Reduction of 1,4-dichlorobut-2-yn-1,3-butatriene. Formation of a 1-titanacyclopent-3-yne and a 2,5-ditinatanobicyclo[2.2.0]hex-1(4)-ene

Vladimir V. Burlakov, Perdita Arndt, Wolfgang Baumann, Anke Spannenberg, Uwe Rosenthal, Pattiyil Parameswaran and Eluvathingal D. Jemmis

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 117813, Moscow, Russia. Fax: +7 0951355085; Tel: +7 0951359252; E-mail: vburl@ineos.ac.ru

Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V., Buchbinderstr. 5-6, D-18055 Rostock, Germany. Fax: +49 3814669376; Tel: (int.+49) 3814669376; E-mail: uwe.rosenthal@fok.uni-rostock.de

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India. Fax: +91 4023010917; Tel: +91 4023010221; E-mail: edjsc@uohyd.ernet.in

Received (in Cambridge, UK) 4th May 2004, Accepted 2nd July 2004

First published as an Advance Article on the web 11th August 2004

The 2,5-ditinatanobicyclo[2.2.0]hex-1(4)-ene (bis-titanocene-µ-(Z)-1,2,3-butatriene complex) (3) is formed starting from [Cp₂Ti(η²-Me₂SiC₅SiMe₃)] by in situ generated titanocene and 1,4-dichlorobut-2-yne via the 1-titanacyclopent-3-yne (2).

The complexation of titanocene with butatriene was described by Maeker, but the suggested structures resulting from Me₂C–C–C–Me₂ and “Cp₂Ti” further reactions with CH-activation to yield more stable complexes. Suzuki and coworkers recently reported 1-zirconacyclopent-3-yne was realized. Despite that, the structure of the complex was not a σ-propargyl or a π-allyl complex and is also different from the “bridged allylic” structures found in μ-butatriene-bis(tricarbonyliron) complexes or substituted butatriene diionium diildinium, μ-butene-1,4-diyl and units as well as μ-butadiyne complexes with μ-[η₅-C₅(PhC–C–C–Ph)] units.

The X-ray crystal structure analysis of 3 revealed two bent titanocenes which are bridged symmetrically by a “zig-zag” C₄-ligand. The four carbon and two titanium atoms are in a plane with a mean deviation of 0.0017 Å. The central bond of the C₄-ligand is coordinated to both titanium centers, unsymmetrically for each titanium atom with C₃–C(1A) 1.325(5); C1–Ti 2.152(3); C(1A)–Ti 2.286(3) Å, whereas each of the methylene groups is coordinated to only one Ti atom with C2–Ti 2.167(3); C1–C(2A) 1.443(4) Å. By this coordination a bonding mode is formed with a C(1)–C(1A)–C(2) angle of 135.1(3)°.

The molecular structure of 3 is represented by the resonance structures of a butynediyl-bridged σ-propargylic complex (A) and a butatriene-bridged π-complex (B), but in contrast to complex 2 here in a bridging mode (Scheme 2). The structure of complex 3 as a μ-trans-butatriene complex is best described as a zitanobicycle (C) in analogy with μ-trans-butadiyne complexes (D), formed by analogous titanocene complexation of 1-titanacyclopenta-2,3,4-trienes (five-membered titanacycloheptulenes) (Scheme 3).

![Scheme 1 Preparation of complexes.](image1)

![Scheme 2 Resonance structures of complex 3.](image2)
The calculated geometric parameters are in close agreement with the experimental structure. The bonding in 3 is best described by treating the bridging ligand as formally \([\text{H}_2\text{CCCCH}_2]^{2-} \) species, making Ti(4+) the TiCl\(_6\) plane does not interact substantially with the metals. The remaining eight valence electrons of the \([\text{H}_2\text{CCCCH}_2]^{2-} \) ligand occupy four in-plane delocalized orbitals resulting from the interaction with the Cp-Ti fragment orbitals. The bonding here is very similar to that in the \(\mu\text{-trans-butadiyne complex} [\text{Cp}_2\text{Ti}(\text{HCCCH})\text{TiCl}_3] \) (type D) except that 3 has an ethylene \(\pi \) bond in place of the \(\mu\text{-trans-butadiene of the butadiyne complex}. \)

A \(\text{C}_2\text{v} \) isomer of 3 derived directly from the complexation of the middle \(\text{C}1-(\text{A}) \) bond of 2 is calculated to be higher in energy by 9.00 kcal mol\(^{-1}\). Experimental and theoretical studies on the details of this species, its conversion to 3, and further transformations of 3 are currently in progress.

