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We evaluate how well “EOBNR” waveforms, obtained from the effective one-body formalism,
perform in detecting gravitational wave (GW) signals from binary black hole (BBH) coalescences
modelled by numerical relativity (NR) groups participating in the second edition of the numerical
injection analysis (NINJA-2). In this study, NINJA-2 NR-based signals that are available in the
public domain were injected in simulated Gaussian, stationary data prepared for three LIGO-Virgo
detectors with early Advanced LIGO sensitivities. Here we studied only non-spinning BBH signals.
A total of 2000 such signals from 20 NR-based signal families were injected in a two-month long data
set. The all-sky, all-time compact binary coalescence (CBC) search pipeline was run along with an
added coherent stage to search for those signals. We find that the EOBNR templates are only slightly
less efficient (by a few percent) in detecting non-spinning NR-based signals than in detecting EOBNR
injections. On the other hand, the coherent stage improves the signal detectability by a few percent
over a coincident search. In regards to signal parameters, such as the binary component masses and
signal end-time, the magnitude and nature of the systematic errors in their measurement show some
interesting but limited variations. In particular, a very small fraction of signals are systematically
detected with templates of slightly more massive systems and, therefore, have a measured end-time
that is earlier than the true one. The same signals have a worse match than other signals with
EOBNR templates of the same parameters. We compare these observations with the results of a
study where EOBNR templates were used to find EOBNR signal injections to account for any biases
that might arise from the data analysis pipeline itself. We discuss how our results can be utilized
by various source modelling groups and data analysis pipelines to explore ways of improving the
detectability of BBH signals.

PACS numbers: 04.30.Tv,04.30.-w,04.80.Nn,97.60.Lf

I. INTRODUCTION

Inspiraling binary black holes (BBHs) are one of the most promising gravitational-wave sources that the sec-
ond generation ground-based detectors, such as the Advanced Laser Interferometer Gravitational-wave Observatory
(aLIGO) [1] and Advanced Virgo (AdV) [2] detectors, are likely to detect. Currently these laser interferometric
detectors are being upgraded and will start collecting data in a few years’ time with a sensitivity improvement of
about an order of magnitude. The new detector KAGRA [3] is also expected to take data with a similar design
sensitivity later this decade. These detectors will define what is being termed as the Advanced Detector Era (ADE).
Second generation instruments will have sensitivity in a broader frequency band compared to the initial detectors
and will observe gravitational waves (GWs) from compact binary coalescence (CBC) signals starting at a lower fre-
quency. Observations of X-ray binaries IC10 X-1 [4] and NGC 300 X-1 [5] indicate that the masses of the stellar-mass
components of a BBH can be as high as 20− 30M⊙. The discovery of HLX-1 in ESO 243-49 that has a lower mass
limit of approximately 500 M⊙ presents strong evidence for the existence of intermediate-mass black holes [6]. As
described in Refs. [7] and [8], binary black holes with component masses that high or higher will be detectable in the
ADE detectors only through the merger and ringdown signals. This paper presents a search for BBH systems with
total mass 25M⊙ ≤M ≤ 100M⊙ and component masses 3M⊙ ≤ m1,m2 ≤ 97M⊙. Searches in real LIGO-Virgo data
for BBHs in the same mass range were conducted with Inspiral-Merger-Ringdown (IMR) templates in Refs. [7, 8].
The ability to detect GW signals arising from BBH coalescences crucially depends on the accuracy of the waveform

