Reduction of 1,4-dichlorobut-2-yne by titanocene to a 1,2,3-butatriene. Formation of a 1-titanacyclopent-3-yne and a 2,5-dititanabicyclo[2.2.0]hex-1(4)-ene

Vladimir V. Burlakov,^{*a*} Perdita Arndt,^{*b*} Wolfgang Baumann,^{*b*} Anke Spannenberg,^{*b*} Uwe Rosenthal,^{**b*} Pattiyil Parameswaran^{*c*} and Eluvathingal D. Jemmis^{**c*}

^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 117813, Moscow, Russia. Fax: +7 0951355085; Tel: +7 0951359252; E-mail: vvburl@ineos.ac.ru

^b Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V., Buchbinderstr. 5-6, D-18055 Rostock, Germany. Fax: +49 3814669376; Tel: (int.+49)3814669376;

E-mail: uwe.rosenthal@ifok.uni-rostock.de

^c School of Chemistry, University of Hyderabad, Hyderabad 500 046, India. Fax: +91 4023010917; Tel: +91 4023010221; E-mail: edjsc@uohyd.ernet.in

Received (in Cambridge, UK) 4th May 2004, Accepted 2nd July 2004 First published as an Advance Article on the web 11th August 2004

The 2,5-dititanabicyclo[2.2.0]hex-1(4)-ene (bis-titanocene- μ -(*Z*)-1,2,3-butatriene complex) (3) is formed starting from [Cp₂Ti(η^2 -Me₃SiC₂SiMe₃)] by *in situ* generated titanocene and 1,4-dichlorobut-2-yne *via* the 1-titanacyclobut-3-yne (2).

The complexation of titanocene with butatriene was described by Maercker, but the suggested structures resulting from Me₂C=C=C=CMe₂ and "Cp₂Ti" gave further reactions with CH-activation to yield more stable complexes.¹ Suzuki and coworkers recently reported 1-zirconacyclopent-3-ynes, formed from a divalent zirconocene-equivalent "Cp₂Zr" (generated by the Negishi reagent, [Cp₂ZrCl₂] and 2 equivalents of *n*-BuLi) with 1,4-disubstituted (Z)-butatrienes RHC=C=C=CHR ($R = Me_3Si$, *t*-Bu).² In the reaction mixture of [Cp₂ZrCl₂], 1,4-dichlorobut-2-yne and 2 equivalents of magnesium, even the coordination of an unsubstituted butatriene $H_2C=C=C=CH_2$ with the "Cp₂Zr" formed, to give 1-zirconacyclopent-3-yne was realized.³ Closely related 1-metallacyclopenta-2,3,4-trienes (five-membered metallacyclocumulenes)⁴ were obtained in reactions of 1,3-butadiynes RC=C-C=CR by using the excellent metallocene sources $[Cp_2M(\eta^2-Me_3SiC_2SiMe_3)]^5$ Both types of rather exotic metallacycles were discussed and compared by calculations⁶ and prompted us to report here on the first results of reactions of $[Cp_2Ti(\eta^2 Me_3SiC_2SiMe_3$)] with ClCH₂C=CCH₂Cl.

Compound **2** is formed by the reaction of two equivalents of $[Cp_2Ti(\eta^2-Me_3SiC_2SiMe_3)]$ (1) with $ClCH_2C\equiv CCH_2Cl$ together with the liberation of $Me_3SiC_2SiMe_3$ and $[Cp_2TiCl_2]$ (Scheme 1).†‡

The composition of the diamagnetic complex **2** was verified by analytical and spectral data and by reaction with a second "Cp₂Ti". The ¹H NMR (δ (CH₂) 3.03) and ¹³C{¹H} NMR signals (δ (CH₂): 51.2; (C=C) 106.9 ppm and the IR data (ν (C=C) 2029 cm⁻¹) of complex **2** correspond very well to those of the analogous zirconium complex (¹H NMR: δ (CH₂) 2.73; ¹³C{¹H} NMR: δ (CH₂): 38.64; (C=C) 102.45 ppm and IR (ν (C=C) 2018 cm⁻¹).³

The molecular structure of **2** represents a resonance structure between a 1-titanacyclopent-3-yne [Cp₂Ti(η^2 -1,2,3,4-CH₂C=CCH₂)] and a titanocene- η^4 -(*E*)-butatriene complex [Cp₂Ti(η^4 -(*E*)-H₂C=C=C=CH₂)] as discussed before for the analogous zirconium complex,^{3,6} containing chelating σ -propargyl or π -allenyl structural elements.⁷

Complex 2 reacts with $[Cp_2Ti(\eta^2-Me_3SiC_2SiMe_3)]^5$ to form

Scheme 1 Preparation of complexes.

complex **3** which can also be obtained by a 3:1 reaction of $[Cp_2Ti(\eta^2-Me_3SiC_2SiMe_3)]$ with $ClCH_2C=CCH_2Cl$ (Scheme 1).§[

The X-ray crystal structure analysis of **3**¶ (Fig. 1) revealed two bent titanocenes which are bridged symmetrically by a "zig-zag" C4-ligand. The four carbon and two titanium atoms are in a plane with a mean deviation of 0.0017 Å. The central bond of the C₄-ligand is coordinated to both titanium centers, unsymmetrically for each titanium atom [C1–C(1A) 1.325(5); C1–Ti1 2.152(3); C(1A)–Ti1 2.268(3) Å], whereas each of the methylene groups is coordinated to only one Ti atom [C2–Ti1 2.167(3); C1–C(2A) 1.443(4) Å]. By this coordination a bonding mode is formed with a C1–C(1A)–C2 angle of 135.1(3)°.

