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Abstract. We propose a better differential method for the computation of the equation
of state of QCD from lattice simulations. In contrast to the earlier differential method,
our technique yields positive pressure for all temperatures including the temperatures in
the transition region. Employing it on temporal lattices of 8, 10 and 12 sites and by
extrapolating to zero lattice spacing we obtained the pressure, energy density, entropy
density, specific heat and speed of sound in quenched QCD for 0.9 < T/T. < 3. At
high temperatures comparisons of our results are made with those from the dimensional
reduction approach and also with those from a conformal symmetric theory.
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1. Introduction

There is growing acceptance of the view that in the ongoing experiments in rela-
tivistic heavy ion collider (RHIC) at Brookhaven a new form of matter has been
created [1]. This new form of matter is thought to be a fluid of strongly interacting
quarks and gluons. In lattice studies of quenched QCD it was found earlier that
the entropy density s [2,3] and the mean free time 7, derived from the electrical
conductivity [4], together gave rise to a dimensionless number 75/3 ~ 0.8 [5]. In
the non-relativistic limit this dimensionless number measures the mean free path
in units of interparticle spacing, and is therefore large in a gas but of order unity in
a liquid. This indicated that the deviation of the energy density (¢) and pressure
(P) in the high temperature phase of QCD from their ideal gas values may be due
to a previously underappreciated feature of the plasma phase — that it is far from
being a weakly interacting gas.
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Earlier expectations that a weakly interacting gas of quarks and gluons would be
formed in the experiments were based on perturbative calculations [6] which failed
to reproduce these lattice results [2]. There have been many suggestions for the
physics implied by the lattice data — the inclusion of various quasi-particles [7], the
necessity of large resummations [8], and effective models [9] being a few. Investiga-
tion of screening masses also gave evidence for strong departure from perturbative
results [10-16]. Interestingly, there has been a suggestion that conformal field the-
ory comes closer to the lattice result [17]. This assumes more significance in view
of the fact that a bound on the ratio of the shear viscosity and the entropy density,
s, conjectured from the AdS/CFT correspondence [18] lies close to that inferred
from the analysis of RHIC data [19] and its direct lattice measurement [20,21] as
well as the lattice results of a different transport coefficient [4].

The equation of state (EOS) is one of the most basic inputs into the analysis of
experimental data. Two decades ago, a method was devised to compute the EOS of
QCD on the lattice [22]. However, soon it was found [23] that this method yielded
negative P near the critical temperature, T,. At that time it was thought that this
problem of the ‘differential method’, as it is called now, is solely due to the use of
perturbative formulae for various derivatives of the coupling. To cure this problem
of negative pressure, the non-perturbative ‘integral method’ was introduced [2,24].
It bypasses the use of perturbative couplings by employing the thermodynamic re-
lation F' = —PV and using a non-perturbative but phenomenologically fitted QCD
[-function. If the EOS were to be evaluated by the integral method then fluctua-
tion measures (e.g. the specific heat at constant volume Cy/) can only be evaluated
through numerical differentiation, which is prone to large errors [25]. Moreover, the
relation F' = —PV assumes the system to be homogeneous. Since the pure gauge
phase transition in QCD is of first order the system is not homogeneous at T.
Thus, one makes an unknown systematic error in the integral method computation
by integrating through T.. This is in addition to a small systematic error due to
setting P = 0 just below T, and the numerical integration errors. Clearly, our con-
fidence in the lattice results on the EOS would be boosted if an entirely different
method of EOS determination yields the same results: it would be tantamount to
a good control over many systematic errors in both.

In this paper we propose a modification of the differential method which gives
positive pressure over the entire temperature range for even relatively coarse lat-
tices. We choose the temporal lattice spacing (a.) to set the scale of the theory, in
contrast to the choice of the spatial lattice spacing (as) in the approach of [22]. This
change of scale is analogous to the use of different renormalization schemes. As a
consequence, our method could be called the t-favoured scheme and the method of
ref. [22] may be called the s-favoured scheme. In fact, in a different context, this
choice of scale has already been used in ref. [26]. Here we show that this choice
leads to positive pressure for the entire temperature range, even when one uses
one-loop order perturbative couplings. Since the operator expressions are derived
with an asymmetry between the two lattice spacings as and a., the s-favoured and
t-favoured schemes give different expressions for the pressure. In that sense the use
of t-favoured scheme is tantamount to the use of better operators.

Being a differential method the t-favoured scheme can be easily extended to the
calculation of fluctuation measures like Cy, following the formalism developed in
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ref. [3]. In a theory with only gluons there is only this fluctuation measure. Related
to this is a kinetic variable, the speed of sound, Cy, which can also be evaluated in
any operator method. We report measurements of both in the temperature range
097, < T < 3T, through a continuum extrapolation of results obtained using
successively finer lattices.

Not only do these quantities provide further tests of all the models which try to
explain the lattice data on the EOS but they also have direct physical relevance to
experiments at RHIC. In a canonical ensemble the specific heat at constant volume
is a measure of energy fluctuations. It was suggested in ref. [27] that event-by-
event temperature fluctuation in the heavy-ion collision experiments can be used
to measure Cy. The speed of sound, on the other hand, controls the expansion
rate of the fire-ball produced in the heavy-ion collisions. Thus the value of Cs is
an important parameter in the hydrodynamic studies. It has been noted that the
magnitude of elliptic flow in heavy-ion collisions is sensitive to the value of Cs [28].

