
PHYSICAL REVIE% 8 VOLUME 26, NUMBER 2 15 JULY 1982

Surface-enhanced second-harmonic generation at a metallic grating
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The theory of surface-enhanced second-harmonic generation at a metallic grating is
developed. Using the form of the nonlinear source polarization given by Bloembergen
et al. [Phys. Rev. 174, 813 (1968)],we solve Maxwell's equations to obtain the fields at
the second-harmonic frequency. The calculations are done up to second order in the
surface-roughness parameter. These perturbation expressions are used to evaluate numer-
ically the second-harmonic intensity, in various directions, produced by a plane wave in-
cident on a metallic grating. The resonant enhancement in the second-harmonic intensity
due to surface-plasmon excitation at fundamental frequency u is discussed and the results
compared with some recent experimental observations. The second-harmonic fields are
also shown to get enhancement due to excitation of surface plasmons at 2',' these, how-
ever, correspond to local-field enhancements at 2' and are evanescent in nature.

I. INTRODUCTION

The optical second-harmonic generation (SHG)
at a metal surface' and the nonlinear interaction
of prism-coupled optical surface waves excited on
a plane metallic surface have been studied for a
long time. With the experimental observation of
the enhanced Raman cross sections for molecules
adsorbed on a rough metal surface like Ag, there
has been a revival of interest in investigating such
enhancements for other processes in general, and
SHG in particular. In the processes involving
only the metal, such an enhancement is due to the
resonant excitation of surface-plasmon polaritons
(SPP) in the metal substrate ' and the consequent
field enhancement at the appropriate frequency.

Chen et al. were the first to observe enhanced
SHG from silver particles on a rough silver surface
due to the local-field enhancement by a factor of
about 20 at the fundamental frequency. Although
our recent theory for SHG involving SPP excita-
tions in small metallic spheres is consistent with
these results, a detailed numerical comparison has
not been possible because of the relatively complex
substrate used in the experiment. More recently,
Wokaun et a/. have been able to correlate their ob-
servations of surface-enhanced second-harmonic
generation (SEHG) on silver and gold island films
and regular arrays of silver particles with the cor-
responding observations of the surface-enhanced

Raman scattering (SERS).
Keeping in view the importance of the role

played by well-characterized metallic grating ex-
periments of Tsang et al. in the study of SERS, in
this paper we address ourselves to the calculation
of optical harmonic fields generated at a metallic
grating. Although, the theory is first developed
for an arbitrary surface, only the case of a
sinusoidal grating with two-dimensional wave vec-

tor g (in the xy plane) and amplitude g«X j2 (the
wavelength of the second-harmonic wave) is con-
sidered explicitly. These results are correct to or-
der g IA, and may be generalized, if necessary, to
a statistically rough surface. The enhancement in
the second-harmonic intensity arises from the
resonant excitation of SPP either at the incident
frequency to or at the second-harmonic frequency
2'. To show the nature of the resonances in de-
tail, numerical results for SH intensity as functions
of the incident angle 0 are presented for the typical
case of Ag.

In Sec. II of this paper, we present the
mathematical formulation of the problem at hand
for a general metal surface defined by the func-
tional equation f(x,y, z) =0. The metal occupies
the domain f& 0, and the fundamental wave of
frequency co and wave vector

ko ——(Pc, [(to jc ) —tc ]'iz )
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is incident from the region f&0. Here K is the
wave vector in the xy plane, with

form perturbation theory is discussed in Appen-
dixes A, 8, and C.

We later specialize to the special case of a small-

amplitude sinusoidal grating of wave vector g,
with

f=z+gsingy=0 .

To order g, the second-harmonic (SH) field is
calculated in Sec. III. In the vacuum (domain

f&0), the possible parallel wave vectors (in the xy
plane} of the SH field are 2K, 2K+ g, and 2K+2g,
which arise from the bilinear combinations of the
fundamental frequency field with parallel wave
vectors ~, ~+ g, and x+2g. The equations giving
the SH fields with parallel wave vectors 2K, 2K+ g,
and 2K+2g are formulated.

In Sec. IV, the SH intensity is calculated expli-
citly in the directions Qii+, with the parallel wave
vectors 2~+ g, and the corresponding normal wave
vectors [4co /c —(2K+ g ) ]' . For K parallel to
g, this is equivalent to the directions given by re-
flection angles Hii+, with

tan8&+ ——(sin9+gc /2co )

X {[1—(sin0+gc/2co) ]'~ j

The p components of the second-harmonic fields

are shown to contain two resonant denominators

~

K + g ~

z (coz lc z
) {E—(co)/[e(co) ~ 1]j

and

i
2K+ g i

—(4co /c ){e(2co)/[e(2co)~1]j .

