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Abstract. I review some topics in lattice quantum chromodynamics, focusing more on the recent
results. These include: (i) the QCD phase diagram in theµ–T plane, (ii) the quark number suscepti-
bilities, and (iii) the screening lengths.
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1. Introduction

Most of us at this QCD workshop are aware of the role of the lattice techniques as the
only successful tool to extract non-perturbative physics from the theory. Nevertheless, its
first principles and (essentially) parameter-free approach is worth emphasizing again in
view of the inevitable comparison one makes with the results from other approaches and
models. Thus not only does lattice QCD lead us to the phenomenon of quark confinement
and spontaneous breaking of chiral symmetry (or why pion is so light) but it also provides
us with a quantitative understanding of the spectrum of hadrons and their other properties.
Indeed, any experimental demonstration of a failure of a prediction of lattice QCD, such as
the transition to quark–gluon plasma, will betantamount to one of the best experimental
evidence for physics beyond the standard model.

For reasons of both time and interest, I have chosen to limit this review to some se-
lected topics. I will begin with a lightning quick overview of the basic lattice gauge theory
and then go on to discuss the recent results on the QCD phase diagram, quark number
susceptibility and the screening lengths. A short summary is provided at the end.

2. Basic lattice gauge theory

The quark fields,ψ�x�, and the antiquark fields̄ψ�x� are associated with a sitex �
�x1�x2�x3�x4� of a four-dimensional hypercubic lattice. The (inverse) lattice spacinga
acts as the ultraviolet cut-off. Continuum limit of vanishinga corresponds to removal
of the cut-off. As in the case of the continuum field theory, one obtains a lattice gauge
theory by demanding invariance of the Lagrangian for free quark–antiquarks (e.g. ob-
tained by a straightforward discretization of the usual Dirac Lagrangian) under anylocal
phase rotation of these fields. This can be accomplished by introducing lattice gauge fields
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U µ
x �Uµ�x� which are associated with a directed link from the sitex to x� µ̂a. A simple

gauge invariant quark action thus is,

SF �
4

∑
x�µ�1

ψ̄�x�γµ
U µ

x ψ�x� µ̂a��U µ†
x�µ̂aψ�x� µ̂a�

2
�ma ∑

x
ψ̄�x�ψ�x�� (1)

where the gauge transformations are defined by

ψ��x� �V �x�ψ�x�� ψ̄��x� � ψ̄�x�V †�x�� U �µ
x �V �x�U µ

x V †�x� µ̂a� (2)

andU µ
x � SU�3�, V �x� � SU�3�. From the gauge transformations of theU µ

x -fields, one can
see that the simplest gauge invariant action for these fields is given by

SG �
6
g2 ∑

P

�
1�

1
3

Re trUp

�
� (3)

HereUp �U µ
x Uν

x�µ̂aU µ†
x�ν̂aUν†

x , called plaquette, is the smallest closed loop of the directed
gauge links in the�µ �ν� plane at sitex. The sum overP runs over all possible plaque-
ttesP on the lattice. DefiningU µ

x � exp�iga∑8
b�1Ab

µ�x� aµ̂�2�T b�, whereAb
µ�x� is the

continuum gauge field inbth colour direction andµ th space direction, andT b is the corre-
sponding adjoint matrix forbth colour, one can easily show that in the limit ofa� 0, eqs
(1) and (3) reduce to the usual continuum quark and gauge actions respectively.