The measurement of Cy and Cy also directly test the relevance of conformal
symmetry to finite temperature QCD. QCD is known to generate the scale, Aqcp,
dynamically and thus break conformal invariance. The strength of the breaking of
this symmetry at any scale is parametrized by the S-function. An effective theory
which reproduces the results of thermal QCD at long-distance scales could still be
close to a conformal theory. The result of ref. [17] for the entropy density, s, in
a Yang-Mills theory with four supersymmetry charges (N = 4 SYM) and large
number of colours, N, at strong coupling, is

s _ 2
%_f(g NC))

where
2
S0 = §7T2N02T3
and
3 45 .
J@) =5+ @ (1)

g being the Yang—Mills coupling [28a]. For our case of N, = 3, the well-known
result for the ideal gas, so = 4(NZ2 — 1)m2T3 /45 takes into account, through the
factor N2 — 1, the relatively important difference between a SU(N.) and an U(N..)
theory.

The paper is organized as follows. In the next section we present the formalism
and lead up to the measurement of Cyy and C? on the lattice in §2.2. In §3 we give
details of our simulations and our results. Finally, in §4 we present a discussion of
the results.

2. Formalism

Various derivatives of the partition function, Z(V,T), where V is the volume and
T the temperature, lead to thermodynamic quantities of interest. In particular, the
energy density € and the pressure P are given by the first derivatives of In Z,
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(T 0mZ(V,T) (T oln Z(V,T)
€= <V> Ti@T and P = <V) V78V (2)

1% T
The second derivatives are measures of fluctuations. In the absence of chemical
potentials, a change of volume of a relativistic gas alters its pressure by changing
particle numbers. As a result there is only one second derivative, namely, the

specific heat at constant volume

Oe

CvzaiT

3)

1%
Using thermodynamic identities, the expression for the speed of sound can be
recast in the form

P P - T3
Oe |, OT|, \0T|, Cy/T3
where we have used the thermodynamic identity
oP oS as e+ P
- [ — d —_— frng =
ar|,  ovl, “° av|, T T 5)

in conjunction with the definition of the total entropy S and the entropy density s
above. Note that all these relations are valid for full QCD with dynamical quarks
(without quark chemical potentials) as well as in the quenched approximation which
this work deals with exclusively.

A caveat about the first equality in eq. (4) is in order. This remarkable formula
(a generalization of a result first obtained in 1687 by Newton) equating a kinetic
quantity, C2, to a thermodynamic derivative is true for a homogeneous system. For
a phase mixture at a first-order phase transition there are kinetic processes, such as
condensation of a fog, which cause this formula to break down [29]. The lore that
C? =0 at T, is due to the overly naive argument that P remains continuous while
€ undergoes a discontinuous change. In fact, the best that thermodynamics can
do is to evaluate this formula in a limiting sense as one approaches T, either from
above or below. The values of Cy in these two limits need not even be continuous
at a first-order transition [30].

2.1 Energy density and pressure

In order to distinguish between 1" and V' derivatives, the differential method formu-
lates the theory on a d + 1-dimensional asymmetric lattice having different lattice
spacings in the spatial (as) and the temporal (a,) directions. If the number of
lattice sites in the two directions are Ny and N,, then T = (N,a,) ! is the tem-
perature and V = (Ngas)? is the volume of the system. The derivatives needed for
the thermodynamics are

0 0
TaiTV—_aTaiaT

holding Ny and N, fixed.

P
a vZ
a v

_ % 9
T_d Odas

, (6)

ar

as
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In the t-favoured scheme we introduce the anisotropy parameter £ and the scale
a by the relations

£=—" and a=a,. (7)

The partial derivatives with respect to T" and V can then be written in terms of
these new variables as

0

0
5T and V —

2%

0 0
=(—| —a— :

a S
v gl oa d

0
. (5)

1S T a

One obtains the second expression by writing as = a and taking a partial derivative
keeping a fixed. For the first expression, one takes a derivative with respect to a
and then introduces constraints on the differentials d¢ and da in order to keep
as fixed. This choice of scale a = a, seems to be natural, since most numerical
work at finite temperature sets the scale by T'=1/N,a,. For example, continuum
limits are taken at fixed physics by keeping T fixed while changing N, and a,
simultaneously. This is done not only when symmetric lattices are used, but also
when the simulation is performed with asymmetric lattices [31].

In the s-favoured method [22], by contrast, the scale of the theory is set by the
spatial lattice spacing, a = ag, at every £ and only after taking the £ — 1 limit does
the natural choice of scale emerge. The corresponding derivatives in this case are

9 o1 _€9
aT av |, dog

L8290
d da

a

0
=§&— and V
14 gag‘a

: (9)
3

On the anisotropic lattice the partition function of a pure gauge SU(N.) theory
with the Wilson action is defined as

Z(V,T) = /DUe—S[Ul,

where

d d

x,ij=1 x,2=1

Periodic boundary conditions are imposed in all directions. The plaquette variables
are P,g(x) = 1—Re trUyps(x), Usp(x) is the ordered product of link matrices taken
anticlockwise around the plaquette, starting at the site x and in the plane specified
by the directions  and 3. We introduce the notation for the average plaquettes
P, =23 Pyi(z)/d(d — 1)NEN, and P, = 3" Pyi(z)/dNEN,. Since the plaquette
operators have no explicit dependence on a and £ the derivatives with respect to
these quantities vanish. The couplings may be written as

2N, 2N,
s=—-> and K,= ;g,
93 97

(11)
leading to
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0K,
3

0K,
9¢

Next, using the derivatives in eq. (8) along with the definitions of P and € (see
eq. 2)) one obtains, from the partition function of eq. (10), the expressions

dg; 2
of

-2
= ko4 on Y and g

_ 2
e — K, +2N.¢

3 (12)

d {d-1
d+1, _ % / /
a®tle = gd[ 5 fKSDS+§KTDT]
d [d—l 0K, 0K

a D.+aZ2D,
+§d 2 “oa +a8a }

and

a®tp = —gid [d21§Ks’DS + gK;DT] (13)

where primes denote derivative with respect to £. In order to remove the trivial

ultraviolet divergence in these quantities, present even in the free case, a subtraction

of the corresponding T' = 0 values is made, yielding D; = (P;) — (P) above. Here

Py =2 Pog(z)/d(d+ 1)NZIN, is the average plaquette value at T' = 0, evaluated

with periodic boundary conditions in all directions and with very large N, = Nj.
To determine the couplings K/ we use the weak coupling definitions [32]

1 1

= 5~ +a(f) +0[¢*(a)] (i=s,7) (14)
97(a,§)  g*(a) lo°(@)]

With the condition that ¢;(§ = 1) = 0, this is actually an expansion of the
anisotropic lattice couplings g;(a, §) around the isotropic lattice coupling g(a). With
the usual definition, ay = g2 /47, the B-function is

Oa . . 0g~2 B(as)
1V1n, a = .
o SIS Oa 2ra?