The resonant enhancement of SH radiation is due
to the vanishing of the denominator

Ky —(co /c ){E(co)/[E(co)+1]j, 'K~ =K+ g

for certain directions of incidence and the direction
and the magnitude of the periodicity of the grat-
ing. Numerical results for such enhancements are
presented for a fixed co but for different directions
of incidence of the field at fundamental frequency.
In Sec. V, we consider the other important case of
SHG in the primary direction of reflection, i.e., in
the direction determined by the reflection angle

Oq ——8, the incident angle. Surface-plasmon excita-
tion both at co and 2' leads to dispersionlike reso-
nances in the intensity as a function of incident an-

gle. Relevant background material needed to per-

II. NONLINEAR SOURCE POLARIZATION
AND BASIC FIELD EQUATIONS

It is well known from the work of Bloembergen
et al. that an electromagnetic field at ~, when in-

cident on a metallic medium, leads to a nonlinear ~'

polarization at 2':
PN~( r, 2co) =yV [E ( r, co)]y pE( r, co) V E( r, co) .

(2 2)

(2.3}

where E'+' and E' ' represent, respectively, the
fields inside and outside the medium. From (2.3),
V E can be calculated to be

V.E( r,co)=( V E'+'}i)(f)+( V' E' ')r)( f)—
~E'+'Vg(f)gE' 'Vi)( f)—

since each of the fields E-+ is transverse. Introduc-
ing the unit normal n to the surface f=0 by

n= —Vf/~ V f ~,
we can rewrite (2.4) as

(2.5)

V.E(r,co)=
~
Vf ~&(f)(n E' ' —n E'+')f=o.

(2.6}
On using the continuity of the normal component
of electric induction, (2.6) finally reduces to

(2.1)

The general form of the parameters y and P are
known in the literature. ' In the special case when

the contribution of valence electrons is negligible,
then these are related to the conduction-electron
mass m and charge e by

P= 2, y=e[1 —e(2co)]/8mmco
87TPl N

Here e(2co) is the dielectric function of the metal
at 2co. The special form (2.2) is not used until we
do numerical work in Secs. IV and V. In (2.1) E is
the field at the fundamental frequency. Having
the form of the source polarization, one can derive
the equations for the field at 2co. Let the metal
surface be defined by f(x,y,z) =0 and let us as-
sume that the medium occupies the domain

f(x,y,z) & 0; the region f(x,y, z) &0 is the vacuum
region. The field distribution at co will have the
form (q representing the step function)

E( r, co) =E'+'( r, co)r)(f) yE' '( r, co)i)( f), —
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V.E( r, co) =
J
Vf J

5(f)( n E'+')f—Q[E(co) —1] .

(2.7)

Thus the second term in (2.1) represents the sur-
face polarization and the first term is the volume
contribution to nonlinear polarization. Following
Bloembergen et al. one can now obtain the equa-
tions for the electric field for a medium occupying
an arbitrary domain:

4'
V X V XE( r, 2') — e(2')E( r, 2')

c2

16
2 V[E ( r, co)], f&0 (2.8)

c

2

V X V X E( r, 2') — E ( r, 2co) =0, f&(j .

(2.9)

n XE( r, 2')
J

+ =0, (2.10)

and (ii) the magnetic field boundary condition,
which depends on the presence of sources at sur-

face, leads to

In view of the form of the surface polarization the
boundary conditions are found to be (i) tangential
E ( r, 2') should be continuous across f=0, i.e.,
n X E ( r, 2') continuous across f=0,

16m
nX[ VXE( r, 2')] J+=

z p[e(co) —1]I nX[nXE( r, co)]In E( r co) J+,
c

(2.11)

The general solution of (2.8) can be written as

(2.12)

where we have used the usual notation

P( r, 2co) J+—:lim P( r, 2co) —lim P( r, 2') .f~0+ f 0—

I

the surface is rough. In such a situation a general
solution is not possible. One can, however, develop
a perturbation theory' "in powers of the surface-
roughness parameter.

We now assume that the roughness is in the
form of a sinusoidal grating, i.e.,

E( r, 2') =FT( r, 2')+A,
(2.13)

Nz= —gsingy, g—«1 .
C

(2.16)

where FT( r, 2') is the solution of the homogene-
ous equation

+ 4' 2
V X V XFT( r, 2') —

2 e(2')FT( r,2')=0.
c

We can now write a power-series expansion

(2.17)

(2.14)

We will denote the solution of (2.9) by Fa( r,2').
This gives the field distribution at 2' outside the
medium f&0. One obviously also has the
transversality conditions

V' FT( r, 2co)=0, V Fir( r,2')=0. (2.15)

We have so far considered the general equations
describing second-harmonic generation. It is possi-
ble to solve the above equations for simple
geometries, for example, when f(x,y,z) =z, i.e., a
metallic medium occupying a semi-infinite domain.
We have considered solutions for spherical
geometries in our earlier Communication. Since
the surface-enhanced second-harmonic generation
has been done in situations involving surface
roughness, we must solve the above equations when

where each term in view of (2.14) and (2.15) satis-
fies

V.F't",'J =0,
Lii

J

4co
V + 2 e(2') Fr"'=0,

C
(2.18)

V2+ F,'"'=O.
c2

It should be borne in mind that since the boundary
conditions involve the values at the surface, further
Taylor-series expansions like the following are
needed:
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-( ) . -,„, . eF'"' g sinzgyF'"'(x,y, —g singy, 2') =F '"'(x,y, 0,2') —g singy (x,y, 0,2')+ (x,y, 0,2'�)+
az 2 az2