Defining a partition function� for these fields, which are complicated versions of the
familiar Ising spins,

� �

�
∏
x�µ̂

dUµ�x�∏
x

dψ�x� dψ̄�x�e�SG�SF

�

�
∏
x�µ̂

∏
f

det M�ams�aµ�e�SG � (4)

whereM is the Dirac matrix inx, colour, spin, flavour space for fermions of massams and
aµ is the chemical potential (in lattice units). One can compute quantum expectation values
of any physical observableΘ, which may contain fermion propagators of massm , as
averages with respect to the� above. Thus, masses of physical particles are obtained from
the exponential decays of appropriatecorrelation functions. TakingΘ�x� � ψ̄�x�Γψ�x�,
where the choice of the matrixΓ in the spin and flavour space decides whether it is aπ-
meson correlator or aρ-meson correlator, one can compute the correlation functionC�t�
as

C�t� �� �1
�

∏
x�µ̂

dU µ
x ∏

x
dψ�x� dψ̄�x�∏

f

detMf e
�SGΘ�t�Θ�0�� (5)

with Θ�t� � ∑�x Θ��x� t�. As t � ∞, C�t�� Aexp��mt�, yielding thus the lowest mass with
quantum numbers ofΘ. Its decay constant can be obtained from the coefficientA.

The Monte Carlo technique to evaluateC�t�, or the expectation value of any other
observable, consists of (1) generating a set of links�U µ

x � for the whole lattice as
large as possible, such that each set of�U µ

x � occurs with a probability proportional to
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∏ f detMf �exp��SG��U
µ
x ��� and (2) evaluatingC�t� for each configuration�U µ

x � and tak-
ing its average over all the configurations in the set.

A first hurdle in carrying out this program comes in the form of the fermion doubling
problem. It turns out that a single flavour of quark on the lattice becomes equivalent to 16
�� 2d� flavours in the continuum limit,a� 0, if one insists on having reasonable properties
for SF in eq. (1), such as (i) locality (discretizing the derivative using only few terms like
two in eq. (1), (ii) chiral symmetry (γ5 anticommutes with the lattice Dirac operator) and
(iii) real Hamiltonian. The two popular solutions, which are used in the results presented
below, are (i) Wilson fermions, which breakall chiral symmetries on the lattice but have a
one-to-one correspondenceof flavours on the lattice and in the continuum and (ii) staggered
or Kogut–Susskind fermions, which have an exactU�1� chiral symmetry on the lattice but
broken flavour symmetry. Furthermore, even the restored flavour symmetry in thea � 0
limit for the latter is well-defined for four light flavours only. Recently, overlap fermions
with exact chiral and flavour symmetry have also been used but these are computationally
too difficult to handle. First results using them have provided resolution of an outstanding
puzzle [1], details of which I will be unable to cover here. One hopes to have more and
more interesting results from them soon.

The second hurdle relates to the enormity of the computational task if one wishes to gen-
erate the set of�U µ

x � for full QCD, i.e., for a theory with all virtual quark loops included.
Let us assume that the lattice hasNs sites in each of the space directions andNt in time
directions. UsuallyNt 	 Ns for a zero temperature propagator calculation, whileNt 
 Ns
for a finite temperature calculation. The temperatureT � 1��Nta� and the spatial volume
of the latticeV � L3 � N3

s a3. The continuum limit corresponds to making the lattice finer
by reducinga, and thus correspondingly making the lattice sizeN3

s �Nt bigger so thatT
andL are held constant in physical units. The current best algorithm, called the HMC algo-
rithm, to generate a configuration of�U µ

x � for full QCD needs computer time which scales
asV 5�4 and�msea

q �a��5�2. Thus it increases rapidly as the sea quark mass is lowered and/or
continuum limit is approached. The possible solutions, in increasing order of severity of
approximations but decreasing order of computer time, are (i) full QCD simulations on
smaller lattices, (ii) partially quenched QCD simulations withamsealarge and greater than
amvalenceand (iii) quenched QCD simulations withamsea� ∞ (i.e. no dynamical quarks).
The early lattice results and today’s best results are obtained in the quenched approxima-
tion. Indeed, one has now begun to answer quantitatively the question as to how good the
approximation itself is.

