
ar
X

iv
:h

ep
-t

h/
06

08
11

0v
6 

 2
6 

M
ay

 2
00

7

Quantising Gravity Using Physical States Of A Superstring
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A symmetric zero mass tensor of rank two is constructed using the superstring modes of exci-
tation which satisfies the physical state constraints of a superstring. These states have one to one
correspondence with the quantised field operators and are shown to be the absorption and emission
quanta of the Minkowski space Lorentz tensor, using the quantum field theory method of quantisa-
tion. The principle of equivalence makes the tensor identical to the metric tensor at any arbitrary
space-time point. The propagator for the quantised field is deduced. The gravitational interaction
is switched on by going over from ordinary derivatives to co-derivatives. The Riemann-Christoffel
affine connections are calculated and the weak field Ricci tensor R

0

µν is shown to vanish. The in-

teraction part R
int
µν is found out and the exact Rµν of the theory of gravity is expressed in terms of

the quantised metric. The quantum mechanical self energy of the gravitational field, in vacuum, is
shown to vanish. By the use of a projection operator, it is shown that the gravitons are the quanta of
the general relativity field which gives the Einstein equation Gµν = 0. It is suggested that quantum
gravity may be renormalisable by the use of the massless ground state of this superstring theory for
general relativity and a tachyonic vacuum creat and annihilate quanta of quantised gravitational
field.
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1. INTRODUCTION

Attempts to quantize and to have a renormalised Einstein’s theory of gravitation have been a disappointing failure.
The incompatibility of relativity with quantum mechanics was first pointed out by Heisenberg who commented that
the usual renormalisation programme is ruined by the dimensional gravitational coupling constant. However, it is
quite possible that the theory of gravity is finite to every order of its coupling. In order to achieve this, supergravity
was pursued vigorously, but no success is yet in sight. On the other hand, soon after a theory of dual resonance model
explaining all the postulates of S-matrix by a host of workers was put in place, Nambu[1] and Goto [2] worked out
a classical relativistic string, which was raised to quantum level by Goldstone [3], Goddard, Rebbi and Thorn[4] and
also by Mandelstam[5]. The very bold suggestion of Scherk and Schwarz [6, 7] that the string theory carries quantum
information for all the four interactions including gravity, did not make much head way till 1984. Green and Schwarz
[8] formulated the superstring theory in ten dimensions which is still believed to be finite in all orders of perturbation
theory. However, only later, it was found that the heterotic string theory of Gross, Harvey, Martinec and Rohm[9] is
the best candidate to explain gravitational interactions.

Casher, Englert, Nicolai and Taormina[10] have made a much publicised proof that the 26-dimensional bosonic
string contains closed 10-dimensional superstrings, the two N = 1 heterotic strings and two N = 2 superstrings.
This group have followed this up by making further incisive attempts to find a mechanism which generates space-
time fermions out of bosons. To make contact with real physical world, one has to make the usual unsuccessful and
nonunique compactification from ten to four dimensions. Kaku [11] and Green, Schwarz and Witten [12] in their
books have rightly and clearly spelt out that ‘No one really knows how to break a 10-dimensional theory down to
four’. In an earlier work [13] on supergravity, using the 4-d superstring theory given below, one of the authors(BBD)
deduced the propagator for the graviton. It was proved that the vanishing of the Ricci tensor using the vielbeins in
the tangent space formalism to go from flat to curved space time without using Riemann-Christoffel affine connections
( called affines in short) which are essential for a Quantum Theory of Gravity. Here we demonstrate this essential
aspect. The affines come out in a simpler form and will simplify calculations of other quantum gravity problems.
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In the earlier paper [13], one of us (BBD) also noted the important works of Feynman who used gravity as a spin-2
field coupling to its energy momentum tensor. Mandelstam [5],Deser [14] and DeWitt [15] have done extensive work
in deriving Feynman rules. The trouble is that gravity has too many constraints, inherent in the formal quantum
gravity field theory. In the present approach, based on superstring, most of the constraints have been taken care
of in constructing the superstring physical states. It is also important to realise that Riemann, Ricci, Weyl and all
other tensors of any relevance with quantum gravity are in terms of general relativity metric tensor. This tensor is
not traceless. So the quantisation of the metric field strength will have both the spin-2 graviton and spin-0 dilaton.
Eventhough, one of us(BBD) worked with pure graviton in supergravity [13], we had to enlarge the scope, and approach
the problem of quantum gravity by trying to quantise the metric tensor field. In all perturbative approaches, it is the
general relativity metric tensor gµν(x) which is expanded around the flat metric ηµν as indicated in our concluding
section.

In our opinion, the best tool available to achieve a breakthrough is the superstring theory which, like gravity, needs
to be formulated in the physical world of four dimensions. The simplest and the best way to descend directly from
26-dimensional bosonic string to 4-dimensional superstring is by using the Mandelstam equivalence between fermions
and bosons in an anomaly free string theory. The bosons are four in nature. The fermions belong to SO(3,1) bosonic
representation. They are divided into two groups. One group has 24 spinors placed right handedly in six ways and
the other 20 placed left handedly in five ways.Thus the total number of the bosons is 4 and the fermions are 4x6 and
4x5 have opposite handedness. These will be relevant to gravity as much as the one of ref. [10]. It is worth mentioning
that our present construction of the superstring bears resemblance to the attempts by Gates et al[16].