models used in designing search templates for detection pipelines. Estimation of parameters of BBH signals also
demands accurate knowledge of the inspiral, merger and ringdown phases of the waveforms [14]. In 2008, the Nu-
merical Injection Analysis (NINJA) collaboration was formed to facilitate the interaction of the Numerical Relativity
and the GW Data Analysis communities with the objective of modelling CBC signals and using them to perfect
GW search pipelines and parameter estimation algorithms. The main purpose of the first NINJA project (NINJA-1)
[15] was to foster the exchange of numerical-relativity waveforms to evaluate the performance of a variety of data
analysis pipelines in detecting them in simulated initial LIGO and Virgo detector noise. The NINJA-2 exercise, on
the other hand, creates the opportunity to test and compare detection pipelines more meaningfully than in NINJA-1
owing to the strict requirements imposed on the accuracy and length of the NR-based waveforms employed by it.
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FIG. 1: Comparison of early and final Advanced LIGO (aLIGO) and Advanced Virgo (Adv. Virgo) design amplitude spectral
densities (ASDs) [9]. The ASD is the square-root of the power spectral density (PSD) [10]. The red dotted and solid lines
represent early and zero-detuned high-power (ZDHP) aLIGO design ASDs, respectively [11]. The solid blue curve shows the
Adv. Virgo design ASD [12]. The blue dotted curve is obtained by rescaling it so that its horizon distance [13] is similar to
that corresponding to the early aLIGO ASD.

The NINJA-2 project required each BBH waveform to include at least five orbits of usable data before merger, i.e.
neglecting the initial burst of junk radiation. Additionally, NR waveform amplitude had to be accurate to within 5of
gravitational-wave frequency) should have an accumulated uncertainty over the entire inspiral, merger and ringdown
(of the numerical simulation) of no more than 0.5 rad. Following these restrictions eight NR groups have contributed
56 waveforms to NINJA-2 project [16]. Since the typical signal will have more cycles in band than what NR alone can
produce at the desired accuracy with the computational resources at hand, post-Newtonian theory is used to model
the remaining cycles to produce long hybrid signals, which we will refer to here as pN-NR hybrid signals or simply
NR or NR-based signals. The NINJA-2 waveform-catalog paper [16] describes in detail the waveform requirements
and method used to construct the pN-NR hybrid waveforms.
In this paper, we quantify how well “EOBNR” waveforms, obtained from the effective one-body formalism [17]

by calibrating against a specific family of NR waveforms, namely, the ones obtained by the NASA-Goddard group
[17], perform in detecting pN-NR BBH signals modelled for NINJA-2. In NINJA-2, a variety of NR-based signals
were injected in simulated Gaussian, stationary data from three LIGO-Virgo detectors with early ADE sensitivities
(see Fig. 1). These signals were constructed with contributions from various numerical relativity groups (see Table
1 in Ref. [16]), and are available in the public domain [18]. For the study reported here we focus on non-spinning
BBH signals. A total of 2000 such signals from 20 pN-NR signal families were injected in a two-month long data set
[18]. The coincident all-sky, all-time compact binary coalescence (CBC) search pipeline [19] was run along with an
added coherent stage [20] to search for those signals. We also compare these observations with the results of a study
where EOBNR templates were used to find EOBNR signal injections to account for any biases that might arise from
the data analysis pipeline itself. We find that the EOBNR templates are slightly less efficient, by about a percent,
in detecting non-spinning NR-based signals than in detecting EOBNR injections. Also, the magnitude and nature
of the systematic error in the measurement of signal parameters show some interesting but limited variations. In
particular, a very small fraction of signals are systematically detected with more massive templates and, therefore,
have a measured end-time that is earlier than the true one. The same signals have a worse match than other signals
with EOBNR templates of the same parameters [16]. We show how a coherent all-sky, all-time search can improve
CBC detection efficiencies over a coincident analysis by improving the detection probability for any given false-alarm
probability. The coherent method requires coincidence of the signal arrival times and other signal parameters, just
like a coincident search method [19] does. But the former also checks for the consistency of the signal phases and
amplitudes in the various detectors in a network with a physical value for the signal time-delays across the detector
baselines. It also provides multi-baseline signal-based tests like the null-stream test that are effective in discriminating
real signals from noise artifacts, especially, when the sensitivities of the detectors are comparable [20–23].
Owing to the high computational cost of employing a fully coherent all-sky, all-time CBC search [24], here we