Blag) =& (15)
2

For a 3 + 1-dimensional theory, one has B(as) = —(33 — 2N)a2/127 + O(a?). In

terms of the functions ¢s and ¢, introduced in eq. (14) and the S-function above

one can rewrite the derivatives of the couplings as

0K N.B(as) 0K ,
a 90 Ta2e and ¢ 9€ = —K; + 2N,
0K, N£B(as) oK, 9
== o and ¢ ¢ = K, +2N.£%C,. (16)

The quantities ¢, and ¢, have been computed to one-loop order in the weak coupling
limit for SU(N.) gauge theories in 3+1 dimensions [33].

2.2 The specific heat and speed of sound

It was pointed out in ref. [3] that the specific heat can be most easily obtained by
working with the conformal measure,

492 Pramana — J. Phys., Vol. 71, No. 3, September 2008



Lattice QCD equation of state

C:é and F:Ta—c

€ oT (17)

)
14

where A = e — 3P. Then, using eqs. (4), (5), (17) it is straightforward to see that
Cv [ ¢/T% s T e
Td ~ \Pj7ani) |Td T gTan

and

One needs the expression for I' in terms of the plaquettes in order to proceed.
To this end we introduce the two functions

Agdt1gd d—1 0K, oK,
F(g,a) = d - { 2 Oa Ds + da DT}
and
_eqdtled _
Gle.a) = =5 ¢S KD 4 KD, | - Fisa) (19)
Since C = —F/G, one finds that
T OF T oG

The derivatives of F' and G will involve the variances and covariances of the
plaquettes and the second derivatives of the couplings. These second derivatives of
the couplings are

8§K; B(O‘S) 2 g1 2 ! "
a aa 27('@36’ E S 9525 C:: + fcb I

8€K/ gB(O‘S) 2 71 / "

T = K =2
a’ aa 271‘0[3 b € T C’T + SCT7
O*K. B(ay) oK, K £B(ay) 0K

2 s - _ s - _ S 2 T s - _ T ) 21

¢ a2 2raZé Y0 ¢ a2 2ma2 “"da (21)

The numerical values of ¢ ’s have been evaluated in ref. [3].

Turning now to the derivatives of F' and G in eq. (19) one obtains
OF ¢ {d—l@K’, 0K/ d—10K; 0K ]

i 5% D’ D!
€ "2 90" oa 5 9a T aa T

£ DT} +£a[

and

a% B 2  Oa Ds + Oa 2 Oa? Ds + Oa?
2 [4=10K,0D, 0K, 0D,
2 Oa Oa Oa Oa |’

oF [d — 10K, 0K, } 9 {d —10°K, 0?K,
= D.| +a
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Also from eq. (19) it follows

aG_ d—1_, / o |d—=1_, 7
ga&- _€|: 2 KSDS+KTDT:|+£ 2 KSDS+KTDT
d—1 OF
2| ——K!D.+ K.D.| —¢—
+£ |: 2 s s+ T T:| 85

and

oG d—10K] 0K
a(“)a:&l[ 2 Oa Ds da DT]

(23)

d-1_,0D, ,dD,] OF
2 S Oa T Oa

Jrfa[ K="= +K a—-.
oa

Since the plaquette operators do not explicitly depend on ¢ and a one can easily
take the derivatives of the vacuum subtracted plaquette expectation values. These
are

-1
(D) = —dN,N? {d2§K;Usi + fK;_U'ri:|

and

0D;
da

a

(24)

d—1 0K, K.
= —dN,N¢ [ 0 0 o} :

2 “ Oa Tsit @ da

where 0;; = (D;D;) — (D;)(Dj). Throughout this paper we will refer to o;; (i # j)
as ‘variances of plaquettes’ and o;; as ‘covariances of plaquettes’. Note that eq. (18)
implies that Cy and Cs should be independent of the volume. Consistent with this,
the derivatives in eqs (22), (23) seem to be non-extensive. However, there is an
explicit volume factor, N,NZ, in eq. (24). The resolution is that away from a
critical point the variances and covariances of the plaquettes scale as 1/V, which is
a consequence of the central limit theorem.

Certainly, if each plaquette variable could be considered to be fluctuating ran-
domly around its mean value then the application of the central limit theorem
would be clear. Before proceeding, we emphasize that both the plaquette variables
defined here are summed over all spatial orientations, and hence are invariant un-
der spatial rotations. In the notation of ref. [12], they are projected on the AF ™
channel. Thus, their covariances are integrals over the AT*‘ plaquette correlation
function. If plaquette correlations had a finite range, then again these terms would
be linear in volume if Ny were sufficiently large. However, if the AiH' correlation
length associated with plaquettes becomes infinite, then, in the thermodynamic
limit, this term would grow faster than the remainder. Consistently, at a second-
order phase transition, where this is expected, Cvy, as defined in eq. (18) would
scale non-trivially with volume according to the critical exponents of the theory.
Such behaviour has been found in the SO(3) gauge theory [34].
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2.3 Final expressions
Expressions for the energy density and the pressure in the usual form are obtained

from eq. (13) by multiplying by appropriate powers of N,. In the isotropic (£ = 1)
limit and for 3+1 dimensions we get