The supersymmetric action, with SO(6)⊗ SO(5) world sheet symmetry, turns out to be

Sss = − 1

2π

∫

d2σ



∂αXµ(σ, τ) ∂αXµ(σ, τ) − i
6
∑

j=1

ψ̄µ,jρα∂αψµ,j + i

11
∑

k=7

φ̄µ,kρα∂αφµ,k



 , (1.1)

with

∂α = (∂σ, ∂τ ), ρ0 =

(

0 −i
i 0

)

, ρ1 =

(

0 i
i 0

)

and φ̄ = φ†ρ0. (1.2)

For the sake of completeness and to do justice to the subject of gravity and strings, we briefly outline some details
which have already been published elsewhere.

The arrays (ej , ek) are the rows of ten zeros with only ‘1’ in the jth place or ‘−1’ in the kth place. ejej = 6
and ekek = 5. The invariation of the action is under the SUSY transformations with constraints to lead to spatial
translations on two successive applications,

δXµ = ǭ
(

ejψ
µ
j − ekφ

µ
k

)

= ǭΨµ, (1.3)

δψµ,j = −iǫ ejρα∂αX
µ, ψ

µ
j = ejΨ

µ, (1.4)

and

δφµ,k = −iǫ ekρα∂αX
µ, φ

µ
k = ekΨµ. (1.5)

Here ǫ is a constant anticommuting spinor and

Ψµ = ejψ
µ
j − ekφ

µ
k , (1.6)

is the superpartner of Xµ. This emits quanta of ψµ
j or φµ

k while in the site j or k respectively. The string fields are
quantised for the coordinates

Xµ(σ, τ) = xµ + pµτ + i
∑

n6=0

1

n
αµ

n e−inτ cos(nσ). (1.7)

In terms of complex coordinates z = σ + iτ and z̄ = σ − iτ , we have,

Xµ(z, z̄) = xµ − iαµ
0 ln |z|+ i

∑

m 6=0

1

m
αµ

m z−m. (1.8)

Further,

ψ
µ,j
± (σ, τ) =

1√
2

∑

r∈Z+ 1

2

bµ,j
r e−ir(σ±τ), φ

µ,k
± (σ, τ) =

1√
2

∑

r∈Z+ 1

2

b
′µ,k
r e−ir(σ±τ) for NS sector, (1.9)
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and

ψ
µ,j
± (σ, τ) =

1√
2

∞
∑

m=−∞
dµ,j

m e−im(σ±τ), φ
µ,k
± (σ, τ) =

1√
2

∞
∑

m=−∞
d

′µ,k
m e−im(σ±τ) for R sector. (1.10)

The bosonic quanta obey the commutation relation and the fermionic quanta obey the anticommutation relation with
the only major difference for Majorana fermions b−r = b†r but b′−r = −b′†r and d−r = d†r but d′−r = −d′†

r . So the
number level density NB (for bosons) and NF (for fermions) are

NB =
∑

µ

〈φ|αµ
−1α1µ|φ〉 = 4, (1.11)

and

NF =
∑

µ

6
∑

i=1

〈φ|bµ−ibiµ|φ〉+
∑

µ

5
∑

j=1

〈φ|b
′µ
−ib

′

iµ|φ〉 =
∑

µ

6
∑

i=1

〈φ|b†µi biµ|φ〉 −
∑

µ

5
∑

j=1

〈φ|b
′†µ
i b

′

iµ|φ〉 = 24− 20 = 4. (1.12)

These number level densities are as required by supersymmetry.
It may be apprehended that the assembly of forty four fermions may give rise to a spectrum in space time, will be

highly pathological. However, of the 44, when 24 Majorana fermions are excited in one way, the other 20 are excited
in the opposite way.Therefore only four Majorana fermions are effective. It will show less complexity in pathology
than an assembly of ten fermions in 10-D superstrings.

In the light cone basis, the energy momentum tensors T++, T−− and the currents J+, J− are given by

T++ = ∂+X
µ∂+Xµ +

i

2
ψ̄

µ,j
+ ∂+ψ+µ,j −

i

2
φ̄

µ,k
+ ∂+φ+µ,k, (1.13)

T−− = ∂−X
µ∂−Xµ +

i

2
ψ̄

µ,j
− ∂−ψ−µ,j −

i

2
φ̄

µ,k
− ∂−φ−µ,k, (1.14)

J+ = ∂+XµΨµ
+, (1.15)

and J− = ∂−XµΨµ
− (1.16)

There are also energy momentum tensors associated with conformal TFP
++ and superconformal ghosts T SC

++ with their
generators. Their corresponding quanta are

TFP
++ =

1

2
c+∂+b++ + ∂+c

+b++, LFP
m =

FP
∑

m

(m− n)bm+nc−n (1.17)

T SC
++ = −1

4
γ∂+β −

3

4
β∂+γ, and Lgh,sc

m =

SC
∑

m

(
1

2
m+ n) : βm−nγn : . (1.18)

Here (b, c) obey the anticommutation rules and (β, γ) obey the commutation rules.
The superconformal ghost action follows from the local fermionic symmetry of the superconformal invariance of the

action as used by Brink, De Vecchia, Howe, Deser and Zumino [17],

δχα = iραη, and δea
α = δΨµ = δXµ = 0, (1.19)

where η is an arbitrary Majorana spinor and ea
α is the usual ‘Zweibein’, so that the gravitino can be gauged away

using

δχα = iραη +∇αǫ.