(2.19)

Similarly one must carry out the perturbation expansion of A, which is defined by Eq. (2.13). Moreover, the
vector n is also to be expanded in a Taylor series:

n = —z —gg cosgyy+ 2 g (g cos gy)z+

The next step in the calculation consists of substituting these perturbation expansions in Eqs. (2.10) and
(2.11) and equating the equal powers of g. Note that the boundary conditions (2.10) and (2.11) can now be
written as

n X [Fr(x,y, —g singy) +A (x,y, —g singy ) —Fz (x,y, —g singy ) ]=0,
n X [ V XFr(x,y, —g»nm ) —V XF„(x,y, —0 singy }1

16'
p[e(co) —1][n X[ n XEr(x,y, —gsingy)]] [ n Er(x,y, —gsingy)] .

c

(2.21)

(2.22)

Further simplification can be made depending on

the form of the incident electromagnetic field.

4co
4~ +A = e(2'),

C2
(3.4)

III. PERTURBATIVE EQUATIONS
FOR THE SECOND-HARMONIC FIELDS

(3.1)

In this section we use the formalism of Sec. II to
obtain the explicit form of the fields at the
second-harmonic frequency for the case when the
incident electromagnetic field on the metallic sur-
face is a plane wave propagating in the direction
Ko. We denote the component of Ko parallel to
the flat surface z =0 by Pc and along z by wo. One,
of course, has z +wo ——co /c . For this purpose
we need the perturbation expansions for fields at
the fundamental frequency co. In order that our

paper be self-contained, we have listed such expres-
sions in Appendix C. It would be clear from the
structure of fields at co, i.e., from Eqs. (C3), (C4),
(C9},and (C13) that the second-harmonic fields in
various orders of roughness will have the structure

Fz. '( r)=Fr e'O'', Q=(2a', A)

2

(2a+g} +A+= e(2') .
c

The second-harmonic fields outside the medium

also have a similar structure:

Fg (r )=Fg e ", Qg ——(2a,Ag) (3.5)

+

Fz (r )=Fz+e "' +Fz-e

Qs+=(2&+8 Az+)

(3.6)

FR (r )=Floe " + (3.7)

where ellipses have the same meaning as in (3.3}
and where

' 1/24'
4

C2

(3.8)

(1) (1) i Q + r (&) i Q r
Fr ( r )=Fr+e + +Fr e

Q+ =(2 v+g, A+)

(3.2)

' 1/2
4N —(2'+ g )
c

(3.3)(2) ~ (2) iFz. ( r )=Floe'O''+
where ellipses denote the fields with wave vectors
whose components parallel to the plane z =0 are
2a+2g. In Eqs. (3.1)—(3.3), the z component of
the propagation vector is given by

We have to now substitute expressions
(3.1)—(3.8), (C3), (C9), and (Cl 1)—(C17}in the
boundary conditions (2.21) and (2.22). After con-
siderable algebraic effort one finds that (2.21) leads
to the set of equations (up to second order in the
surface-roughness parameter g)
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zx(FT —FR')= (N' "'&"')(zx2» ),
e(2co)

zx(FT+ —FR+)= ——yX(FT —FR )+ 2zx(AFT —ARFR )
(1) (1) g (o) (o} ~ (o) (o}

(3.9)

I2( 5' 'T'I' 'T'+)[zx(2)c+g)]+w( 8' 'T'8' ' ')(zx2)c )+g( g' ' '8' ' ))(yxK )],

2

zX(FTO —FRo)= — yX(FT++FT —FR+ —FR )+ zX(FT FR )—+—X(A FT —ARFR ){2) {2) g (1) (1) (1) (1) g (0) (0) Z 2 {0) 2 {0)

2 + — + —
4 4

(3.10)

Z (1) (1) (1) (1)——X (A+FT+ —A FT —AR+FR++ AR FR )
2

2
, (~~X2~~) 2g (0) g& (2)+2@& ()) g ()) 2+ g

(2 )
T TO T+ T —

4
g (0). g (0)

T T

+ I(w+w+)( 8' T O' 'T'+)[zx(2)c+g )]—(+~—)I

+gx[(w+w+ )( N' 'T' & 'T+)+(+~—)] (3.11)

where (+~—) implies the terms with all g~ —g. The magnetic field boundary condition (2.22) leads to
even more complicated equations:

16
zx(QXFT —QRXFR )= —

2 p[&(co) 1]&Tgz—x(zx@'T ), (3.12)

~(1) ~ ~(1}
z X( Q+ XFT+—QR+ X FR+)

g - -(o) - -(o) ~ - -(o) - -(o)= ——y X( QXFT —QR XFR )+ 2z X( AQXFT —ARQR XFR )

16
p[E(co) 1] 8''T,'—z X [z X ( O' T++w N' 'T')]+ ÃT+,z X ( z X F 'T')

+—5'T",z X(z X @' ',")+—@''T",[z X(y"X & (T'))+y"X(z X g (T'))] (3.13)

(2) ~ ~(2)
zX(QXFTD QRXFRo)

(0) 2 (0) g (1} (1) (1) (1)