use the hierarchical coherent algorithm [20] to search for BBH signals. This algorithm and the detection statistic
are described in Sec. II. Coherent data analysis methods have been formulated for searching GW signals from a
variety of modelled and unmodelled sources [20, 23–27]. It is the optimal method in stationary, Gaussian noise
under the Neyman-Pearson criterion [10]. In CBC searches, it has been used recently in targeted searches [23] where
the time of occurrence of the signal and the sky-position of the source are known, e.g., from the observation of an
electromagnetic (EM) counterpart, such as a gamma-ray burst (GRB). It was demonstrated to perform better than
the targeted all-sky, all-time coincident search.
In Sec. III, we compare the performances of the coincident and the hierarchical coherent searches. We find the
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latter to be somewhat better than the former and explain what factors contribute to this improvement. We argue
that the level of improvement is as per expectations for a hierarchical method and that a fully coherent method
should be able to yield a much better detection efficiency. We present results from multiple sanity tests that check if
the signal injection recovery is consistent with our expectations of a BBH search. Moreover, the effect of signal-based
discriminatory tests, such as the chi-square and the null-stream tests, on the performance of that search is also
analyzed.
In Sec. IV, the accuracy with which various signal parameters are recovered is described. Those results are found

to be mostly devoid of systematic errors when compared with measurements of EOBNR injection parameters by
using EOBNR templates. The very few cases where a bias was found, the explanation lies in the mismatch of the
pN-NR hybrid signal in those cases with the EOBNR templates, as was seen in Ref. [16].

II. COINCIDENT AND COHERENT SEARCHES FOR BINARY BLACK HOLE SYSTEMS

A. Search algorithm

The all-sky, all-time coincident search pipeline that was used to detect injected pN-NR hybrid signals is described
in detail in Ref. [19]. On the other hand, the hierarchical coherent search pipeline used here was introduced in
Ref. [20]. The latter pipeline consists of the former with an additional stage that computes the coherent SNR of
all coincident triggers found by the former.1 We will variously refer to these two stages as the coincident (or the
first) and the coherent (or the second) stage, respectively. Both these stages comprise multiple steps. The coincident
stage first splits the strain data time-series from every detector in the network into 2048 sec chunks. The noise power
spectral density (PSD) [10] is estimated for each chunk and is used to construct a template bank for matched filtering.
Whenever the signal-to-noise (SNR) of the filtered output crosses a preset threshold, which was chosen to be 5.5 in
Refs. [7, 8] and in this work, the template parameters and the time of the trigger are saved for each detector. Next
the triggers from individual detectors are compared for coincidences in mass and end-time in two or more detectors to
identify multi-detector coincident GW candidate events. Triggers in a detector that do not find any coincidence with
a trigger in another detector are dropped from further analysis since currently we do not have a method for assessing
the noise background for single detector events. A candidate event is termed as double-coincident (triple-coincident)
if the masses and end-times of the triggers in two (three) detectors are found to be very similar [28], as stipulated in
advance of the searches. Since the maximum number of detectors available to this search is three, these are the only
two types of coincident candidate events possible here. In a real search, a candidate event is subjected to further
checks before it is announced as a GW event to ensure that it was not caused by an environmental or instrumental
artifact.
The coherent stage requires coincident trigger times in order to begin the coherent analysis. This analysis includes

multiple steps, which are similar to the coincident counterpart but include some important modifications. First, a
template bank, termed as the coherent bank, is constructed for the coherent analysis using the parameters of the
coincident triggers. The triggers identified by the coincident stage can have different mass parameters in different
individual detectors due to the different noise in each detector. By definition, however, the same template must be
used in every detector for computing the coherent SNR. Here, we choose the mass-template in the loudest detector
for that computation. Reference [20] explains this process in detail. That common template is next used to compute
the matched-filter output, which is in the form of an amplitude and phase time-series, for every detector in the
coincidence. That step also computes the template normalization factors and implements signal-based vetoes.
Similar to the matched-filtering step in the coincident stage, the coherent matched-filtering step used a thresholding

