluon plasma signals at RHIC. The quenched lattice QCD es-
timate of Wróblewski parameter, λs, which is a measure of strangeness production
in heavy-ion collision experiments, has been known to be in excellent agreement
with the RHIC and SPS results.

Major efforts are on to extend these results to full QCD. Many features seem to
change very little, although major change in the form of the order of the phase tran-
sition leads to quantitative differences near Tc. Interestingly, the robust Wróblewski
parameter also does not change quantitatively near Tc, although one still needs
more precise results and that too for realistic pion and kaon masses. Our results
on baryon number-strangeness and electric charge-strangeness correlations suggest
(i) a rapid change in going through the transition in full (Nf = 2) QCD and (ii)
the quark-gluon plasma to have quark-like excitations even close to Tc.

The heavy-ion data from CERN and BNL have provided us a lot of surprises,
and will continue to do so in future. Lattice QCD has played an important part
in understanding some of these, and clearly a lot more work is ahead both in the
form of better precision as well as new ideas for experimentally measurable lattice
predictions.
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