3. The phase diagram

The lines of phase transitions in the phase diagram for QCD are obtained by investigating
the order parameters, the chiral condensate�ψ̄ψ
 and the average Polyakov loop. The
former is a measure of the effective mass ofquarks generated by interactions, whereas
the latter,�L
, with L��x� � 1

3 ∏Nt
t�1 tr U4��x� t�, is thought to be a measure of the free en-

ergy of a static quark. Varying the couplingβ � 6�g2 in eqs (3) and (4), one varies the
lattice spacing, and thus the temperature. From the temperature dependence of the order
parameters, one can infer about the nature and the location of the phase transition, if any.
These depend on the number of light flavours. Theoretical expectations based on effective
models exploiting only the symmetries of the Lagrangian have lead to a phase diagram
depicted in the left panel of figure 1. Varying the quark masses along its axes one goes
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Figure 1. Theoretical expectations and simulation results for QCD phase diagram.

over to different number of flavours. As seen in figure 1, the chiral phase transition for two
massless flavours is expected to be of second order while for massless three flavours, it is
first. Consequently, finite masses should weaken (wash out) the transition forNf � 3�2�.
A lot of work has been done over the past years to explore this phase diagram numerically.
The good news from these results (on smallNt lattices ) so far is:

� Transition temperature for two light dynamical quarks agree for Wilson quarks
(171(4) MeV [2]) and staggered quarks (173(8) MeV [3]).

� Transition seems to be continuous in both cases.
� Transition temperature for three light flavours: 154� 8 MeV [3].
� Theoretical expectations on the phase diagram, shown in figure 1 (left panel), work

out too. This is seen in the right panel which shows simulation results on the lower
left corner of the expected phase diagram. Taken from [4], it shows the results of the
Bielefeld group with those of Columbia and JLQCD and emphasizes this agreement
with the theoretical expectations.

The bad news, however, is that the critical exponents do not match for the two types of
quarks: one obtainsO�4�-like exponents for only Wilson quarks whereas no stable expo-
nents seem to emerge from the staggered quark simulations. Thus the order of the phase
transition isnot yet established firmly. The possible causes of this crucial discrepancy
could be (i) the fermion symmetry problem, (ii) too small lattices etc. One may wonder
what effect the realisticmu �� md may have on the above. Recent results [5] show that
for 1� md�mu � 2, the transition stays put. Figure 2 displays the order parameters on an
83�4 lattice for simulations withmd�mu � 1 (dashed), 2 (full) and 10 (dotted). The nature
of the curves seems to remain roughly the same, with a significant shift in the location of
transition only formd�mu � 10.

3.1Non-zero baryonic density (µB �� 0)

Lattice QCD at non-zero baryon density may help us in understanding, or even deriving,
an interesting physical phenomena, namely, colour superconductivity, which may find ap-
plications in the astrophysics of strange quark stars. From a theoretical viewpoint, it is, of
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Figure 2. Effect of isospin breaking on the order parameters�ψ̄ψ� and�L�.

Figure 3. µB–T phase diagram for QCD.

course, crucial in completing theµB–T phase diagram of QCD. Both the numerical and
the analytical methods used at finite temperature are inadequate in this case due to the fact
that the fermionic determinant detM�µ� is complex forµ �� 0, commonly referred to as
the sign (or the phase) problem. There have been some new exciting developments in the
recent past for smallµ . Most earlier attempts comprised of exploring first the zero temper-
ature axis, where the problem is hardest. Recognizing this, the latest strategy has been to
work for smallµ in the vicinity of the quark–hadron transition, and study its behaviour as
µ is turned on. Various methods [6], such as the re-weighting method, a Taylor expansion
in µ , analytic continuation from imaginaryµ , have lead to similar results, shown in figure
3 for the re-weighting method.