criterion in previous studies [20] to reduce the computational cost. This threshold value is set for the individual
detectors as in the coincident stage but the value is lowered to allow more triple coincident triggers compared to the
coincident counterpart. Typically, the values of previous studies used to be 5.5 for the coincident matched filtering
step and 5.0 for the coherent one. One of the main goals of the coherent analysis is to convert all double-coincident
triggers in the coincident stage to triples, whenever data are available from all three detectors, to improve the
significance of real signals. Although a lower threshold in the coherent stage on individual detector SNRs helps to
convert more double coincident events into triples many more remain as doubles when that threshold is non-zero. To
improve upon earlier studies, we devised a method to handle these additional background triggers more efficiently,
essentially, by reducing the maximum coincidence duration analyzed at a time. Lowering that threshold to zero
allows converting all triggers that were double-coincident in the first stage to triple-coincident ones 2. This provides
additional information about every single trigger due to the phase consistency check we can impose on the signal in
every participating detector. The matched-filtering step in the coherent stage is followed by the computation of the
coherent SNR and the null stream for every trigger. Since we use large number of templates in our template bank,

1 That stage also computes the null stream [21, 23], which will be described in Sec. III B.
2 Results from the new pipeline show that a few signals that show up as doubles in the coincident stage are still not converted into triples
in the coherent stage. This is because those (simulated) signals are very weak in the third detector, thereby, resulting in unphysical
time-delays between that and the other two detectors.
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FIG. 2: The injected decisive distance of found and missed pN-NR simulated signals plotted as a function of total mass of the
binary black hole system. The colorbar shows the coherent SNR. A total of 1033 injections were found out of 2000 injections
by the search pipeline. Red crosses represent missed simulated signals.

same feature in detector data can be picked by different template waveforms. This leads to have multiple GW triggers
at same end-time. Additionally, for coherent searches multiple sky positions can give triggers for same feature in
data. These set of triggers is also know as clusters. The last step of this pipeline clusters the gravitational-wave
triggers in time and sky position so that only the most significant of them is retained per cluster.

B. Detection Statistics

The BBH search algorithms exploit the knowledge of their GW signals to define the templates used for matched
filtering. Nine parameters describe the GW signal from nonspinning BBH sources studied here. These are the
two component masses m1 and m2, the luminosity distance to the source d, the right ascension and declination
angles (α, δ) specifying its sky position, its orbital inclination angle ι to the line-of-sight, the angle ψ describing
the orientation of its signal polarization ellipse, the signal coalescence time tc, and the signal coalescence phase φc.
Alternative mass parameters, in the form of the total mass M , the symmetrized mass-ratio η ≡ m1m2/M

2, and the
chirp mass Mchirp ≡ η3/5M are also often used to describe BBH signal parameters.
For the coincident analysis, the detection statistic used here is the one that was introduced in Ref. [8] for the

high-mass search in LIGO-Virgo data from the sixth LIGO Science Run (S6) and the second and third Virgo Science
Runs (VSR2/3). That search targeted GW signals from BBH sources with each component mass between 3− 97M⊙

and total binary mass between 25−100M⊙. If the matched-filter output of a unit-norm mass template from a stretch
of single-detector data is denoted by ρ, then the detection statistic used for long-duration templates, with a duration
tdur ≥ 0.2 sec, is the new SNR defined as follows:

ρnew =







ρ

[(1 + (χ2
r)

3)/2]1/6
for χ2

r > 1,

ρ for χ2
r ≤ 1,

(2.1)

where χ2
r ≡ χ2/(2p − 2), and χ2 is the signal-based time-frequency discriminator studied in Ref. [29] with a chi-

squared distribution of p degrees of freedom. On the other hand, for short-duration templates, with a duration
smaller than 0.2 sec, the detection statistic used is