€ _ 4 —DS_DT / / ] 4B(aS)

T = ONeNZ | =5 = (ehDy 4 ¢ Dn) |+ 6NN D+ Dy
and

P D, — D, ]

On comparing these expressions with those obtained using the s-favoured scheme
[22], one can easily see that the new expression for pressure is exactly 1/3 of the
old expression of the energy density. Since the energy density in the s-favoured
scheme comes out to be non-negative at all temperatures and on all temporal sizes
N, , our new expression for the pressure is therefore expected to give non-negative
pressure always. The expression for the interaction measure

A (e — 3P)

B(as)
_— = — = 6NCN4
T4 T4 T 2ral

[Ds . DT] , (26)

is same, and also positive, for both the cases. Since both the pressure and the
interaction measure are non-negative in the t-favoured operator formalism, the
energy density must also be non-negative.

Note that A contains B(as) as a factor, but this explicit breaking of conformal
symmetry may be compensated by the vanishing of the factor Dy + D.. To de-
termine the coupling g2, throughout this work, we use the method suggested in
ref. [35], where the one-loop order renormalized couplings have been evaluated by
using V-scheme [36] and taking care of the scaling violations due to finite lattice
spacing errors using the method in ref. [37].

The expressions for £ and a derivatives of F'(¢,a) in eq. (22) can be combined by
using the form of the lattice derivatives in eq. (8) to get the temperature derivative
of F(¢,a). Finally inserting the derivatives of the coupling (see eqs (12) and (21)),
taking the & — 1 limit, and specializing to d = 3 we get

OF B(ay) B(ag)]?
Ta—T , = 2o [D, — Dg] +6N.N, N2 { 27ra82 [0ss + Orr + 2047]
3 B(aS) Orr = Oss / / / /
—6N N, N; 5o 7 + o+ o+ (e +)osr |- (27)

Proceeding in the similar way as before, in the ¢ — 1 limit in d = 3, one obtains

oG D + D, B(as
el _ st bPr c&tDs+ 3. Dy + ¢! Ds+ /Dy — (a) [D, — D]
aT |y, g° 2ma2
—6NCN7-NSS |:O'ss + 071 — 205, + Q(CQ—O—TT + C;O—ST ; C/sgss - CITO—ST):|
g g
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) oF
+ GNCNTN;3 [C?O’SS + c’TQUTT + QCISC'TUST] —T —
S S 8T V
B 7T — Uss
+ 6NN, N2 (Oész) g 5 Tss 4 Choss + o + (ch+ c'T)UST] . (28)
2maf g

For ¢ — 0, i.e., in the weak-coupling limit, the dominant contribution to all
the plaquettes is of order g? [38]. Hence, in this limit, D; oc g% and A/T* x g2
In the weak-coupling limit, therefore, A/T? can be neglected in comparison with
¢/T¢. The scaling of D; also implies that o;; o< g%, as a result of which F and its
temperature derivative are negligible in this limit compared to G and its derivative.
Consequently, I' — 0 in this limit, resulting in Cy/T¢ — (d + 1)e/T%*! and C? —
1/d. Note that in any conformal invariant theory in d 4+ 1 dimensions one has
€ =dP,ie.,C =T =0, and hence, by eq. (18), one has identical results - C? = 1/d
and Oy /T? = (d + 1)e/T4+1,

2.4 On the method

While the expressions in eq. (25) look different from those in ref. [22], one may
argue [39] that standard formulae for change of variables (from the set {¢,a,} to
{£, as}) can be used to show that both the expressions are identical. However, this
conclusion follows only if one also demands the values of the couplings g2 and g2
to remain the same under the change of the scale from ag to a,. As we argue
below, this is not true when the weak coupling expressions (eq. (14)) are used for
the couplings.

As can be seen from eq. (14) the Karsch coefficients ¢;(£)’s are differences between
the isotropic and anisotropic couplings. Hence they do not depend on the scale a
of the isotropic lattice, but only on the parameter which quantifies the difference
between the isotropic and the anisotropic lattice, i.e., the anisotropy parameter &.
Thus a change of scale from ag to a, does not change these Karsch coefficients. In
Appendix A we prove this explicitly. Given that the Karsch coefficients are the
same for both the t-favoured and the s-favoured schemes, from eq. (14) it follows
that the anisotropic coupling constants g;(a, ) are different for the two schemes
due to the scale dependence of the isotropic coupling constant g(a). Therefore,
the expressions for ¢ and P are different at finite (but small) lattice spacing in the
two different approaches. Since the s-favoured and t-favoured schemes are different
due to the scale dependence of the isotropic coupling constant g(a), the difference
between the expressions in both the schemes goes as In a, compared to the 1/a? cut-
off dependence of the lattice Wilson action. Hence, the difference between the two
methods is tantamount to modifying the operators. Moreover, for the usual choice
of scale setting by T'= 1/N,a,, our approach corresponds to the natural choice of
scale in eq. (14). Tt is expected that the results from both the methods will match
for very large temporal lattice size N,. However, as is true with the improvement
program in general, on small lattices the better operators — t-favoured method in
this case — should lead to results with lesser artifact errors or alternatively positive
pressure at even T' < T¢.

While the t-favoured method improves the differential method, leading to posi-
tive pressure, it still requires the use of perturbative couplings. On the other hand,
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Figure 1. A/T* as a function of the bare coupling 8 using a non-perturbative
(squares) and one-loop order perturbative (pentagons) 3-function, B(as). The
results agree for 8 > 6.55. The plaquette values for N, = 8 and the values of
the non-perturbative S-function are taken from ref. [2].

the integral method evades them but at the cost of the assumption of homogene-
ity. For small volumes used in actual simulations, one may feel reassured by its
test in the form of agreement of results with other methods such as the differen-
tial method. Note that the expression for A/T* is identical for both the integral
method and the t-favoured scheme. It depends on the -function, B(as) in eq. (15).
A non-perturbatively determined S-function permits the integral method to lead to
fully non-perturbative EOS. However, one usually fits a phenomenological ansatz
to extract it from a range of couplings 6/¢g? with their associated systematic un-
certainties. The differential method could also employ such a g-function but for
internal consistency we require that both the Karsch coefficients and the B(ay)
should be obtained at the same order, i.e. at one-loop order in the present state of
art.