Using the variation of χ,X± and following reference [17], one finds (1.18). The central charge ‘c’ is given by c = 1−3k2.
The anomaly free total super Virasoro generator can be written in two equivalent ways, each having zero central charge

Ltotal
m = LFP

m +
1

π

∫ π

−π

eimσT++dσ = LFP
m + LSC

m +
1

π

∫ π

−π

eimσ(T++ − k∂+T
F
+ )dσ, (1.20)

where

TF
+ =

i

2

(

ψ
µ,j
+ ψ+µ,j − φµ,j

+ φ+µ,j

)

. (1.21)
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The quantity k is related to the conformal dimension J = 1+k
2 and equals 1√

6
here. The normal ordering constant

a = −1 in either case.
The super Virasoro generators Lm of energy momenta and the currents (G,F ) are [13]

Lm =
1

2

∞
∑

−∞
: α−n · αm+n : +

1

2

∑

r∈z+ 1

2

(r +
1

2
m) : (b−r · bm+r − b′−r · b′m+r) : NS, (1.22)

Lm =
1

2

∞
∑

−∞
: α−n · αm+n : +

1

2

∞
∑

n=−∞
(n+

1

2
m) : (d−n · dm+n − d′−n · d′m+n) : R, (1.23)

Gr =

√
2

π

∫ π

−π

dσeirσJ+ =

∞
∑

n=−∞
α−n · (ejb

µ
r+n,j − ekb

′µ
r+n,k), (1.24)

and Fm =

∞
∑

n=−∞
α−n · (ejd

µ
m+n,j − ekd

′µ
m+n,k). (1.25)

These satisfy the super Virasoro algebra with central charge c = 26. The second version of equation (1.20) can be
easily written down[11, 12].

The physical states are defined through the relations

(L0 − 1)|φ〉 = 0, Lm|φ〉 = 0, Gr|φ〉 = 0, for (r,m) > 0, NS (bosonic) (1.26)

(L0 − 1)|ψ〉α = (F 2
0 − 1)|ψ〉α, Lm|ψ〉α = Fm|ψ〉α = 0, , for m > 0, R (fermionic) (1.27)

and the mass spectrum is given as

α′M2 = −1, − 1

2
, 0,

1

2
, 1,

3

2
, ... NS (1.28)

and

α′M2 = −1, 0, 1, 2, 3, ... R. (1.29)

The G.S.O. project out [18] the half integral mass spectrum values, tachyonic or otherwise. The tachyonic bosonic
energy of the NS sector 〈0|(L0 − 1)−1|0〉S is cancelled by 〈0|(F0 − 1)−1(F0 + 1)−1|0〉R of the Ramond sector. This is
typical of supersymmetry and is well known. Just to remind, the SUSY charge is [19],

Q =
1

π

∫

dσρoρ+α∂αX
µΨµ, (1.30)

and since, the Hamiltonian is related as

∑

α

{Q†
α, Qα} = 2H, and

∑

α

|Qα|2 = 2〈φ0|H |φ0〉, (1.31)

the ground state is massless and the physical Fock space is tachyonless. The references [19, 20] give a detailed
derivation of the modular invariance and vanishing the partition function of the string. Thus with no anomaly in four
dimensional superstring theory, we can go over to construct zero mass Fock space physical state functions. We shall
demonstrate this in the next sections and attempt to quantise gravity using ideas based on superstring theory and its
exact equivalence with quantum operators.

2. STRING STATES ←→ QUANTUM OPERATORS

In the bosonic superstring, the Neveu Schwarz bosonic sector contains the bosonic tachyon. This tachyon state
is very useful to construct the ground state of zero mass. The vacuum state |0, 0〉 of the string is the functional
integral of the string theory over a semi-infinite strip. This could be conformally mapped to the unit circle. These
ideas become clearer, if we consider a closed string where we have a second set of Virasoro algebraic equations. The
following is a recipe, given by Polchinski [21], prescribing the link between superstring states and operators, which is
very important for quantising gravity.
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Radial quantisation has a natural isomorphism between the string state space of conformal field theory (CFT) in
a periodic spatial dimension, and the space of local operators [22]. Let there be a local isolated operator A at the
origin and no more inside the unit circle denoted by |z| = 1, but with no other specification outside the circle. Let us
open a slit in the circle and consider the path integral on the unit circle, giving an inner product 〈ψout|ψin〉. Here,
ψin is the incoming state given by the path integral |z| < 1 and ψout is the outgoing one at |z| > 1. Explicitly, a
field φ is split into integrals outside, inside and on the circle. The last one will be called φB. The outside integral
is ψout(φB) and the inside integral is ψin(φB), and the remainder is

∫

[dφB ] ψout(φB)ψin(φB). The incoming state
depends on the operator A and hence is denoted by |ψA〉. This is the needed important mapping from operators
to states. Summarising, ‘the mapping from operators to states is given by the path integral on the unit disk’. The
inverse is also true.

If Q is any conserved charge, Q|ψA〉 is the operator equivalent of Q · A. In particular, if A is the unit operator
11, and Q = αm =

∮

dz
2π
zm∂X , for m ≥ 0, so that ∂X is analytic and the integral vanishes for m ≥ 0, we get

αm|ψ11〉 = 0, m ≥ 0. This establishes the exact correspondence of the unit operator to the string vacuum,

11↔ |0, 0〉. (2.1)

Similarly, one finds the operator equivalence,

: eik.X(z) : ↔ |0, k〉. (2.2)

In the above, X(z) is given by equation (1.8). : eikX : implies normal ordering of the operators contained in it. The
first number in the bra refers to m, and second to the eigenvalue of αµ

o i.e. αµ
o |0, k〉 = kµ|o, k〉. So for the tachyon,

|0, k〉 ↔ eik.x, because on the circumference of the circle |z|=1, the tachyonic vacuum can not annihilate[11]. This
equivalence is utilised to convert the string states tensor of rank two metric field of graviton and dilaton to quantum
operators and vice versa. The CFT unitarity gives

〈0, k|0, k′〉 = 2π δ(k − k′). (2.3)

The three spatial components would lead to

〈0, ~k|0, ~k′〉 = (2π)3 δ(3)(k − k′).