4
=—X(A QXFT —AR QR XFR ) ——y X( Qp XFT++Q XFT——QR+ XFR+ —QR X FR )

2

Z -{1) -(1) - (1) (1)

2
—x(A+Q~xFT+ —A Q xFT —AR~QR~xFR++AR QR xFR )

2

C
[e(co)—1]P zx ~ zX —w + 8''T,'O''T'+ —( 8'T+«+N'T «)& T

+ ~T«( @ T++@ T —)+&T @'TO++TO + T +~T+ + T—
(0) (1) (1) (0) (2) (2) (0) (1) (1)

3'

+8'T, 5' T++ —,8'zg'[(w+w+ ) 5' 'T+ —(w+w ) O' T ]
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+ + T [(w+w+ )@T+ (w+w —)@7"—] '+ +r p X(p X @' r )
2

2+" y" ~T ~T+ ~T(~T++@T )+— @T(@'z'++g 7"—

2+" " g ',' "'+— '"( ",'.+ "'.)+—",,'( ",'+ "'
)

(3.14)

The solution of the above vectorial equations would yield all the fields at the second-harmonic frequency.
Note that in each order we have equations with very similar structure, though the form of the inhomogene-
ous term in each order is different. In Appendix B we show how such equations can be generally solved
and how one can obtain the s and p components of such fields.

If we now assume that the incident field at the fundamental frequency co is p polarized, i.e., it has the
structure [cf. Eq. (A2)]

o {]inc r+im zE' ( r,co)= g'z'e ', Kp ——(a.,wp), wp ——kp —a, kp ——co/c
xko

then the zero-order transmitted and reflected fields have only p components. On using (3.9), (3.12), and
(B5)—(B8) we obtain for the zero-order fields at 2':

(3.15)

FP~'=16mikp~[e(2')]' [A+Ape(2p~)] '( &'z~) +
P(e —1)Apw

2ko&
(3.16)

FR~' 16mikpa [A——+Ape(2')] ( 8'~~ ) y—
z

P(e —1}Aw

2koe

FP, '=FR 0, @=@(co—) .

(3.17)

(3.18)

Thus the zero-order field at 2' is only p polarized which is due to our assumption that the incident radia-
tion at co was p polarized. The intensity of second-harmonic generation in the direction Qii is

~

Fzz'
~

.
This result when written in terms of various angles agrees with that of Bloembergen et al.

IV. INTENSITY OF SECOND-HARMONIC FIELD OUTSIDE THE METAL
IN THE DIRECTION OF FIRST-ORDER DIFFRACTION

We now consider the features of the second-harmonic generation in the direction in which first-order dif-
fraction (at 2') takes place, i.e., we will consider second-harmonic fields, outside the metal, with propaga-
tion vectors

Qii+ ——(2m+ g, —[(4co'/c') —(2m+ g) ]' '} .

For this purpose we will assume that the incident field at the fundamental frequency is p polarized, i.e., it
has the structure (3.15). We will show that SHG in these directions can have several orders of enhancement
due to surface-plasmon —polariton excitation inside the medium. The actual value of enhancement depends
on the relative direction of g and a. and the closeness of the incident angle to the angle at which surface-
plasmon polaritons are excited. The expressions for the first-order fields at the second harmonic are ob-
tained from the solutions of (3.13) and (3.10) and by noting that the zero-order fields at both fundamental
and second-harmonic frequency are p polarized. The first-order fields that appear in (3.13) and (3.10) at co

have both s and p components. Using now Eqs. (B5)—(B8) of Appendix B and various relations given in
Appendix A, a rather involved algebra leads to the following explicit results for the s and p components of
the fields at 2':
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(1)F 2kp[e'(2co )] 'c
(1) A0+ (1)[Ap+e(2')+A+]

I2K+g
I

4kp
(4.1)

F~'+p ——— [Ap+e(2co)+A+] ' e(2CO)CI'+'+
I
2K+g

I
4kp

(4.2)

(1)
FT+s =

(1)
FR+g =

where

1
(Ap~+A+) '( —Ap+Q'+'+X'+'),

I
2K+g

I

1

I2K+g
I

(A„+A,) '(A-, ng+X',"),

A (4K +2gKy )
(Q) AII (4IC +2gKy ) (QI K 1

(4.3)

(4.4)

+ 2 2

I

2K+ g I
+N(@'Tp) —, 2&Tp@'T+p+

(p) ~ ( K Ky )Nw+ +Ic Ic+ (p) ()) 2wgK„
8'Tp 8'T+,

k 06KK+ k 0 6'KK+
(4.5)

(1) f+x
0+ ——

k0

2 (0) (0)
(0) (0) ~ FTp ~RFRP

1/2 TP RP +
1 2+[&(2co)] 4K[a(2co ) ]'~2 4K

(4 6)

16~ico 13(& 1)gKs-
+

c k06 IC+ K

(0) 2 (0) (1)+NK (8 Tp) —K+I Tpg'T+p
2K

+ @'Tp 8''Tgs(2K +g2+3gK )
~+g&x

(4.7)