The two methods must agree if one uses sufficiently small lattice spacings, viz.
when the use of perturbative couplings is justified in the differential method com-
putation and on large enough volumes. A comparison between the values of A/T*
extracted for a given NN using the two approaches would reveal at what T the two
methods become close to each other. Using asymptotic scaling, one could also then
find the minimum value of N, required for the same level of agreement as a func-
tion of T'. Such a comparison is shown in figure 1, which demonstrates that a bare
coupling of 3 > 6.55 should suffice to give an agreement between the t-favoured
scheme and the integral method. For 8 < 6.55 use of one-loop order perturbative
Karsch coefficients may give rise to some systematic effects. A comparison with the
non-perturbatively determined Karsch coefficients [26,40] shows that the difference
between the perturbative and non-perturbative values are significant. For example,
while at around 8 = 6.55 the one-loop order perturbative and non-perturbative c;
differ by ~20%, around 3 = 6 this difference increases to ~80%.

In the present work we show that within the framework of differential method
it is possible to get a positive pressure for all temperatures if one uses the better
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operators of the t-favoured scheme. This is so in spite of the use of one-loop order
perturbative Karsch coefficients. However, the use of one-loop order perturbative
Karsch coefficients [3,33] may give some systematic effects if the lattice spacing is
not small enough.

3. Simulations and results

Our simulations have been performed using the Cabbibo—Marinari pseudo-heatbath
algorithm with Kennedy—Pendleton updating of three SU(2) subgroups on each
sweep. Plaquettes were measured on each sweep. For each simulation we discarded
around 5000 initial sweeps for thermalization. We found that the maximum value
for the integrated autocorrelation time for the plaquettes is about 12 sweeps for
the T'= 0 run at § = 6 and the minimum was 3 sweeps for the T' = 37T, run for
N, = 12. Table 1 lists the details of these runs. All errors were calculated by the
jack-knife method, where the length of each deleted block was chosen to be at least
six times the maximum integrated autocorrelation time of all the simulations used
for that calculation.

In ref. [41] it was shown that, at sufficiently high temperature, finite size effects
are under control if one chooses Ny = (T'/T.)N, + 2 for the asymmetric (N, x N3)
lattice. We have chosen the sizes of the lattices used at finite 7' based on this
investigation. Close to T, the most stringent constraint on allowed lattice sizes
comes from the AT screening mass determined in ref. [14]. Among the temperature
values we investigated, this screening mass is smallest at 1.257,, where it is a little
more than 27. The choice of Ny = 2N, + 2 satisfies this constraint sufficiently.
If future work pushes closer to T., then larger values of Ng need to be used in
view of the further decrease in the A] " screening mass. At T = 0 the constraints
are simpler because glueball masses are larger, and also smoother functions of (.
For the symmetric (N2) lattices we have chosen Ny = 22 as the minimum lattice
size and scaled this up with changes in the lattice spacing in accordance with the
analysis done in ref. [3].

We performed a — 0 (continuum) extrapolations by linear fits in a? o« 1/N2
at all temperatures using the three values N, = 8, 10, and 12. In figure 2a we
show our data on P/T* at finite lattice spacings and the continuum extrapolations
for different temperatures, both above and below T.. We draw attention to the
fact that the pressure is positive on each of the lattices we have used and also in
the a — 0 limit. It is an interesting piece of lattice physics, not relevant to the
continuum limit, that the slope of the continuum extrapolation changes sign at 7.
This is also true of the continuum extrapolation for €/7% as shown in figure 2b.
The extrapolation of both P/T* and €¢/T* between 1.1T, and 37T, are similar to
those shown and have therefore been left out of the figure to avoid clutter.

Similar continuum extrapolations are shown for Cy /T° and C? in the two panels
of figure 3. In all cases, the continuum extrapolations are smooth, and well-fitted
by a straight line in the range of N, used in this study. It is an interesting lattice
physics, as mentioned above, to see that also for Cy//T? the slope of the continuum
extrapolation flips sign at T,. This does not happen for C2. Since this is the
derivative of the energy density with respect to the pressure, the slope of this
quantity depends on the slopes of the continuum extrapolation of ¢/T* and P/T*.
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Table 1. The coupling (8), lattice sizes (N, x N2), statistics and symmetric
lattice sizes (N&) are given for each temperature. Statistics means number of
sweeps used for measurement of plaquettes after discarding for thermalization.

Asymmetric lattice Symmetric lattice
T/T. 16 Size Stat. Size Stat.
6.0000 8 x 182 1565000 224 253000
0.9 6.1300 10 x 223 725000 221 543000
6.2650 12 x 26° 504000 26* 256000
6.1250 8 x 183 1164000 221 253000
1.1 6.2750 10 x 223 547000 224 280000
6.4200 12 x 263 212000 26* 136000
6.2100 8 x 18° 1903000 224 301000
1.25 6.3600 10 x 223 877000 224 217000
6.5050 12 x 263 390000 26* 240000
6.3384 8 x 183 1868000 224 544000
1.5 6.5250 10 x 223 1333000 22* 605000
6.6500 12 x 26® 882000 26* 335000
6.5500 8 x 18° 2173000 224 534000
2.0 6.7500 10 x 223 1671000 224 971000
6.9000 12 x 263 1044000 26* 553000
6.9500 8 x 262 1300000 26* 433000
3.0 7.0500 10 x 32° 563000 32 148000
7.2000 12 x 38° 317000 38* 60000
25 6
(a) 0.9T, —F— Ideal Gas (b)
11T,
z Ideal Gas 3T, :g: ° ’ﬁ
15 4
< & < 0.9T, —F—
g £ 3 11T, —o—
1 3T, —e—
2
0.5 1 W
. s o
0 0 0.005 0.01 0.015 0.02 0 0 0.005 0.01 0.015 0.02
N2 1NZ

Figure 2. In (a) we show the dependence of P/T* on 1/N? for different
temperature values. In (b) we show the same for ¢/T*. The 1-o error bands
of the continuum extrapolations have been indicated by the lines.