ρeff =
ρ

[χ2
r(1 + ρ2/50)]1/4

, (2.2)

which is termed as the effective SNR. These choices were arrived at after comparing their detection efficiencies with
those of ρ and other alternative statistics. In a network withM detectors, the coincident detection statistic employed
here is

ρcoinc =



























[

M
∑

I=1

(

ρIeff
)2

]1/2

if tIdur < 0.2sec, for any I ,

[

M
∑

I=1

(

ρInew
)2

]1/2

for all other cases ,

(2.3)
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where xI denotes the value of x for the Ith detector. Employing χ2 in the detection statistic was found to improve
the performance of a search, especially, in real data, which is neither Gaussian nor stationary. Contrastingly, a

network detection statistic formed from only the ρI is the combined SNR, which is just
[

∑M
I=1

(

ρI
)2
]1/2

.

The coherent statistic used here is the same as the one defined in Eq. (2.30) in Ref. [20].
When describing how effective a search is in finding signals, one of the parameters used is how distant their sources

are. However, from the measured strength of a signal, it is not always possible to deduce the source luminosity
distance. This is because the strength of a signal in a detector is determined not only by the proximity of a source
but also its location, its orbital inclination angle to the line-of-sight, and the angle ψ describing the orientation of
its polarization ellipse. In fact, a source at a luminosity distance d appears to be at an effective distance of

deff =
d

√

F 2
+(α, δ, ψ) (1 + cos2 ι)

2
/4 + F 2

×(α, δ, ψ) cos
2 ι
, (2.4)

where F+,× are the detector antenna-pattern functions. Due to the different orientations and, therefore, F+,×, the
effective distance of a source can vary from one detector to another. Since for a detection we require coincidence in
at least two detectors, it is essential that the larger of the two corresponding effective distances not be too large for
the signal to fall below the detection threshold of the weaker detector. This is why it is useful to define the injected

decisive distance as the injected effective distance in the second loudest detector in a coincidence. Indeed, in Fig. 2
we show how this quantity and the coherent SNR vary as a function of the total-mass of the injected sources. It is
manifest that the closer sources are found with a higher coherent SNR whereas many of the very distant sources are
missed.

III. DETECTING PN-NR HYBRID SIGNALS WITH EOBNR TEMPLATES

In this study we analyzed the performance of the hierarchical coherent pipeline in simulated Gaussian noise. Strain
noise time-series were produced for two LIGO detectors, H1 and L1, and the Virgo detector, V1, using the design
noise curves of early advanced LIGO and advanced Virgo detectors [30], respectively. Each time-series is continuous
and is of two months’ duration. Performance of the search pipelines was evaluated by injecting pN-NR waveforms
in the simulated data and recovering them with EOBNR templates [31]. As with the LIGO-Virgo highmass search
in S6-VSR2/3 data, here too the template bank used for matched-filtering spans 3 − 97M⊙ for each of the two
component masses and 25− 100M⊙ for the total mass. The noise curves used to simulate noise in this study is the
same as the one used for NINJA-2 blind injection challenge [32]. Unlike in blind injection studies, it is Gaussian and
stationary and has early aLIGO noise amplitude spectral density (ASD) for H1 and L1 and rescaled early advanced
Virgo ASD for V1, as depicted in Fig. 1. As the name suggests, the latter is obtained by rescaling early AdV ASD
to match the noise expected in V1 when H1 and L1 will be taking early aLIGO data in the future. Rescaling Virgo
noise curve creates the opportunity to have three equally sensitive detectors and it benefits parameter estimation
studies and multi-detector signal based vetoes in coherent analysis. It is important to note that these curves are not
the 2015-predicted curves, but a best guess at them from over a year ago when NINJA-2 data sets were created. In
the past, real data from the LIGO and Virgo detectors had more dissimilar ASDs than the one used in NINJA-2.
This aspect of our search assumes special significance since we later study the performance of the null stream, which
is more powerful for detectors in a network with similar rather than disparate sensitivities.
Since the hierarchical coherent pipeline is not a fully coherent all-sky search, it depends on some other search