This is generalised to normalisation of massless states with k0 = |~k| and we use one like the massive vector meson
renormalisation,

〈0, ~k|0, ~k′〉 = (2π)3 (2k0) δ
(3)(k − k′). (2.4)

3. QUANTISATION OF THE GRAVITATIONAL FIELD METRIC USING SUPERSTRING STATES

To construct the second rank Lorentz tensor of general relativity, we shall use the quanta bµi of the NS bosonic sector
which comes from the SO(3,1) ψµ

j ’s, belonging to the SO(6) group of the action (1.1). In the NS sector, the hidden

tachyonic vacuum |φ〉 = |0, k〉 of momentum k is such that (L0 − 1)|0, k〉 = 0. This satisfies the superstring Virasoro
physical constraint of equation (1.16). The ghost free physical Fock space states containing matter and radiation
are built up by operating creation operators on this state. For quantum gravity, we need massless quanta of spin 2
and a metric tensor. The later when quantised, would have both massless quanta of spin 2 and spin 0. Departing
from earlier approaches to quantum gravity, we first proceed to construct a metric tensor quantum operator. This
should be a Lorentz tensor of rank 2. The Lorentz tensor, which is symmetric but not traceless, is simply given by
the quantum operator

gµν(k) = :
∑

ij

cijb
i†
µ b

j†
ν e

ik.X : =
∑

ij

cijb
i†
µ b

j†
ν : eik.X : ←→ aµν |0, k〉 = aµν eik.x; cij = −cji, (3.1)

where the operator aµν is,

aµν =
∑

ij

cijb
i†
µ b

j†
ν , (3.2)
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and commutes with αµ’s, we have used the operator←→ state equivalence of equation (2.2). This operator creates a
pair of fermions. Since

[L0, b
†ν
j ] =

1

2
b
†ν
j (3.3)

and

[G 1

2

, bjν†] = αν
0 e

j = kνej , (3.4)

we have,

L0 gµν(k) = L0

∑

ij

cijb
i†
µ b

j†
ν : eik.X :←→

∑

ij

cijb
i†
µ b

j†
ν (L0 − 1)|0, k〉 = 0, (3.5)

since (L0 − 1)|0, k〉 = 0 as stated. So the quantum operator gµν(k) is the ground state which is a pair of vectorial
quanta created, would lead to a massless state. In order to satisfy the G.S.O. condition, we examine equation (3.1)

(

1 + (−1)F
)

G 1

2

gµν(k) =
(

1 + (−1)F
)

[

G 1

2

, gµν(k)
]

(3.6)

=
(

1 + (−1)F
) 1√

2

∑

cij
(

eikµb
j
ν − ejkνb

i
µ

)

|0, k〉 = 0 (3.7)

= kµ

∑

cij e
ibj†ν |0, k〉. (3.8)

Since G 1

2

annihilates one fermion of the pair, the lone left out fermion is G.S.O. projected out. So gµν(k) is a ground

state with zero energy.
Operator aµν defined in equation(3.2) is seen to satisfy the relations,

[

aµν , a
†
λσ

]

= fµν,λσ |c|2, [aµν , aλσ] =
[

a†µν , a
†
λσ

]

= 0, (3.9)

where

fµν,λσ = ηµληνσ + ηµσηνλ. (3.10)

Here the flat space metric ηµν is, as usual,

ηµν =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






. (3.11)

For the desired normalisation for |c|2, in equation(3.9) will be suitably chosen.
In the Gupta-Bleuler method of quantisation [23] of only the ground state symmetric tensor gµν(k). The state

satisfies the equation

L0 | gµν(k) 〉 = L0 a
†
µν : eikX : ↔ L0 a

†
µν |0, k〉 = 0↔ L0 a

†
µν e

ik.x. (3.12)

Likewise

: e−ikXa†µν : ←→ 〈0, k|aµν .

Consider the expansion of gµν(x), given by

gµν(x) =

∫

d4k

(2π)4
(

a†µν e
ikx + aµν e

−ikx
)

. (3.13)

which satisfies the zero mass Klein-Gordon equation �gµν(x) = 0. The collection of states (3.12, 3.13), due to
the isomorphism with operators, is the field quantisable as, for instance, in Gupta-Bleuler formalism [23]. When
gµν(x) is eventually quantised, the associated creation and annihilation operators correspond to massless quanta. It
may be pointed out that this is same as the Gupta-Bleuler formalism which is covariant and hence used in most
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string quantisations to maintain manifest Lorentz covariance. Thus the string Fock states gµν(k) and the hermitian
conjugates will turn out to be related to the quantum creation and annihilation quanta of spin-2 and spin-0 for the
field tensor. In the instance case, a†µν(k) and aµν(k) are the creation and annhilation quanta of these objects.

Before proceeding further, we must ensure that gµν(k) is a special type of symmetric Lorentz tensor [25] which,
under a proper Lorentz transformation from x to x′, does not behave as the usual second rank tensor,

gµν → Λρ
µΛσ

νgρσ + kµǫν + kνǫµ. (3.14)

Since the 2nd and 3rd terms are vectorial, they ruin the Lorentz invariance and general covariance in quantum
gravity, as has been specifically pointed out by Weinberg [25] and discussed in [13]. The arguement for spin-2 case as
considered in [13] is emphasised again , not only as to its importance, but also to show the absence of spin-1 vectors
which complicate calculations. Only spin-2 and spin-0 objects present in the theory have propagators and vertices.
In string theory αµ

0 = kµ. So, writing

aµν | 0, k〉 → Λρ
µΛσ

νa
†
ρσ | 0, k〉+ Oµν |0, k〉, (3.15)

where

Oµν |0, k〉 = (kµǫν + kνǫµ) | 0, k〉, (3.16)

are additional tachyons due to supersymmetry. Since L0 = F 2
0 , we have

Oµν | 0, k〉 = L0Oµν | 0, k〉 = F 2
0Oµν | 0, k〉, (3.17)

in Ramond sector. So,

F0Oµν |0, k〉α = ±Oµν |0, k〉α. (3.18)