The results of continuum extrapolations of our measurements are collected in
table 2. It is gratifying to note that the pressure and the entropy are not only
positive in the full temperature range, but also convex functions of T', as required
for thermodynamic stability.
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Figure 3. In (a) we show the dependence of Cv /T on 1/N? for different

values of temperature. In (b) we show the same for C2. The 1-o error bands

of the continuum extrapolations have been indicated by the lines.

Table 2. Continuum values of some quantities at all temperatures we have
explored. The numbers in brackets are the error on the least significant digit.
For the convenience of the readers here we also list the numerical values of
these quantities for an ideal gas — ¢/T* =~ 5.26, P/T* ~ 1.75, s/T° =~ 7.02,
Cyv/T? =~ 21.06 and C2 = 1/3. The value of the 't Hooft coupling g*>N. is
computed at the scale 27T using Tt /Agzg quoted in ref. [35].

T/T. g2 N, e/T* P/T* s/T? Cv/T? c?

0.9 11.5(3) 1.09(4)  0.14(1)  1.23(5) 8.0(5) 0.162(7)
1.1 10.4(2)  4.31(9)  0.49(1)  4.80(6) 26(2) 0.18(1)
1.25 9.8(2) 4.6(1) 0.82(2) 5.4(1) 25(1) 0.21(1)
1.5 9.0(1) 4.5(1) 1.06(4) 5.6(2) 22.8(7) 0.25(1)
2.0 8.1(1) 4.4(1) 1.26(4) 5.7(2) 17.9(7) 0.31(1)
3.0 7.0(1) 4.4(1) 1.37(3) 5.8(1) 17.9(8) 0.32(1)

In the various panels of figure 4 we show a comparison between the continuum
extrapolated results for different quantities obtained using the t-favoured scheme,
s-favoured scheme and the integral method. While the results of the t-favoured and
the s-favoured schemes are obtained from the analysis of our data, the results of
the integral method are taken from ref. [2].

First we note that unlike the s-favoured differential method, the t-favoured
scheme yields a positive pressure (figure 4a) at all T. There is apparent agree-
ment between the integral and the t-favoured operator method for T' > 27, both
differing from the ideal value by about 20%. Only at these temperatures the cou-
pling 3 becomes >6.55 for all the lattices (see table 1) that has been used to extract
the continuum extrapolated values in the t-favoured scheme. Hence, from our ear-
lier discussion it is clear that an agreement between the two methods is expected
to take place at these temperatures. There can be several causes for the difference
between these two methods closer to T,: (i) The use of one-loop order perturba-
tive Karsch coefficients in the t-favoured scheme is probably the primary cause for
this difference. Use of larger lattices (i.e. larger ) or inclusion of the effects of
higher-order loops in the Karsch coeflicients is expected to improve the agreement.
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Figure 4. We show comparisons between the continuum extrapolated re-
sults of different thermodynamic quantities for t-favoured scheme (boxes), the
s-favoured scheme (triangles) and the integral method (line). In (d) we show
the continuum extrapolated values of the conformal measure C (boxes). In (f)
we show a comparison between our continuum extrapolated results for Cv /T2
(open boxes) and that of 4¢/T* (filled boxes). The data for the integral method
has been taken from ref. [2].

(ii) Another possible source of disagreement is that the results for the integral
method shown here were obtained on coarser lattices [2] than the ones used in
this study. (iii) The integral method assumes that the pressure below some [y,
corresponding to some temperature T' < T, is zero. The pressure obtained using
the integral method can be changed by a temperature-independent constant by
changing (y. This may restore the agreement close to T, although in that case the
agreement at the high-T" region may get spoiled. (iv) Also different schemes have
been used to define the renormalized coupling in the two cases. This can also make
some contribution to the different results of the two methods.
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Correspondingly, the energy density is harder near T, showing a significantly
lessened tendency to bend down. This could indicate a difference in the latent heat
determined by the two methods. We shall return to this quantity in the future. The
entropy density is shown in figure 4c. Since this is a derived quantity (see eq. (5)),
it has similar features as those of P/T* and ¢/T*.

The generation of a scale and the consequent breaking of conformal invariance at
short distances, of the order of a, in QCD is, of course, quantified by the g-function
of QCD. It has been argued in ref. [3], that the conformal measure, C = A/e,
parametrizes the departure from the conformal invariance at the distance scale of
order 1/T. In figure 4d we plot C. It is clear that at high temperatures, 2-3T,
conformal invariance is better respected in the finite temperature effective long-
distance theory. Closer to T, conformal symmetry is badly broken even in the
thermal effective theory. This is consistent with the existence of many mass scales
in the theory as found in refs [14-16]. It is interesting to note that the t-favoured
scheme yields marginally smaller values of C than the integral method. Note also
the peak in C just above T¢; this is the reflection of a similar peak in A.

Figure 4e shows the continuum extrapolated results for C2. At temperatures of
2T, and above, the speed of sound is consistent with the ideal gas value within 95%
confidence limits. It is seen that C’S decreases dramatically near T.. Below T there
is again a rise in C2, the numerical values being 10% below and above T.. In future
we plan to explore in greater detail the region in between.