The molecular structure of **3** is represented by the resonance structures of a butynediyl-bridged σ -propargylic complex (**A**) and a butatriene-bridged π -complex (**B**), but in contrast to complex **2** here in a bridging mode (Scheme 2).⁶ Despite that, the structure of **3** as a μ -*trans*-butatriene complex is best described as a dititanabicycle (**C**) in analogy with μ -*trans*-butadiyne complexes (**D**), formed by analogous titanocene complexation of 1-titanacyclopenta-2,3,4-trienes (five-membered titanacyclocumulenes)⁴ (Scheme 3).⁵ **3** is not a σ -propargyl or a π -allenyl complex^{6,7} and is also different from the "bridged allylic" structures found in μ -butatriene-bis(tricarbonyliron) complexes^{8*a*} or substituted butatriene dianion dilithium, ^{8*b*} μ -butyne-1,4-diyl^{8*b*} structures as well as μ -butadiyne complexes with μ -(η^2 , η^2)-(PhC=C=C=CPh) units.^{8*c*}

Fig. 1 Molecular structure of complex 3. Hydrogen atoms except the H-atoms of the C₄-ligand are omitted for clarity. The thermal ellipsoids correspond to 30% probability.

Scheme 2 Resonance structures of complex 3.

Scheme 3 Formation of μ -butadiyne complexes (D).

We have studied the structure and bonding of these molecules using Density Functional Theory calculations (B3LYP/ LANL2DZ).9 The calculated geometrical parameters are in close agreement with the experimental structure. The bonding in 3 is best described by treating the bridging ligand as formally $[H_2CCCCH_2]^{(-4)}$ species, making Ti(+4). The C1–C(1A) π bond perpendicular to the TiC₄Ti plane does not interact substantially with the metals. The remaining eight valence electrons of the [H₂CCCCH₂]⁽⁻⁴⁾ ligand occupy four in-plane delocalized orbitals resulting from the interaction with the Cp₂Ti fragment orbitals. The bonding here is very similar to that in the μ -trans-butadiyne complex $[Cp_2Ti(HCCCCH)TiCp_2]$ (type D) except that 3 has an ethylenic π bond in place of the *trans*-butadiene of the butadiyne complex.¹⁰ A C_{2v} isomer of 3 derived directly from the complexation of the middle C1-C(1A) bond of 2 is calculated to be higher in energy by 9.00 kcal mol⁻¹. Experimental and theoretical studies on the details of this species, its conversion to 3, and further transformations of 3 are currently in progress.

This work was supported by the SPP 1118 of the Deutsche Forschungsgemeinschaft (RO 1269/5–1) and the Russian Foundation for Basic Research (Project code 02-03-32589).

Notes and references

† General procedure for the preparation of complex 2: complex 1 (2.040 g, 5.85 mmol) was dissolved in *n*-hexane (20 mL) under Ar. The resulting yellow-brown solution was filtered, and ClCH₂C≡CCH₂Cl (0.286 mL, 2.93 mmol) was added to the resulting solution under stirring. The solution rapidly became brown and a dark-red precipitate of [Cp₂TiCl₂] was formed. The mixture was allowed to stand in an argon atmosphere at 20 °C. After 24 h the solution was filtered and evaporated to 10 ml under vacuum. Upon cooling to −78 °C for 1 day, brown crystals were formed, which a small amount of cold *n*-hexane and dried under vacuum. Yield of **2** was 0.454 g (65%), mp 211–212 °C (dec. at slow heating (3 °C per min); at fast heating (20 °C per min) blows up at *ca.* 145–150 °C) under Ar.

‡ *Data* for **2**: elemental analysis calcd for C₁₄H₁₄Ti: C, 73.07; H, 6.13. Found: C, 72.43; H 6.19%. ¹H NMR (C₆D₆, 297 K): δ 3.03 (s, 4H, CH₂); 4.68 (s, 10H, Cp). ¹³C{¹H} NMR (C₆D₆, 297 K): δ 51.2 (CH₂); 102.4 (Cp); 106.9 (C≡C). IR (Nujol mull, cm⁻¹): 2029 (weak, νC≡C). MS (70 eV, *mlz*): 230 [M]⁺, 178 [Cp₂Ti]⁺, 113 [CpTi]⁺.