In general, one can construct spinorial states | 0〉α such that

F0 | 0〉α = | 0〉α , α〈0 | F0 = −α〈0 | and
∑

α

| 0〉α α〈0 | = 1. (3.19)

Again,

Oµν |0, k〉 = L0Oµν |0, k〉 =
∑

α

F0 | 0〉α α〈0 | F0Oµν | 0, k〉

= −
∑

| 0〉α α〈0 | Oµν | 0, k〉 = −Oµν(k) = 0. (3.20)

This is due to the tadpole cancellation mechanism noticed also by Casher et al [10]. Thus the Lorentz transformation
is a ‘proper’ one and ensures that the tensor, under Lorentz transformation, remains a symmetric tensor without
vectorial components as would be expected from equation(3.15). Rewriting equation (3.13)

gµν(x) =

∫

d3k

(2π)3
√

(2k0)

(

a†µν e
ikx + aµν e

−ikx
)

(3.21)

With operator relations (3.9), we have quantised the tensor operator in flat space time. By using the same flat metric
ηµν , we get

gµν(x) =

∫

d3k

(2π)3
√

(2k0)

(

aµν† eikx + aµν e−ikx
)

(3.22)

Let us consider the operator product :gµν(x)gνλ(x): . The fermions separate out. For the two exponentials contain
the factors |z|=1 in equation (1.8),

〈
∞
∑

n=1

1

n
α−n

µ

∞
∑

n=1

1

n
αn

ν 〉 = ηµν

∞
∑

n=1

1

n
= ηµν ζ(1)

where ζ(s) =
∑∞

n=1
1

ns
is the zeta function. This will be absorbed in the normalisation factors. It is easier to use

string theory notation so that, as in the above,

gµν(x)gνλ(x) =

∫

d3k

(2π)3

∫

d3k′

(2π)3
1

√

4k0k
′
0

|c|2 〈k, 0|0, k′〉 e−k.k′ζ(1) f
µν

νλ = |c|2
∫

d3k

(2π)3
e−k2ζ(1) f

µν
νλ 〈k, 0|0, k〉 = δ

µ
λ,

(3.23)
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where the Kronecker delta δµ
λ is a mixed tensor. The coefficient |c|2 must be adjusted to have

5|c|2
∫

d3k

(2π)3
e−k2ζ(1) 〈k, 0|0, k〉 = 1, (3.24)

since

f
µν

νλ = ηµ
νη

ν
λ + η

µ
λη

ν
ν . (3.25)

If gµν is a covariant tensor, then its inverse gµν , is the contravariant tensor. Other than the scalars and zero, the
Kronecker tensor δµ

ν is the only tensor where components are same in any coordinate system. Furthermore, the flat
space metric ηµν also satisfy ηµνηνλ = δ

µ
λ . Thus we have found a space dependant metric like the flat space one. This

meets the first criterion of Weinberg [25] for the application of the principle of equivalence. In the next section, we
shall show that there exists a mapping from any curved space time point x′ to the point x where affine is zero so that
the equations with derivatives or other equations remain the same for all space time, flat or curved.

The relation (3.23) is ‘proper’ Lorentz invariant as per earlier extensive derivation of tadpole cancellation. So, by
the Principle of Equivalence, gµν is the true metric tensor operator for all space time points, flat or curved, of the
gravitational field. A critical discussion on this matter has been given by Padmanabhan [24].

The commutator of the fields reads

[

gµν(x), gλσ(y)
]

=
1

(2π)3

∫

d3k

2k0

(

eik(x−y) − e−ik(x−y)
)

fµν,λσ. (3.26)

The propagator is

∆µν,λσ(x) =
〈

0|T
(

gµν(x), gλσ(y)
)

|0
〉

=
1

(2π)4

∫

d4k ∆µν,λσ
F (k) eik(x−y), (3.27)

where

∆µν,λσ
F (k) =

1

2
fµν,λσ 1

k2 − iǫ . (3.28)

We note that

fµν,λσ = ηµληνσ + ηµσηνλ

= ηµληνσ + ηµσηνλ − ηµνηλσ + ηµνηλσ

= f (2)µν,λσ + f (0)µν,λσ, (3.29)

where

f (2)µν,λσ = ηµληνσ + ηµσηνλ − ηµνηλσ and f (0)µν,λσ = ηµνηλσ .

The first term of equation (3.29) is the coefficient of the graviton propagator ∆graviton
F and the second is the coefficient

of dilaton propagator ∆dilaton
F with appropriate factors. The Feynman propagator for the graviton hµν(x) and the

dilaton D(x) are

〈0|N(hµν(x)hλσ(y))|0〉 = ∆graviton
Fµν,λσ (x− y) =

∫

d4k

(2π)4
∆graviton

Fµν,λσ (k) eik(x−y), (3.30)

and

〈0|N(D(x)D(y))|0〉 = ∆dilaton
F (x− y) =

∫

d4k

(2π)4
∆dilaton

F (k) eik(x−y), (3.31)

where

∆graviton
Fµν,λσ (k) =

1

2
f

(2)
µν,λσ

1

(k2 − iǫ) ,

and ∆dilaton
F (k) =

1

2

1

(k2 − iǫ) . (3.32)
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Various calculations, in quantum gravity, will eventually be reduced to contraction of metrics gµν ’s at different space
time points. The traceless spin-2 graviton part can be separated out with some caution. It has always been opined
that quantisation of metric field strength is essential and contains even more information than the quantisation of
gravitational field with gravitons only. For an example, let us construct a spin-2 graviton state, like the string state,