4 '+2 k

2K

16nico gKKs ~p~ ~&~ ~p~ 2 (2gKy+g )K K N(2++Kg +3gKy)~ 2 2 2 2 2

+ 2
P(E } + r ~Tp~T+s+(~Tp) 2 + 2 +Tp+T+p

c k0& 6K'+ 2k0E k0ex+

2N(4K +2gKy ) (Q) 2 gwKy (I) (Q)
(&Tp ) +WX —K+ 8'T+p O'Tp

2k 06'K 2K
(4.8)

Though the expressions for Fz'+p, Fz'+„etc.are
quite cumbersome, two important features of these
fields should be noted. The p component of these
fields contain two resonant denominators:

D(co) =0 ~K+ ——co e(co)
c2 e(co)+1

D(2~)=o~ I2K+gI = 4co E(2co)
c~ e(2')+1

(4.10)

D(2co) =[Ap+e(2co)+A+],

D(co}=[wp+E(co)+w+] .
(4.9)

The vanishing of these denominators can be shown
to be equivalent to the relations

(4.11}

The relations (4.10) and (4.11) are just the disper-
sion relations for surface-plasmon polaritons at the
frequencies co and 2', respectively. It is thus clear
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that if the incident angle, frequency, and the rela-
tive direction of a. and g and magnitude of g are
such that (4.10) is satisfied, then the surface polari-
tons inside the medium are excited resonantly and
the fields at the second-harmonic frequency are
resonantly enhanced, resulting in surface-enhanced
second-harmonic generation. The s components of
the fields have only the resonant denominator at
the fundamental frequency.

The vanishing of the denominator D(2'), which
leads to the surface-plasmon polaritons at the fre-
quency 2', can happen only under the usual condi-
tions, on e and wave vector, for the existence of
surface-plasmon polaritons in planar geometries
(half-space). Such surface-plasmon polaritons have
a wave-vector component, parallel to plane
z =0, 21r+g and will be excited provided that (as-

suming real dielectric function) e(2ro) & —1 and

l2~+g l &4' /c . If l2a+g
~

&4' /c, then
the corresponding z component of the propagation
vector Ao+ ——[4' /c —

l
(2Pc+g )

l
]' will be

purely imaginary, leading to decaying waves in the
z direction. This implies that for those angles of
incidence for which, say,

l
2m+ g l

&4ro /c, the

second-harmonic field with propagation vector

Thus the dielectric function has a large negative
real part both at co and 2' and hence in principle
it will be possible to excite surface plasmons at co

and 2' depending on the incident wave vector and

grating periodicity. We show in Fig. 1 the intensi-
ties

I+&I(gko) (e/8nmro ) (g'z')

in arbitrary units, as a function of the angle of in-

cidence when the incident angle is such that a
~ l g,

i.e.,

~.g =~~g =~sin0g .

The second-harmonic intensity

/(e/8mmco ) (Ã")

in the absence of grating structure is also shown.
The resonant enhancement of the second-harmonic
radiation is shown separately. For this case, the g
value has been taken to be such that both (4.10)
and (4.11) could be satisfied for the direction Q+,
and hence in Fig. 1, I+& shows resonant enhance-

(21'+ g, —[(4w /c) —
~

2a+ g l ] } IO
4

~ tl=l~llgl = I, lgi sine
IO

will be evanescent in nature. Thus the second-
harmonic radiation in the directions of first-order
diffraction will be observable in the far zone only
if the incident angles satisfy

l
2m+ g l

&4' /c .
When

~

2x. +g
l

&4' /c, the second-harmonic
fields will only exist in the neighborhood of the
surface. There may be situations involving the in-
teraction of the atoms and molecules near the met-
al surface, where such second-harmonic fields,
which though evanescent in nature are resonantly
enhanced, could be important.

The intensities of the second-harmonic radiation
can now be written as

(4.12)

We will now show the variation of the SH intensi-

ty with respect to the incident angle. We assume
that the radiation at the frequency corresponding
to 1.17 eV be incident on the silver grating surface.
The frequency chosen corresponds to the one used
in the experiment of Chen et a/. The dielectric
function at the fundamental (co = 1.17 eV) and the
second harmonic has the values'

e(ro)=(0 04+7 5i). .
(4.13)

e(2co) =(0.054+ 3.4i )

3
IO —IO

5

2
IO

'l' —10
l i

40' 45'
8

l/ j

ll
Ill
I )]

IO' ~ ll

j
ll

I )

Il

)I

I+P IO

—IO
5

I I I

?0' 20 5' 2 I
'

e

I Il I I

0' 20' 40' 60' 80'
e

FIG. 1. Second-harmonic generation in the direction
of first-order diffraction at 2', as a function of the an-
gle of incidence 0 of the p-polarized plane wave at co.