§ General procedure for the preparation of complex 3: Complex 1 (0.486 g, 1.38 mmol) was dissolved in toluene (7–8 mL) under Ar. The obtained

solution was filtered and added gradually to a filtrated brown solution of **2** (0.298 g, 1.29 mmol) in 7–8 mL of toluene. The resulting solution rapidly turned green and crystals of **3** appeared on the bottom and walls of the vessel. After 24 h the solution was decanted. Subsequent washing of the dark green crystals with cold toluene and drying in vacuum gave 0.485 g (92%) of **3**, mp 220–222°C (dec.) under Ar.

¶ *Data* for 3: elemental analysis calcd for $C_{24}H_{24}Ti_2$: C, 70.62; H, 5.93. Found: C, 70.14; H 5.88%. ¹H NMR (C_6D_6 , 297 K): δ 3.97 (br., 4H, CH₂); 5.18 (s, 20H, Cp). ¹³C{¹H} NMR (C_6D_6 , 297 K): δ 85.5 (CH₂); 108.5 (Cp); 153.4 (C=C). MS (70 eV, *m/z*): 408 [M]⁺, 406 [M - 2H]⁺, 352 [M - C₄H₈]⁺, 178 [Cp₂Ti]⁺.

|| X-Ray crystal structure analysis of 3: STOE-IPDS diffractometer, graphite monochromated MoK α radiation, solution of the structure by direct methods (SHELXS-86¹¹), refinement with full-matrix least-squares techniques against F^2 (SHELXL-93¹²). Crystal data: monoclinic, space group $P_{2_1/n}$, a = 8.687(2), b = 7.887(2), c = 13.353(3) Å; $\beta = 90.17(3)^\circ$; V = 914.9(4) Å³, Z = 2, $D_c = 1.482$ g cm⁻³; 2621 reflections measured, 1429 were independent of symmetry and 1221 were observed [$I > 2\sigma(I)$], R1 = 0.036, wR^2 (all data) = 0.096, 126 parameters. CCDC 239591. See http://www.rsc.org/suppdata/cc/b4/b406494a/ for crystallographic data in .cif or other electronic format.

- 1 A. Maercker and A. Groos, Angew. Chem., 1996, 108, 216, Angew. Chem., Int. Ed. Engl., 1996, 35, 210.
- 2 N. Suzuki, M. Nishiura and Y. Wakatsuki, Science, 2002, 295, 660.
- 3 N. Suzuki, N. Ahihara, H. Takahara, T. Watanabe, M. Iwasaki, M. Saburi, D. Hashizume and T. Chihara, J. Am. Chem. Soc., 2004, 126, 60.
- 4 U. Rosenthal, P.-M. Pellny, F. G. Kirchbauer and V. V. Burlakov, Acc. Chem. Res., 2000, 33, 119.
- 5 (a) U. Rosenthal and V. V. Burlakov, in *Titanium and Zirconium in Organic Synthesis*, ed. I. Marek, Wiley-VCH, Weinheim, 2002, p. 355; (b) U. Rosenthal, V. V. Burlakov, P. Arndt, W. Baumann and A. Spannenberg, *Organometallics*, 2003, **22**, 884.
- 6 (a) K. C. Lam and Z. Lin, Organometallics, 2003, 22, 3466; (b) E. D. Jemmis, A. K. Phukan, H. Jiao and U. Rosenthal, Organometallics, 2003, 22, 4958; (c) U. Rosenthal, Angew. Chem., 2004, 116, 3972, Angew. Chem., Int. Ed. Engl. 2004, 43, 3882.
- 7 (a) P. W. Blosser, J. C. Gallucci and A. Wojcicki, J. Am. Chem. Soc., 1993, **115**, 2994; (b) P. W. Blosser, J. C. Gallucci and A. Wojcicki, J. Organomet. Chem., 2000, **597**, 125.
- 8 (a) J. N. Gerlach, R. M. Wing and P. C. Ellgen, *Inorg. Chem.*, 1976, 15, 2959; (b) T. Matsuo, M. Tanaka and A. Sekiguchi, *Chem. Commun.*, 2001, 503 and references cited therein; (c) Y. Wang, H. Wang, H. Wang, H.-S. Chan and Z. Xie, *J. Organomet. Chem.*, 2003, 683, 39.
- 9 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) A. D. Becke, Phys. Rev. A., 1998, 38, 2398; (c) C. Lee, W. Yang and R. G. Parr, Phy. Rev. B, 1988, 37, 785; (d) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299; (e) Gaussian 03, Revision B.03, M. J. Frisch, et.al., Gaussian, Inc., Pittsburgh, PA, 2003.
- 10 (a) E. D. Jemmis and K. T. Giju, Angew. Chem., Int. Ed. Engl., 1997, 36, 606; (b) E. D. Jemmis and K. T. Giju, J. Am. Chem. Soc., 1998, 120, 6952; (c) P. N. V. Pavan Kumar and E. D. Jemmis, J. Am. Chem. Soc., 1988, 110, 125.
- 11 G. M. Sheldrick, Acta. Crystallogr., Sect. A, 1990, 46, 467.
- 12 SHELXL-93, G. M. Sheldrick, University of Göttingen, Germany, 1993.