Φ†
µν(x) = : gµν(x)− 1

2
ηµνg

κ
κ(x) : (3.33)

= :

∫

d3k

(2π)3
1√
2k0

(

a†µν −
1

2
ηµν a

†κ
κ

)

eikX : (3.34)

↔
∫

d3k

(2π)3
1√
2k0

∑

i,j

cij

(

b
†
iµ b

†
jν −

1

2
ηµνb

†
iκ b

†κ
j

)

|0, k〉. (3.35)

This is a very simple way for the string states to create the quanta of general relativity. One can easily check that
the graviton propagator comes out correctly. Similarly, we can write the dilaton state. The one dilaton state is

D†(x)↔
∫

d3k

(2π)3
1√
2k0

∑

i,j

cij
1

2
b
†
iκ b

†κ
j |0, k〉. (3.36)

It will be instructive, to find a projection operator which can project out the spin two graviton from fµν,λσ containing
both spin-2 graviton and spin-0 dilaton. In fact, such a projection operator turns out to be

Pκρ
λσ =

1

2
(ηκ

λη
ρ
σ + ηκ

ση
ρ
λ − ηκρηλσ) . (3.37)

One can verify that

Pκρ
λσf

µν,λσ = f (2)κρ,µν , (3.38)

and

Pκρ
λσPλσ

µν = Pκρ
µν . (3.39)

Further, in order to show the graviton quanta in general relativity,let us apply the projection operator (3.37) on the
Ricci tensor Rµν

Pµν
λσ Rµν = Rλσ −

1

2
gλσ R = Gλσ, (3.40)

where

Rµν = ∂λ∂λgµν(x) + ∂ν∂µg
λ
λ(x) − ∂ν∂

λgµλ(x)− ∂µ∂
λgνλ(x) + gησ(x)

(

Γη
λλ Γσ

µν − Γη
νλ Γσ

µλ

)

. (3.41)

and Gλσ is the Einstein’s tensor of general relativity. Thus, for the gravitons of gravitational field of general relativity
of Einstein, Gλσ=0. It may be noted that we shall retain |0, k > and < k, 0| to indicate that the vacuum of the
superstring states is tachyonic.

4. THE AFFINE CONNECTION

There have been many successful ways of deriving Einstein’s equation using the principle of equivalence. But the
study of quantum gravity implies that this principle should be replaceable by quantum mechanical methods which
includes perturbative and nonperturbative expansions. The effect of full gravitational interactions can be obtained by
replacing the ordinary derivatives by covariant derivatives or coderivatives. First we wish to justify the quantisation
scheme with plane waves for the gravitational field. We shall use classical recipes.

The coderivatives of Aµ(x) is given by

DνA
µ(x) = Aµ

;ν(x) = ∂νA
µ(x) + Γµ

ρνA
ρ(x). (4.1)
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where Γµ
ρν are 64 component affine connections which for Riemann-Christoffel tensors [27]. The transformation

property, when mapped from x to x′, is

Γ
′λ
µν =

∂x
′λ

∂xρ

∂xτ

∂x
′µ

∂xσ

∂x
′ν

Γρ
στ +

∂x
′λ

∂xρ

∂2xρ

∂x
′µ∂x

′ν
. (4.2)

The covariant derivative of the symmetric tensor gµν is

Dλgµν = gµν;λ = ∂λgµν − Γρ
λµgρν − Γρ

λνgρµ. (4.3)

But the affines, Γ’s and ∂λgµν vanish in local inertial coordinate system. Once a proper tensor is zero in one coordinate
system, it remains zero in all other coordinate systems. Therefore the covariant derivative of gµν is zero, so we get

∂λgµν = Γρ
λµgρν + Γρ

λνgρµ. (4.4)

Thus all the elements of gµν(x) are completely determined for all points in space time. By suitably adding three such
g’s and using equation (3.23)

Γλ
µν =

1

2
gλκ (∂µgκν + ∂νgκµ − ∂κgµν) . (4.5)

It must be remembered that the field strength has been quantised in terms of the sum of the plane waves only. The
result from such quantisation may not be valid in all points in the curved or flat space time. However we can argue
as follows. Since both the gµν and affine are symmetric, for distant parallelism for which there is well laid down
proceedure in affine geometry [27], any of the terms of Γλ

µν is of the form Γλ
µν ∼ −gλκ∂µgκν and a typical derivative

is gµ
α,σ ∼ −Γµ

ρσ gρ
α. Further, if the affine is symmetric, it can be shown that [27]

gα†
µ,ν = gα†

ν,µ, (4.6)

and can be expressed as the gradient of four scalar φµ,α = ∂µφα(x), so that for another point in the space time
x′(µ) = φµ(x),

g†µν =
∂x′µ
∂xν

, gνµ =
∂xµ

∂x′ν
(4.7)

If we substitute this to calculate Γ’s of equation (4.2), we obtain

Γ
′λ
µν = 0. (4.8)

Thus there always exits a mapping from x to x′, so that affinity is flat and vice versa, i.e. if there is flat affinity,
a particular mapping will make it a symmetric nonzero affinity. This justifies our use of plane wave in the Fourier
transform for quantisation of gravitation and the result will be true for all space time points and for other types
of expansion of the field. Most importantly gµν is the covariant and gµν is contravariant metric tensor of general
relativity. They are quantised in the interaction picture as given by equation (3.21).