The azimuthal angle of incidence is taken to be ~/2 so
that Pc is parallel to the direction of grating periodicity.
The intensities are in arbitrary units —the plots represent
I+~ /(gkii) (8'~") P and Iq~ /P (N'~"), respectively [ij
given by (2.21)], with I+~=

l FR+~ l [Eq. (4.2)],
Ip~ l Fsp

l
[Eq. (3.1——7)]. The two insets show the

behavior of second-harmonic radiation in the range
where surface-plasmon polaritons are excited.
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ments corresponding to both (4.10) and (4.11),
whereas I ~ has no resonances. The peak posi-
tions are easily obtained by substituting (4.13) in.
(4.10) and (4.11). For this particular geometry
I+, 0.——The enhancement factors are of the order
of (10 —10 )(gko) —10 for gko -0.1 —0.3. The
resonant enhancements, which are roughly of the
order of

I
Res(o))/Ime(o)) I, in the second-

harmonic intensity due to surface-plasmon —polar-
iton excitation are in broad agreement with the ex-

periment of Chen et al.
In Fig. 2, we present the behavior of the

second-harmonic radiation when the incident wave
vector is such that sc g =0. The right-hand side of
Fig. 2 gives the dependence of second-harmonic ra-
diation for angles of incidence close to surface-
plasmon —polariton excitation. All the com-
ponents I+& and I+, have resonant denominators
corresponding to the excitation of surface-plasmon
polaritons at the fundamental frequency. As Fig.
2 shows, the enhancement of second-hafmonic ra-
diation is not so pronounced as in the case
~ p g =0. Our analysis thus indicates that the
enhancement of second-harmonic radiation due to
surface-plasmon —polariton excitation is quite sens-
itive to the relative directions of incidence and the

grating periodicity. The cusplike behavior of I+,
occurs at incident angle given by

I2a+g I
=4o) /c

i.e., at the point (shown by an arrow in Fig. 2)
where the character of the second-harmonic field
changes to being evanascent in nature [cf. the para-
graph preceding (4.12)].

V. EFFECT OF METALLIC GRATING
ON THE INTENSITY

OF SECOND-HARMONIC GENERATION
IN THE PRIMARY DIRECTION

OF REFLECTION

We now examine what happens to the roughness
induced second-harmonic generation in the direc-
tion

Qx=(2&, —2[(co /c ) —v ]' ),
i.e., in the direction in which second-harmonic-
generated radiation propagates in the absence of
surface roughness. One would expect large varia-
tions in the second-harmonic intensity in the direc-
tion Qz, if the incident angle is such that the
surface-plasmon polaritons are excited in the medi-
um. Up to second order' in g, the total intensity
in the direction Qs will be

5
IO

K'9 = 0 I=
I
I'zp'

I

'+20' Re(+~p'I'"o~p )

=
I
I'pp

I
'[1+2k'Re(I'os/+z", )]

IO
x I 0

9

1(o)+I( (5.2)

IO

2
IO

IO
I

5
49.3

I

49.5'
I

49.7

We will now study the behavior of the quantity
Io ' as a function of incident angle in the region of
the angles for which surface-plasmon —polariton
excitation is possible. The second-order fields are
to be obtained from (3.11) and (3.14) and the re-
sults of Appendixes A and B. This involves con-
siderable algebra and we quote only the final re-

sult, which is quite complex:

Oo

I

300 600 900

FIG. 2. Behavior of I+, /(gko)'(8'p") P as a function
of angle of incidence where sc is perpendicular to g.
The resonant region for I+, is shown separately on the
right. I, also exhibits a dispersionlike structure similar
to I+„in the resonant region.

Io = IFw I 2$ koRe

e(2o) )4+ A

4kO

&(2~)@(0)+ y(o)A

4ko

(5.3)



26 SURFACE-ENHANCED SECOND-HARMONIC GENERATION AT A. . . 491

where

@(p) 162rlyK (@(0))2 ~(0) 322riwK
p( —1)(K(o))

F(2CD)

2 2A(A +g ) F(0) A (A2 ~ 2)F(0)
4k() [P(2cp)]

(5.4)

I2K+g I (A2 F(l) I2K+g I (, + (A2 )F(l) g + Kp+g

2
gAR+(2Kp+g) (l) gK»A+ (l) gAR+K„(l) +~-

g —+ —g

16mi yK

e(2co)

2

K+K

2 2
lD+lD ( K~ K )+K+K—2 2

O'T+p O'T
p
—4gK„

k pEK+K

(1) (1)
W+ 8'T, 5'T+p

k()V EIC+K

2 2 (P) (1)
( K K )WW +K K (()) (l) gK»N Tp+ (W+lD ) 2 Tp T p+-

k pEKK kp v 6KK

siI=Kkp I A [e(2C0)]' FTp' ARFRp')—

2

A+kp[e(2co)] FT+p1/2
4K +2gKP (1)

I
2K+ g I

kpAR+(4K +2gKp) (, ) gK»A+ (()
2 2

gKz AR +
FR ys+gK» I

2K+ g I (FT+s FR ps)
I2K+g I

+~-
g~ —g

16 2w 4WK

(1)
(p) O'T+pK'

+ ~ Tp 2 2gKyK+-
kpe

( K'Kp)WW+Kpg ( IC'K+)lD+(W+W+ )
+ +W(W+lD+ )IC+

K K+ K+

WW +g (g +Kp ) 5 Tp III T +s K»+
K+ . kp~eK,

2 +—+-
g KyW

K
ICg(W+W+ )——LDgK

' ~+
g~ —g

T

2gK„K+ (1) (1)+
k ~ T —s~T+p

p P K K+

(1) (1)