Using smallN3
s �4 lattices, withNs � 4, 6, 8 and somewhat heavyu, d quarks, a critical

end-point was found atT � 160�4� MeV, µ � 725�35� MeV. Increasingµ further led to
a first-order phase transition line shown by the thick line in figure 3. Note the very mild
temperature dependence in figure 3. A simple extrapolation toT � 0 suggests a huge value
for the criticalµ there which is in sharp contrast with various naive models and expecta-
tions unless the transition line exhibits a sharp bend at higherµ . One hopes to see in future
results for largerNt and thus free of lattice artifacts. Another interesting issue for RHIC
physics may be the possible shift of the end-point asmud is decreased to realistic values.
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Figure 4. Quark number susceptibility from numerical simulations (left) and pertur-
bation theory (right).

The Taylor expansion method needs quark number susceptibilities explicitly which is the
subject of our next section in view of its independent physical and theoretical relevance.

4. Quark number susceptibility

Quark number susceptibilities are crucial for some signatures of quark–gluon plasma such
as fluctuations of charge and/or baryon number, and production of strangeness. Their
additional theoretical importance is due to the check they provide on resummed pertur-
bation expansions. Definingµ f as the chemical potential for a flavourf � u�d�s and
µ0 � µu�µd �µs andµ3 � µu�µd as baryon and isospin chemical potentials, the respec-
tive density and susceptibility can be obtained from eq. (4) as:

ni �
T
V

∂ ln�
∂ µi

� χi j �
T
V

∂2 ln�
∂ µi∂ µ j

� (6)

Settingµ f = 0 after taking the derivatives,n f � 0 butχi j are non-trivial. The diagonal
χs are found [7] to be

χ0 �
1
2��1�mu��

1
2�2�mu��� (7)

χ3 �
1
2�1�mu�� (8)

χs �
1
4��1�ms��

1
4�2�ms��� (9)

Here�i are trace of products ofM�1, M� andM�� and are estimated by a stochastic method:
Tr A � ∑Nv

i�1 R†
i ARi�2Nv, and�Tr A�2 � 2∑L

i� j�1�Tr A�i�Tr A� j�L�L� 1�, whereRi is a
complex vector from a set ofNv, subdivided inL independent sets. Further details can be
found in [7]. Earlier results concentrated onT close toTc and fixed lattice quark massma.
Recognizing their roles mentioned above, we simulated [7] both quenched and full QCD
for fixed physical quark masses and at a much larger temperature range. Denoting byχFFT
the ideal gas results for the same sized lattice, the ratioχ�χFFT is exhibited in figure 4. The
data points show the results for valence quark masses between 0.1Tc andTc for full QCD
with two dynamical quarks of mass 0.1Tc. The continuous curves are for quenched QCD
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Figure 5. Comparison of lattice results with resummed, HTL and NL, perturbation
theory for quenched QCD (left) and full QCD (right).

with the rest remaining the same. Using the range of strange quark mass from the particle
data tables, one obtainsmstrange

�Tc� 0.3–0.7 (Nf � 0) and 0.45–1.0 (Nf � 2). The shaded
region in figure 4 shows the range of strange quark susceptibility thus obtained. It is worth
emphasizing here that the effect of removing the quenched approximation are at a level of
few (� 5) per cent althoughTc, which sets the scale, differs by almost a factor two.

At sufficiently high temperatures, one can compute these susceptibilities from
the usual weak coupling expansion which yields [8],χ�χFFT � 1 � 2�αs�π� �
8
�

�1�0�167Nf ��αs�π�3�2. This leads to the predictions that (i) its minimum value is
0.981(0.986) at a couplingαs� 0�03(0.02) forNf � 0(2) and (ii) in the range 1�5� T�Tc�
3 the susceptibility is 0.99–0.98 (1.08–1.03) forNf � 0(2). The latter seems to be at odd
with the Monte Carlo results both qualitatively and quantitatively as can be seen in figure
4. Indeed the temperatures where the minimum is reached are also much higher than 3Tc
and thus inaccessible to even the planned future heavy ion experiments.