5. CALCULATION OF AFFINES, RIEMANN AND RICCI TENSORS

Weinberg [25] has given a very convenient form for the Riemann- Christoffel curvature which is useful to calculate
the gravitational effects by replacing the ordinary derivatives. The quantum version has the same form

Rλµνκ = : ∂κ∂µgλν(x)− ∂κ∂λgµν(x) − ∂ν∂µgλκ(x)− ∂ν∂λgµκ(x) + gησ

(

Γη
νλ Γσ

µκ − Γη
κλ Γσ

µν

)

: (5.1)

The Ricci tensor Rλµλν is conveniently written as

Rµν = R(0)
µν +Rint(string)

µν (5.2)

where

R(0)
µν = ∂λ∂λgµν(x) + ∂ν∂µg

λ
λ(x)− ∂ν∂

λgµλ(x)− ∂µ∂
λgνλ(x), (5.3)
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is without gravitational interaction and

Rint(string)
µν = gησ

(

Γη
λλ Γσ

µν − Γη
νλ Γσ

µλ

)

(5.4)

contains the interaction part.
We now proceed to find expressions for the affines. Affines as quantum operators should be expressions with normal

ordering. The product of gµν ’s and their derivative contain product of two distinct pieces. All the fermion pairs of
the affines separate out from the factors eik.X as the bosonic αµ’s commute with the fermionic pairs bµ,j, bν,k. The
bosonic part again consists of a zero mode piece and nonzero mode piece. We shall use the product form which
appears to be different for normal vertex forms. The zero part of each gµν(k)’s tachyonic part piece is

W0(k, z) = exp

(

k.

∞
∑

n=1

1

n
α−nz

n

)

· exp
(

−k.
∞
∑

n=1

1

n
αnz

−n

)

. (5.5)

The correlation function is found by using

〈
( ∞
∑

n=1

1

n
α−nz

n
2

)( ∞
∑

n=1

1

n
αnz

−n
1

)

〉 = ηµν

∞
∑

n=1

1

n

(

z2

z1

)n

. (5.6)

We have specified earlier that |z1|=1 and |z2|=1 to have the state |0, k〉,

〈W0(k1)W0(k2)〉 = ek1·k2ζ(1), (5.7)

Sometimes this number is left as a parameter λ. We have already adjusted this in equation (3.23). Similarly

〈W0(k1)W0(k2)W0(k3)〉 = e(k1.k2+k3.k2+k1.k3)ζ(1), (5.8)

The zero mode parts are given by [12],

〈Z0(k1)Z0(k2)〉 = eik1.x eik2.x, (5.9)

and

〈Z0(k1)Z0(k2)Z0(k3)〉 = eik1.x eik2.x eik3.x. (5.10)

The product V0 = W0 Z0 is then

〈V0(k1)V0(k2)〉 = eik1.x eik2.x e(k2.k1)ζ(1), (5.11)

〈V0(k1)V0(k2)V0(k3)〉 = eik1.x eik2.x eik3.x e(k2.k1+k2.k3+k1.k3)ζ(1). (5.12)

and so on, as given in Ref.[12]. The products and derivatives of the string model metrices gµν satisfy simple commu-
tation relations as given in equation (3.9).

∂κgµν(x) ∂ρgλσ(x) =

∫

kκd3 k√
2k0(2π)3

k′ρd
3 k′

√

2k′0(2π)3

(

aµν† e−ikx − aµν eikx
)

(

a
†
λσ e−ik′x − aλσ eik′x

)

. (5.13)

Because of the vacuum |0, k〉 and 〈k′, 0| ,

: ∂κgµν(x) ∂ρg
λσ(x) : =

∫

d3 k√
2k0(2π)3

d3 k′
√

2k′0(2π)3
〈k, 0|

[

aµν , aλσ†] |0, k′〉 e−k.k′ζ(1) kκk′ρ (5.14)

=

∫

d3 k√
2k0(2π)3

d3 k′
√

2k′0(2π)3
(2π)3 |c|2 fµν,λσ 〈k, 0|0, k′〉e−k.k′ζ(1) kκk′ρ

=

∫

d3 k

(2π)3
|c|2 e−k2ζ(1) fµν,λσ kκkρ〈k, 0|0, k〉 (5.15)

=

∫

d3 k

(2π)3
(

ηµληνσ + ηµσηνλ
)

|c|2 e−k2ζ(1) kκkρ〈k, 0|0, k〉. (5.16)
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We use the above equation to obtain,

(∂κgµν(x)) (∂ρgλσ(x)) =

∫

d3 k

(2π)3
kκkρf

µν
λσ〈k, 0|0, k〉. (5.17)

So, the general form of an affine given by

Γλ
µν(x) =

1

2
gλκ (∂µgκν + ∂νgκµ − ∂κgµν) , (5.18)

is in operator form reduces to

: Γλ
µν(x) : = i

∫

d3k

(2π)3
(ηλ

ν kµ + ηλ
µkν )〈k, 0|0, k〉|c|2 e−k2ζ(1). (5.19)

Here we have used the relation
∫

d3k

(2π)3
d3k′

(2π)3
kµk

′ν〈k, 0|0, k〉〈k′, 0|0, k′〉 = lim
x→0

∫

d3k

(2π)3
d3k′

(2π)3
∂µ∂νei(k−k′)x〈k, 0|0, k〉〈k′, 0|0, k′〉

=

∫

d3k

(2π)3
kµkν〈k, 0|0, k〉|c|2 e−k2ζ(1). (5.20)

Thus we get the affines occurring in equation(5.4) as follows.