8'T+, O'T
p + 2 (2K —2gKp)+ (2K +2gKp)

(1) (1) T+p T—p K+W 2
K W+ 2

kpe K "
K+

(5.6)

The notation I+ + J (Is z [ ) means terms obtained by changing the subscripts (and by changing the sign
of any g's appearing explicitly).
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We now have the complete expression, although
complicated, for the roughness-induced second-
harmonic generation in the direction Qz. The
behavior of Io ' in arbitrary units,

Ig k (elSnmco ) (8'' )

is shown in Fig. 3 for the range of incident angles
at which surface-plasmon polaritons can be excit-
ed' (cf. insets in Fig. 1). Various parameters have
been chosen as in Sec. IV. It will be seen that Io '

displays a sharp dispersionlike structure for values
of a. for which (4.10) or (4.11) could be satisfied.
The resonances in Io ' arise from the resonant
denominator in terms like I'z'+~, 8''T'+~, etc. It is
clear from Fig. 3 that the measurements of the
variation of SH intensity in the direction in which
the second-harmonic radiation in the absence of
roughness propagates will be quite interesting as it
shows a dispersionlike resonance.

It may be noted that for the sake of illustrating
the main features of the theory we have considered
the case of SHG at the surface of a metallic grat-

ing. The results obviously could be generalized to
more complicated surfaces, which, of course,
makes the field expression even more complicated.
The case of a statistical rough surface" with the
assumption of uncorrelated Fourier components,
i.e., when

with

z= —g I F(it )e'"'d a,

(E( sc )F*( a ') ) -5( a a')P—( a ),

(5.7)

can be obtained from the foregoing results by
averaging the final results of Secs. IV and V over
the distribution P( g ).

Thus to conclude we have presented within the
framework of Maxwell's equations, using the non-
linear source polarization in the metal, a complete
theory of surface-enhanced second-harmonic gen-
eration. We have calculated the resonant enhance-
ments in SHG explicitly due to SPP excitation.
The only assumption of the theory is the smallness
of the surface-roughness parameter, which is gen-
erally quite all right and which if one wishes could
be relaxed if one resorts to extensive computer cal-
culations. The generalizations to other nonlinear
optical processes such as frequency mixing at a
rough metallic surface would be examined in the
future. It should also be interesting to examine the
effects of hydrodynamic dispersion or the
electron-hole excitations on the surface-enhanced
second-harmonic generation.
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FIG. 3. Behavior of the roughness-induced second-
harmonic generation in the primary direction of reflec-
tion, i.e., Iz~'//2k ( 8'~") Il', in arbitrary units, as a func-
tion of angle of incidence. The two dispersion-shaped
resonances represent the excitation of surface-plasmon
polaritons at the fundamental and the second-harmonic
frequency, respectively.

E( r, t0)= I'( a. )e'"'+'
2

~ +to'= e(cu)=k
C2

(Al)

APPENDIX A: RESOLUTION
OF A PLANE WAVE INTO ITS s

AND p COMPONENTS

In this appendix, we describe briefly the various
relations among the cartesian and s and p com-
ponents of a plane wave. Such relations will be
used extensively in our calculations. Consider a
plane wave with propagation vector k =( a', w) and
frequency co propagating in a medium with dielec-
tric function e(co), i.e.,
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where K is a two-dimensional vector. We further
assume that the waves are transverse; then the vec-
tor I' ( K ) can be decomposed in terms of two unit
vectors perpendicular to the direction of propaga-
tion:

zXK
Z

(zXK)Xk
ZI'

K
S+

Kk P I (A2)

For propagation in a vacuum, as, for example,
would be the case for reflected fields, one sets
e= l. It is clear from (A2) that the Cartesian com-
ponents of 8' are related to s and p components by

with

Kz U=G, K&.V=O,

Kti =( K,wti), Kv ——( Ic, wv ) .
(82)

(83)

whereas (82) leads to

Equations (Bl) can be written as (with
i i

denoting
x or y component)

ll+ ll
=

ll

K (U, —V, ) —wvUii+wvVii+(z XB )ii=0,

Ky WK~
~S+ +P

kK

U, = — (K U), V, =— (K.V) .
Wp wv

(84)

K~ WKy
8', + 5'p,

K kK

K
g =— g

kK

It is also clear from (A2) that

1 k
@',=—( KX@' ), ,

K K

(A3)

(A4)

It is now a simple matter to solve (83) and (84) for
the cartesian components of U and V. Once
Cartesian components are known, then (A4) can be
used to obtain s and p components of U and V.
The results are found to be

U, = z.[wv( K XA )+ ic X (z XB)],
K(WU-wv) (85)

In a nonmagnetic medium, the magnetic field is
given by

y, = z [wtr( K XA )+ K X(z XB)]
K(wti —wv)

(86)
H( r ) ~( K )ei P r+i~

4 ( K )= ( k X @' )c/co
(A5)

Up
———k U

(wtikv —wvkci)
2 —]

zXK (zXK)Xk
S+-K kK p

where on simplification we get the relations among
the s and p components of electric and magnetic
fields

X[wvK (zXB)+kv( K A)],

ky
V = — (wtikv —wvkti)