The behaviour of Cy /T2, shown in figure 4f, is the most interesting. At 27, and
above it disagrees strongly with the ideal gas value, but is quite consistent with
the prediction in conformal theories that Cy /T3 = 4¢/T*. Closer to T., however,
even this simplification vanishes. The specific heat peaks at T, consistent with the
observation of refs [12,42] that there is a light mode (the thermal scalar, called the
A7) in the vicinity of T.. Below T, the specific heat is very small.

In view of the rise in Cy /T3 near T., we studied the contributions of the terms
containing different covariances of the plaquettes. As can be seen from egs (27) and
(28), among all the terms containing covariances, the term (o + 0.y — 204,)/g*
will have the largest contribution to Cy/T3. All the other terms containing the

o

o
i
o

9 i P —8— A
<, 0-° #) 3 4
2 8 th s/T® + e/3T" ——
g 0.4 (# 7
= 6
% 03 ¢ . m o ®
Y o
P’. O
£, 02 0 4 -
H ¢ o st o
CE 2 b
(a) (b)
0 1
05 1 15 2 25 3 35 1 15 2 25 3 3.5
TITe T

Figure 5. In (a) we show the temperature dependence of the contribution of
one of the covariance terms in Cy/T?. In (b) we show individual contribution
of the two factors in eq. (18) for Cv//T*. See the text for a detailed discussion.
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covariances are multiplied either by one of the ¢}, or by B(as)/2ma? and hence
become at least one order of magnitude smaller than this term.

In figure 5a we show the contribution of the above term, as a function of T" in
the continuum limit. It peaks near T, consistent with the decrease of the A] ™"
screening mass mentioned earlier. Since the lattices that we used are significantly
larger than this correlation length, we are in the correct regime of volumes where the
central limit theorem holds for the fluctuations of the plaquettes. The contribution
of this term is very small: comparable to the errors in Cy. The origin of the peak
in Cy therefore lies elsewhere. In figure 5b we separately plot the two factors, e/ P
and s/T3+Te/3T*, in the expression for Cy in eq. (18). The factor s/T° +T'e/3T*
is smooth in the whole temperature range, and it is the first factor, ¢/ P, which has
a peak near T.. Rewriting this as 3/(1 — C), we can recognize that the peak in Cy
is related to that in A.

4. Discussion

In this paper we have proposed a modification, viz. the t-favoured scheme, of the
differential method for the computation of the QCD equation of state. We have
shown that this change gives positive pressure for all temperatures and N, used,
even when the older s-favoured differential method [22] gives negative pressure.
Note that this is so in spite of the use of the same one-loop order perturbative
values for the couplings in both cases. Using the t-favoured differential method and
by extrapolating to the a — 0 (continuum) limit we obtain the energy density and
pressure for a pure gluonic theory in the temperature range 0.9 < 7'/T. < 3. These
differ from their respective ideal gas values by about 20% at 3T, and by much more
as one approaches T.. On comparing our results with those of the integral method
[2], we found that ours are larger for T < 27T,. The primary reason behind this
disagreement seems to be our use of perturbative couplings. Hence the agreement
between the t-favoured scheme and the integral method is expected to improve by
going to larger temporal lattice sizes or equivalently to smaller lattice spacings.

We have also extended the t-favoured scheme to compute the continuum extrap-
olated results of the specific heat at constant volume and the speed of sound. We
found that Cy peaks near T, where, in addition, Cs becomes small. Our results are
collected together in table 2 and figure 4. The most robust quantity on the equation
of state in all lattice computations is A, and the most interesting (and also stable)
feature seen to date is the peak in A just above T.. Apart from influencing the
EOS, it manifests itself as a peak in Cy. Since Cy could be directly measurable
through energy or effective temperature fluctuations in heavy-ion collisions, under-
standing A should be one of the prime goals of theory. Unfortunately, it seems that
at present no tools other than lattice computations are available for this task. Even
models of this important and stable phenomenon are lacking.

In view of the fact the perturbation theory fails to reproduce the lattice data on
EOS, specially close to T, it is interesting to compare our t-favoured scheme results
with that of the perturbation theory. In figure 6a we compare the pressure obtained
in the t-favoured method with that from a dimensionally reduced theory, matched
with the 4-d theory perturbatively up to order g®In(1/g) [43]. Writing Psp for the
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Figure 6. In (a) we compare the pressures obtained by t-favoured method
(boxes), integral method (dotted line) and the ¢®In(1/g) order perturbative
expansion (solid line). The data for the integral method and the perturbative
expansion are taken from ref. [2] and ref. [43] respectively. The values of the
T/ Aszs in ref. [43] has been converted to T'/T. using T¢/Asg quoted in ref. [35].
In (b) we show the deviation of s/sg from 3/4 (boxes) as a function of the 't
Hooft coupling. We also show the prediction of eq. (1) (solid line).

ideal gas (Stefan—Boltzmann) value of the pressure, the ratio for P/Psp found in
the dimensionally reduced theory [43] has an undetermined adjustable constant,
c. The pressure determined through dimensional reduction agrees with our results
almost all the way down to T, for that value of the constant (¢ = 0.7) for which
it matches with the integral method in the high temperature range. In future it
would be interesting to check whether an equally good description is available in
this approach for the full entropy. This would be a non-trivial extension because
perturbation theory misses A completely. The question, therefore, addresses the
non-perturbative dynamics of the dimensionally reduced theory.