method to identify the GW event times. In our study we analyze GW events identified by the coincident CBC
pipeline. The coherent pipeline takes GW event times found by the latter as its input and does a coherent analysis
of the individual detector data from around those trigger times. Compared to a fully coherent all-sky search,
which combines complete time series coherently to identify GW events, the hierarchical coherent search requires less
computational power. One of the main goals of this paper is to draw lessons from the hierarchical coherent search
that can benefit the development of a fully coherent search for the ADE.
One major difference between the hierarchical coherent analysis used in this paper and those employed in the past

[20] is that after the coincidence stage identifies a part of the data that offers an interesting trigger, its coherent SNR
is computed by involving every detector that was active at the time, even if it did not contribute to the coincidence
in that stage (e.g., because the SNR in the third detector was below threshold around that event time). Previous
searches used thresholds for individual matched-filter outputs to reduce the computational cost. Typical value for
this SNR threshold was 5.0, which was chosen to be somewhat below the threshold in the first stage, of 5.5, chosen
for the matched filtering step. By placing an SNR threshold of 5.0 the coherent pipeline allowed the conversion
of some double coincident triggers (namely, H1L1, L1V1 and H1V1) to triple-coincident H1L1V1 triggers at times
when all three detectors had science data, often termed as triple time. In this study we lower the individual detector
thresholds in the coherent stage to zero. This allows all double and triple coincident triggers, in tripe time, in the
coincident stage to be analyzed as triple-coincident triggers in the coherent stage. By doing so for double coincident
triggers, the coherent stage uses new information available from the third detector data for constructing the coherent
statistic that was not used in constructing the coincident statistic in the first stage (apart from the fact that the
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FIG. 3: Top left: The coherent and coincident detection statistic values of found simulated signals (colored squares) and
background events (black crosses). The colorbars show the injected decisive distance in Mpc. The coherent SNR is used as
the coherent detection statistic. The coincident detection statistic is ρcoinc, as defined in Eq. (2.3), which is the one that was
used in the high-mass search of LIGO’s S6 and Virgo’s VSR 2/3 data [8]. Top Right: Zoomed version of the left diagram
shows better the distribution of the weak injections in the two statistics. Bottom: Distribution of pN-NR simulated injections
can be mostly separated into two groups characterized by the duration, long or short, of the template they triggered in the
coherent search. This plot shows that a small subset of the triggers with a long-duration template fall in the same cluster as
the ones with a short-duration template, and vice versa. This is because a signal can trigger multiple templates; the loudest
trigger in coherent statistic can correspond to a different template than that of the loudest trigger in a coincident statistic,
which penalizes short-duration ones more than the long-duration ones.

third detector is weaker than the other two). This is an important change vis-a-vis the previous hierarchical coherent
searches.
We analyzed the performance of the hierarchical coherent pipeline by injecting and recovering the different NR

wave-forms submitted to the NINJA-2 project by various NR groups. For this study we considered only non-spinning
waveforms with different mass ratios. Two sets of simulated GW signals were injected with distances between 20
Mpc to 2900 Mpc, distributed uniformly in linear or logarithmic distance. Just as for the template back, for the
injections as well the total mass was chosen to be in the range 25 − 100M⊙ and the component masses between
3− 97M⊙, All the injections recovered by the coincident algorithm were found by the hierarchical coherent pipeline
as well, which is expected. On the other hand, although one might expect to find only triple-coincident events
after the coherent stage, owing to the removal of the individual detector thresholds there, some events were found
to be double-coincident. This is because these injections have very large effective distance in one of the detectors
compared to the other two; the event time registered in the detector with the large effective distance (and, therefore,
low SNR) typically had a large error and often did not fall within the light travel-time window corresponding to the
two baselines formed with the other two detectors. This is why the hierarchical coherent pipeline did not promote
them to be triple coincidences but retained them as double coincidences.
Figure 2 presents the injected decisive distance of found and missed injected BBH signals as a function of their