The discrepancy with the straightforward perturbation theory is similar to what was
found in other thermodynamicalquantities such as the pressure or entropy. Various
schemes to resum the perturbation series have been advocated in those cases to explain
the lattice results. The results above for susceptibilities provide a good testing ground for
these schemes, since a good scheme should predict the removal of the discrepancy above.

Figure 5 compares the simulation results with two, the HTL and the improved NL
schemes, details of which can be found in [9]. One sees that the discrepancy still per-
sists for the more precise quenched QCD results (left panel). One possible explanation is,
of course, that our results forNt � 4 have strong lattice artifacts. We therefore went ahead
to check them for largerNt and improved actions. Another even more glaring discrepancy
was found in our results for theoff-diagonal susceptibility,χud. It was seen in the simula-
tions to be compatible with zero within 1�σ � O�10�6� for T � Tc. It is identically zero
for an ideal gas butO�α 3

s � in perturbation theory, and is thus expected to be two orders
larger:χud � O�10�4�!!

In a recent work [10], we attempted the task of taking the continuum limit by investi-
gating largerNt: 6, 8, 10, 12 and 14 and by employing the Naik action. It is improved by
O�a� compared to the staggered action. Introduction ofµ is non-trivial for it but can be
done [11].

The left panel of figure 6 displays the improvement due to the change of action for
ideal quark gas. The continuum limita � 0, which at fixed temperature is equivalent to

Pramana – J. Phys., Vol. 61, No. 5, November 2003 895



Rajiv V Gavai

0

0.5

1

1.5

2

2.5

2 4 6 8 10 12 14

χ/
Τ2

Nt

Aspect ratio 3

naive 
naik

p4

0.8

1

1.2

1.4

1.6

1.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

 /T
2

χ 3

1/N  t
2

Figure 6. Comparison of ideal gas results for different fermion actions (left) and ex-
trapolation of results for quenched QCD at 2Tc (right).

0.6

0.7

0.8

0.9

1.0

1 2 3

χ 
 /Τ

2
3

T/Tc

NL

HTL

Figure 7. Quark number susceptibility in continuumquenched QCD as a function of
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taking Nt � ∞, is approached much faster for the improved action, thus permitting one
to use smaller lattices for the latter. Note, however, that discretization errors are present
in all cases, and thus extrapolation is required for each of them. The advantage of the
improved action is in a smoother limiting function for smallerNt. The right panel shows
the extrapolation of quenched QCD results for quark number susceptibility at 2Tc for the
staggered (top set) and Naik action (middle set). In the former case, extrapolation for
χ�χFFT (bottom set) is also shown. The unique limit in all cases within errors is a signal
of the result being the true continuum limit. Both fermion actions lead to anN�2

t � a2

behaviour, which is a lot milder for the Naik fermions.
Carrying out this process at other temperatures as well, the continuum susceptibility can

be extracted as a function ofT . The results of [10] for it in the quenched approximation
are displayed in figure 7 along with the HTL and NL perturbation theory results. A broad
agreement is seen within the errors although the leading order (HTL) results seem to be in
better agreement than the next-to-leading order (NL), which is somewhat counter-intuitive.
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From these continuum results one can extract many quantities of interest for heavy-ion
collisions. The primary amongst them is theWroblewski parameter. Defined as the ratio
of the strange particles and the non-strange particles produced in a collision, it has been
studied widely as a measure of the strangeness production. Interestingly, most heavy-ion
collision data seems to yield a factor two higher value for it than other hadronic collisions.
Using the quark number susceptibilities, and under certain assumptions [12], one can ob-
tainλs�Tc� � 2χs��χu�χd�� 0�4–0.5 [10] which compares remarkably well with its latest
RHIC value 0�47�0�4. While the puzzle of the lattice results with respect to the resummed
perturbation theory, seen in figure 5, got resolved significantly by going to the limit of van-
ishing lattice spacing, seen in figure 7, the huge discrepancy forχud seems to persist even
in that limit. In particular, it behaves the same way forall Nt and both fermions, leading
to the sameO�10�6� values in continuum too. Solving this mystery would enhance our
understanding of the plasma phase further.