(87)

~,=ver', , m, = ~a@', . (A6) X [wpK'(z XB )+kii( K A )] (BS)

APPENDIX B: GENERAL SOLUTION
OF THE VECTORIAL INHOMOGENEOUS
EQUATIONS INVOLVING REFLECTED

AND TRANSMITTED FIELDS

zX[U( K )—V( K )]+zXA( K )=0,

zX(KtiXU —KvXV)+zXB( ic )=0,
(81)

In the main text of this paper, we have seen that
the fields at the second-harmonic frequency to
various orders in the surface-roughness parameter
can be obtained provided we know the general
solution of the following inhomogeneous equations
[cf. Eqs. (3.9)—(3.14)]:

These solutions to Eqs. (81) and (82) are extensive-

ly used in the text.

APPENDIX C: SUMMARY
OF THE VARIOUS ORDER FIELDS

AT THE FUNDAMENTAL FREQUENCY co

The fields produced by a plane wave incident on
a rough surface can be calculated by a variety of
methods and these are now well known. Since our
calculations of the second-harmonic generation at a
rough surface involve the fields at the fundamental
frequency rather extensively, we present, in what
follows for the sake of completeness, the expres-
sions for such fields. We assume as in the text,
that the roughness is in the form of a sinusoidal
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grating, i.e., the equation of the surface is given by
z= —g sing)). We assume a plane wave with prop-
agation vector Kp ——( ic, wp) incident on such a
medium

E(i)( )
(i) '"'r+'wor

~(p) zXIc (0) (zXic )XK0 (0)@'Rs+
Kko

+Rp '7

(o) p (i)
&s

N+Wp

(C6)

(C7)

2
co

K +No= =ko ~
C2

g'= g,'+(,) zXic (,.) (zXic)XKp (,.)g
K Kkp

(Cl)

(C2)

Then the zero-order transmitted and reflected
fields would be given as usual by Fresnel formulas,
which in our present notation read as

E( )( r ) S (0)eilr r+iwg
T & T

gT =- g'(p) Np

WpE'+ W

(o) wp N
( )@'Rs = @'s'

N+No

(p) Np& —N
( )

O'Rp —— 8'p' .
Npe+ N

(CS)

In view of the grating structure of the surface
roughness, the first-order fields will have the struc-
ture

N
Ic +w = e(co),2

(C3)
i K + r ~ (~) i K.

ET ( r, co)=S' T+e + + O'T e

where

(C9)

~(0)(
)

~ (p) i a r iwo~s—

K'=( a, —wp),

~(p) zXK (p) (zXK )XK (p)
Ts+

K Kk Tp

(C4)

(C5)

K+=( ic+,w+ ),
(CIO)

2 2 2K+=IC+g, IC++W+ =kpE(CrI) .

The fields O' T+ can be resolved into s and p com-(1)

ponents as in (A2) with ic~ic+ and K~K+. One
finds that

S'T+& —+ S'T&{ic Icp(w++wp+) +wp+(wp +E +w +) [w( ic'K+) —Ic w+] j
(i) ( e—1 ) (o) 2 2 —1 + +

2KK+

(1)T+s =

+ wp+ S Tr [(wp+e+w+ ) ( IcX g )k],(e—I ) (p) -+

2KK+

(6-1)wkpS(TP( g XK ) (e—1)ko(K K+ ) (0)

2icic+~e(w+ +w0+ ) (w+ +wp+ )Icic+

(Cl 1)

(C12)

In our calculations in the text we do not need the first-order reflected fields and hence such fields are not
listed here.

The fields to second order in the surface-roughness parameter wi11 have the structure

E(2)(r ~) S, (2) IK r+S, (2) ' ++ r+S (2)
T++ (C13)

K++ ——( Ic+2g, w~+), w+~ = —(Ic+2g) +koe . (C14)

Only the second-order field with propagation vector K=( ic,w) is of interest. Using Eq. (2.12) of Ref. 13
one can show that

TO=
(2) —I+ .{-,(w —wp)( S'",+ —S'T' )——,'[g'+-,'(w —w, )']S'(rp)[,

K Kp
(C15)

where 1 is the unit dyadic. The s and p components of 8 'Tp can be obtained by expressing each of the
fields S' 'z'+ and S' r ' in terms of their s and p components and Eqs. (Al) —(A4) with the results
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(W —Wo)Wp
+ -+ -+

KK

K

(1) (1)
k( g XK ) @T+s @T s—+ +

K K+ K

NK+ —W+( K K~)
@T+

KK+

WK —W (K K )
gT

KK
(C16)

K+
~To, = .l g +--, (w —wo) Ãn —— ~T+.(2) ~ 2 2 (0) i P + (1)

2 K

K K
T-s

W —Wp W+——,( KXg ) g''T'+„+
Kk

W
g~

K
(C17)

We have now complete expressions for fields (in-
side the medium) at the fundamental frequency ro

up to second order in surface-roughness parameter
g. These expressions can be further simplified de-

pending on the directions of polarization and the
propagation of the incident plane wave. In the text
we consider the interesting case when the incident
radiation is p polarized.
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