The strong coupling result in eq. (1) of ref. [17] can be compared with our data
on the entropy density, s/T3. This has to be done in an appropriate window of
T where the 't Hooft coupling g?N. is large and C is small. The strong coupling
series is an expansion in (gZNC)*l/ 2. For N = 4 SYM, the first term vanishes
due to a delicate cancellation and the series starts with the (g?N.)™3/2 term [17].
When some of the supersymmetry is broken, this cancellation need not occur and
the series could start with a term in (¢g2N.)~'/2. Needless to say, the theory we are
studying here, pure QCD, lacks supersymmetry. In figure 6b we show the deviation
of s/sy from 3/4 as a function of the 't Hooft coupling (s and g?N, are listed in
table 2). Also shown is the prediction of eq. (1). Comparison of our data with the
latter shows that the AdS/CFT based theory agrees with our data for >N, < 9,
or in other words for C < 0.3. As a partial summary of our results, we show the
equation of state in figure 7 in the form of a plot of P/T* against /T, useful for
hydrodynamics. In this plot, the ideal gas for fixed number of colours is represented
by a single point which is independent of 7', and theories with conformal symmetry
by the line ¢ = 3P. Pure gauge QCD lies close to the conformal line at high
temperature, as shown, but deviates strongly near T..

The slope of the wedges piercing the ellipses indicates the speed of sound — when
these are parallel to the conformal line then C2 = 1/3. This is clearly the case at
high temperature. However, there is an increasing flattening of the axis, denoting
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Figure 7. The equation of state of QCD matter. The diagonal line denotes
possible EOS for theories with conformal symmetry. The circle on the di-
agonal denotes the ideal gluon gas, whose EOS in this form is temperature-
independent. The ellipses denote 66% error bounds on the measured EOS (see
ref. [44]). The ratio of the axes is a measure of the covariance in the mea-
surements of ¢/T* and P/T*. The wedges piercing these ellipses have average
slope C2, and the opening half-angle of these wedges indicate the error in C2.

a drop in C? as one approaches T.. Note that the slope of the curve joining the
middle points of the ellipses does not give C2, since the plot is of ¢/T* against
P/T*. In a plot of € against P, it would have been correct to assume that the slope
gives C2.

Two other physically important effects can be read off the figure. First, the
softening of the equation of state just above T, is shown by the rapid drop in
pressure at roughly constant €/7%. Second, a large latent heat is indicated by the
jump between the last two points, at almost the same pressure but very different
energy densities.

A final piece of physics can be deduced from the fact that the low temperature
phase shows a very small P/T* at a significantly large value of ¢/T* > 1 just below
T.. This is an indication that there are very massive modes in the hadron gas which
contribute large amounts to € without contributing to P. The small value of Cy /T
at the same T also indicates that the energy required to excite the next state is
rather large. We have mentioned already that the observations just above T, are
compatible with the known spectrum of excitations in pure gauge QCD [14].

Appendix A: Discussion on the Karsch coefficients

The Karsch coefficients (¢;) are differences between the anisotropic and isotropic
lattice couplings and hence do not depend on the scale a of the isotropic lattice, but
only on the anisotropic parameter £&. One can see this directly from the derivations
in ref. [33], where these have been evaluated up to one-loop order in the perturbation
theory. For any arbitrary & # 1, all integrals contributing in the effective action
Sett(a, ), mentioned in eq. (2.22) of ref. [33], are independent of the scale a. The
dependence of a are only encoded implicitly in the couplings g; %(a,&). Hence
Set(a, &) of eq. (2.22) of ref. [33] is equally valid for a = a,. The values of the Karsch
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coefficients have been evaluated by imposing the condition ASegx = Ser(a,§) —
Seft(a, 1) = 0, which is again independent of the scale a. Hence the one-loop order
Karsch coefficients for both a = as (s-favoured scheme) and a = a, (t-favoured
scheme) are the same.

Nevertheless, we derive this equality explicitly in the following. Let us assume
that the one-loop order perturbative expansions for g?’s, around the isotropic lattice
coupling g, have the following forms:

9; *(as,€) = g% (as) + ci(§) + Olg*(as)]
and
9; *(ar,€) = g7 (ar) + ai(€) + Olg*(a-)). (A1)

Our claim is that [0c;(§)/9€], = [0ai(§)/0§], . In order to prove it we make a
Taylor series expansion of g;(as, &) around as = a,, at any fixed £ # 1

= s — Wr " an '72 5
gﬂas@):gﬁ(aﬂaﬁjl(“ ) [ 9l g)u (a2

A ¢ derivative at constant as, on eq. (A.2) yields

99, *(as, §)|  _ 99, °(ar,8)
o] o o€ .
o~ nag 1" 97,2 (ar,€)
+;n!§2 (1_5) ML
00 a? 1\" 9 angi—z(aﬂg)
+n2=:1”!<1€) o€ [ML] k (A.3)

While [9g(as)/0€],. = 0, [9g(ar)/0¢],. = [99(as/€)/0€],. # 0, from eq. (A1) it
follows that

89;2(04775) _ 8972(047') + aaz(g)
I T AT
_ 0 — (ar —as)" 0"g2(ay) Do (€)
= 87§ [g (as) + nz::l nl 8&2 ] + 785 .
 o=ma? (1 "0 (ay) | 9u(§)
= _ Z nie? <§ - 1> dar + ot |, (A.4)

n=1

Substituting eq. (A.4) in eq. (A.3) and using relations in eq. (A.1) to calculate the
various derivatives, one obtains

dc; (€) B > nal (1 n=t omg=2%(as)  Oa;(§)
o |, =2 e (5_1) day o

as as
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o~ nay (1 1\ 9" R (er)
"2 e (-3) "=

n=1 3
= a 1\" 0 [0"g %(a,)

=l1-=] = |—/———= . A5
+; nl ( g) o€ [ dar |, (A.5)

Finally, taking the £ — 1 limit, i.e. setting as = a,, one has

dei(§) 9ai ()

— A6
o6 |, 9 |, (4.6)

A variable transformation from {as, &} to {a,, &} gives £(9/9¢)

o, = £(0/0€),, —
ar(0/0az),. Using it in eq. (A.6) one conclusively proves that

9ei(§) | _ 904(§)
o |, = o . (A7)
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