This work was supported by the SPP 1118 of the Deutsche Forschungsgemeinschaft (RO 1269/5-1) and the Russian Foundation for Basic Research (Project code 02-03-32589).

Notes and references

\(^{\dagger} \) General procedure for the preparation of complex 2: complex 1 (2.040 g, 5.85 mmol) was dissolved in \(n\)-hexane (20 mL) under Ar. The resulting yellow-brown solution was filtered, and CHCl\(_3\)=CCH\(_2\)Cl (0.286 mL, 2.93 mmol) was added to the resulting solution under stirring. The solution rapidly became brown and a dark red precipitate of \([\text{Cp}_2\text{Ti}] \) formed. The mixture was allowed to stand in an argon atmosphere at 20 °C for 9 days, brown crystals were formed, which were separated from the mother liquor by decanting, and washed with a small amount of cold \(n\)-hexane and dried under vacuum. Yield of 2 was 0.454 g (65%), mp 211–212 °C (dec. at slow heating (3 °C per min); at fast heating (20 °C per min) blows up at ca. 145–150 °C) under Ar.

\(^{\ddagger} \) Data for 2: elemental analysis calcd for \(\text{Cp}_2\text{Ti} \): C, 72.43; H, 6.13. Found: C, 72.43; H 6.19%. \text{H NMR} (CD\(_2\)\(_2\), 297 K): \(\delta \) 3.03 (s, 4H, \(\text{CH}_2 \)); 6.83 (s, 10H, Cp). \text{C}[\text{H}] \text{NMR} (CD\(_2\)\(_2\), 297 K): \(\delta \) 51.2 (CH\(_2\)); 102.4 (CH); 106.9 (C\(_{\text{Ti}}\)). IR (Nujol, cm\(^{-1}\)): 2029 (weak, \(v\text{C}-\text{C} \)). MS (70 eV, m/z): 230 [M\(^+\)], 178 [Cp-Ti\(^+\)], 113 [Cp-Ti\(^{2+}\)].

\(^{\S} \) General procedure for the preparation of complex 3: Complex 1 (0.486 g, 1.38 mmol) was dissolved in toluene (7–8 mL) under Ar. The obtained solution was filtered and added gradually to a filtered brown solution of 2 (0.298 g, 1.29 mmol) in 7–8 mL of toluene. The resulting solution rapidly turned green and crystals of 3 appeared on the bottom and walls of the vessel. After 24 h the solution was decanted. Subsequent washing of the dark green crystals with cold toluene and drying in vacuum gave 0.485 g (92%) of 3, mp 220–222 °C (dec.) under Ar.

\(^{*} \) Data for 3: elemental analysis calcd for \(\text{Cp}_2\text{H}_2\text{Ti} \): C, 70.62; H, 5.93. Found: C, 70.14; H 5.88%. \text{H NMR} (CD\(_2\)\(_2\), 297 K): \(\delta \) 3.97 (br. 4H, \(\text{CH}_2 \)); 5.18 (s, 2H, Cp). \text{C}[\text{H}] \text{NMR} (CD\(_2\)\(_2\), 297 K): \(\delta \) 85.5 (CH\(_2\)); 108.5 (Cp); 153.4 (C-C). MS (70 eV, m/z): 408 [M\(^+\)], 406 [M–2H\(^+\)], 352 [M–C\(_2\text{H}_4\)], 178 [Cp-Ti\(^+\)].

\(^{\|} \) X-Ray crystal structure analysis of 3: STOE-IPDS diffractometer, graphite monochromated MoK\(_\alpha\) radiation, solution of the structure by direct methods (SHELXS-86\(^{[15]} \)), refinement with full-matrix least-squares techniques against \(F^2 \) (SHELXL-93\(^{[16]} \)). Crystal data: monoclinic, space group \(\text{P}2_1/\text{c} \), \(a = 8.878(2), b = 7.887(2), c = 13.353(3) \text{ Å} \). \(\beta = 90.17(3) \). \(V = 914.9(4) \text{ Å}^3 \). \(Z = 2 \). \(D_x = 1.482 \text{ g cm}^{-3} \). 2621 reflections measured, 1429 were independent of symmetry and 1221 were observed \((I > 2\sigma(I)) \). \(R1 = 0.036, wR^2(\text{all data}) = 0.096, 126 \) parameters. CCDC 239591. See http://www.rsc.org/suppdata/cc/b4/b406494a for crystallographic data in cif or other electronic format.