5. Screening lengths

A possible explanation for the discrepancies discussed in the previous section is the role
of non-perturbative physics which may be seen in various screening lengths. These are
obtained from the exponential decay of the correlation functions in a manner analogous
to the statistical mechanics. For an operatorψ̄Γψ created at origin and destroyed at
�x�y�z� t�, the correlation function in terms of the quark propagator with the source at origin,
M�1�x�y�z� t;0�0�0�0�, is:

CΓ�z� � ∑
x�y�t
�M�1

αβ �x�y�z� t;0�0�0�0�ΓM†�1
βα �0�0�0�0;x�y�z� t�Γ
� (10)

Here Γ stands for the spin-flavour matrix depending upon the quantum number of the
mesonic channel andα , β are colour indices. From previous investigations [13] of the
screening lengths it is known that the quark–gluon phase aboveTc has chiral symmetry
restored with parity partners being degenerate. Moreover, all the screening lengths except
that for pion (and its scalar partner) are found to be close to their free field values. These
results lead to scenarios of interacting pions in the quark–gluon phase. Figure 8 has in its
left panel the behaviour ofχ3�T 2 (open symbols) andχπ�10T2 (filled) as a function of
the pion screening length. The latter was obtained [7] by summing its correlation function
defined above over the entire lattice. The simulations were done onNt � 4 lattices with
Nz � 16 at 2Tc (lower set) and 3Tc. Their similar behaviour suggests that both could have
perhaps the same non-perturbative effect. This is understood easily when one notes thatχ3
is also a sum of a propagator of non-local vector meson.

Taking continuum limit is therefore again interesting in view of the change seen inχ3
in this limit. Indeed, the right panel of figure 8 demonstrates that on finer lattices,a �
1�8T �1�12T , even the pion screening length becomes degenerate with those ofρ, i.e.,
is also close to the corresponding FFT value!These results were obtained on lattices up
to 48� 262 at 2Tc using a quark massmv�Tc � 0�03. Does it then imply the absence of
any non-perturbative physics? In order to answer that, one needs to note that the chiral
condensate,�ψ̄ψ
 differs from FFT by 2, as do the detailed shapes of the correlators.
Figure 9 displays the results for the pseudoscalar (circles) and vector correlators (pluses)
along with the corresponding free field results (bold continuous lines). It may be noted
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that thesame fit with only changed normalization is shown for both sets of data. Thus, the
(leading) screening lengths in both channels are seen to be close to each other.

6. Summary

One of the major developments of the recent past in lattice QCD is the firming up of
the QCD phase diagram inµ–T plane on smallNt. Different fermions (staggered and
Wilson), different methods of simulations for non-zeroµ , all lead to good agreement on
the qualitative as well as the quantitative aspects. All estimates ofTc, and�TE �µE� are
mutually consistent.

Various physical quantities have been obtained in the continuum limit in the quenched
approximation to QCD. These include the quark number susceptibilities which are directly
relevant to the physics of quark–gluon plasma signals at RHIC. The quenched lattice QCD
estimate of Wroblewski parameter,λs, which is a measure of strangeness production in
heavy-ion collision experiments, is in excellent agreement with the RHIC and SPS results.
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The susceptibilities also provide a test-bed for resummations of perturbation series. The
continuum results in quenched QCD show that there is scope for improvement in the re-
summation schemes. The pion screening length approaches its free field value, and is close
to that forρ, in the continuum limit ofNt � ∞ for quenched QCD.

Many questions still remain for full QCD with two light and one moderately heavy
quark corresponding to real world. The orderof the transition, continuum limit of physical
quantities etc. are all awaiting to be resolved and settled.
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