: Γη
λλ(x) : = i

∫

d3k

(2π)
3 (2kη)〈k, 0|0, k〉|c|2 e−k2ζ(1), (5.21)

: Γσ
µν(x) : = i

∫

d3k′

(2π)3
(ησ

ν k
′
µ + ησ

µk
′
ν)〈k′, 0|0, k′〉|c|2 e−k

′
2ζ(1), (5.22)

: Γη
νλ(x) : = i

∫

d3k

(2π)
3 (ηη

νkλ + η
η
λkν)〈k, 0|0, k〉|c|2 e−k2ζ(1), (5.23)

and : Γσ
µλ(x) : = i

∫

d3k′

(2π)
3 (ησ

µk
′
λ + ησ

λk
′
µ)〈k′, 0|0, k′〉|c|2 e−k

′
2ζ(1). (5.24)

Taking the product and difference of the affines at the same point ‘x’, and using equation(5.20) we obtain the
interaction part of the Riemann tensor from equation(5.4),

Rint(string)
µν =

∫

d3k

(2π)3
(

k2ηµν − kµkν

)

〈k, 0|0, k〉|c|2 e−k2ζ(1). (5.25)

Let us now consider the expression, which is the remaining exact part of the Ricci tensor

Rint
µν = :

1

2
gµν

(

∂λ∂σg
λσ −�gγ

γ

)

: . (5.26)

Using the equations(5.16) and (5.17), equation (5.26) can be written as

Rint
µν =

∫

d3k

(2π3)

(

k2ηµν − kµkν

)

〈k, 0|0, k〉|c|2 e−k2ζ(1). (5.27)

So,

Rint(string)
µν = Rint

µν . (5.28)

Thus the Ricci tensor of general relativity,

Rµν = R(0)
µν +Rint

µν . (5.29)

is exactly reproduced in quantised form. It is perhaps one of the rare instances where the first order perturbation, as
suggested, gives the exact result. The product of operators in the expression for the affains and Ricci tensor appear
to be independent of x. This is usually the case of operator product expansions [21], or the correlation function in
Green function method of calculations in quantum field theory.
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6. CONCLUSION

We have constructed a symmetric second rank tensor which represents the gravitational metric field strength.
Using the equivalence of string states and field operators, this has been quantised in terms of the creation and
annihilation operators given in equation (3.21). The metric quantum operator has all the properties of the metric

of general relativity. In the interaction picture, it satisfies the weak field Einstein equation R
(0)
µν = 0 for Ricci

tensor, without the affines. The Riemann-Christoffel affines which occur by replacing the ordinary derivatives by
coderivatives are evaluated in detail. It is found that, as another rare case, the first order calculation of Rint

µν gives

the exact Rµν = R
(0)
µν +Rint

µν = 0 of general relativity in vacuum. The gravitational self stress energy in vacuum also
vanishes, as shown below. The exact Einstein equation can be written, following Weinberg [25],

R(0)
µν −

1

2
ηµνR

(0)λ
λ = −8πG(Tµν + tµν), (6.1)

where tµν is the exact energy momentum tensor of the gravitational field itself and is given by

tµν =
1

8πG

[

Rµν −
1

2
gµνR

λ
λ −R(0)

µν +
1

2
ηµνR

(0)λ
λ

]

. (6.2)

This is seen to vanish due to equations (5.3) and (5.29).
So far, quantum gravity in vacuum has appeared non-renormalisable. Here we have attempted to show a new way

for further investigation to renormalise quantum gravity using superstring states. Unlike most of the previous works
on quantum gravity, we have not used a power series expansion of the metric tensor gµν(x) around a flat metric
ηµν = (− + + +) with a coupling constant κ having the dimension of length as

gµν = ηµν + κφµν . (6.3)

Since the Riemann tensor and as a consequence, each term of the interaction Lagrangian

L =

√−g
16πG

g†µνR
(0)
µν

=

√−g
16πG

[

−∂λg†µν∂λgµν − ∂νg
†
µν∂µg

λ
λ + ∂νg

†
µν∂λgµλ + ∂µg†µν∂λgνλ.

]

+ total derivatives (6.4)

contains the product of two affines, each with one derivative and two φµν ’s of equation(6.3), the power counting for
renormalisability comes out to be N = 6. As a result, the theory has very little chance of making quantum gravity
finite by the usual renormalisation procedure. When ηµν is the zeroth order of gµν in the conventional perturbation

calculation, one would get the graviton denoted by the Ricci tensor R
(1)
µν as given by Weinberg [25]. The complication

in writing the equations for R
(1)
µν and R

(2)
µν increases enormously; it will also be complicated , if not worse, in quantum

gravity. Instead, by treating the metric tensor as operator function in the gravitational field in our case, the exact
Ricci tensor is obtained in the first order itself.

In summary,we construct a four dimensional superstring physical state as a second rank Lorentz tensor equivalent
operator with zero mass. These states are quantised as exact equivalent operators like the Gupta-Bleuler formalism.
The metric tensor, which is not traceless, is found to contain both the graviton and the dilaton. The interaction
Lagrangian, as usual, is the difference of the product of two affines. The product of two field strengths like gµν(x)gνλ(x)
which, when treated as quantum operators, turns out to be δµ

λ . In actual calculation, the two metrics at different
space time are usually contracted but not the traceless field quanta of graviton alone. As a result, the number for
renormalisability of these becomes N = 4. So the interaction Lagrangian theory, as formulated here, is possibly
renormalisable. Perhaps the zeroth and first order are enough for obtaining correct results and may be a gift of the
principle of equivalence.

It will be interesting and very much necessary to study the interaction of gravity with matter and radiation not
only for self vacuum as we have done , and then establish our procedure for renormalisation of the quantum theory of
gravity with external energy-momentum tensor. One must also calculate graviton-graviton scattering to make definite
statement about the renormalisability of quantum gravity interacting with matter. It is worthwhile to point out that
Mandelstam [5] has noted that it is only necessary ‘to treat a gravitational field within itself since such a system
possesses all the essential complications of the problem of gravity’.
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