total mass. As introduced earlier, the injected decisive distance is defined as the effective distance of a source in the
detector where it was the second loudest, and is termed so because at least two detectors are required to hear the
signal louder than the threshold to produce a coincident event. The closest missed injection had an injected decisive
distance of 907.34 Mpc. Figure 3 compares the distribution of injected signals and background triggers using both
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FIG. 4: The coherent and coincident detection statistic values of found simulated signals (colored squares) and background
events (black crosses). The colorbar shows injected decisive distance in Mpc. The coincident detection statistic used here is
the combined SNR. This plot confirms that the maximum value the coherent SNR of a trigger can assume is the combined
SNR.

coincident and coherent detection statistics. The coherent analysis used the coherent network SNR as the detection
statistic whereas the coincident analysis employed the same detection statistic as the one used for LIGO-Virgo BBH
search of the S6-VSR2/3 data [8], namely, the one defined in Eq. (2.3). Due to the relatively poor performance
of the χ2 test for short-duration templates compared to long-duration ones, this statistic utilizes that information
differently for GW triggers associated with those two categories of templates. This is reflected in its definition in Eq.
(2.3), and the phenomenological case for it is explained in Ref. [8].
Figure 4 plots the coherent SNR of every found injection trigger and background trigger versus the coincident

statistic, which in this case is the combined SNR. The color-filled squares denote found simulated signals and the
black crosses represent background triggers. While the loudest background trigger in the coincident analysis has a
coincident detection statistic value of 10.3, its counterpart in the coherent analysis has a coherent SNR of 10.0. The
right plot in Fig. 4 is the zoomed version of the left plot, focusing on the most interesting region of the plot where the
simulated signals and background events start mixing. The two plots show two red dashed lines, intersecting at right
angles, that divide each plot into four quadrants. These lines cut across the loudest background triggers for each
analysis, respectively. For instance, colored squares in the region ρcoinc > 10.25 are simulated signals found louder
than the loudest background event, or simulated signals found with zero False Alarm Rate (FAR), in the coincident
analysis. Similarly, the colored squares in the region ρcoh > 10.0 are simulated signals found with zero FAR in the
coherent analysis. All the background triggers are confined to the bottom-left quadrant. The top-right quadrant
has only injection triggers; these signals are found with a zero FAR in both coincident and coherent searches. The
bottom-right quadrant has only injection triggers that have a zero FAR in the coincident search; note that these
injection triggers have a non-zero FAR in the coherent search because the loudest background in the coherent search
has an SNR (shown by the horizontal red line that is) greater than that of any of these inection triggers. On the
other hand, the top-left quadrant has only injection triggers that have a zero FAR in the coherent search. When one
counts the injection triggers in these quadrants, one finds that there are more of them in the top-left quadrant than
in the bottom-right quadrant. This leads to the inference that in this study the coherent statistic performed better
than the coincident one, at zero FAR.
It is also interesting to find that in Fig. 3 most of the simulated signals lie above the diagonal; this is due to the

re-weighting of coincident SNR based on their χ2 values. One also finds that the injection triggers in these plots
are distributed in two branches. To investigate the reason behind this feature, we plotted the same set of simulated
signals after binning them into two different sets based on the duration of the templates that detected them. Events
are termed to be of a short duration if at least one of the detectors finding it has a template duration less than 0.2
sec. To be categorized as a long duration event all the participating detectors should have their template durations
greater than or equal to 0.2 sec for that event. The bottom plot in that figure indeed shows that these two branches
of simulated signals were formed mostly from long and short duration events. That plot also shows that a few triggers
of each kind are picked by templates of the opposite kind. This is because a signal can trigger multiple templates; the
loudest coherent SNR trigger in the second stage can correspond to a different template than the loudest coincident
SNR trigger in the first stage. Note that the coincident statistic penalizes short-duration templates more than the
long-duration ones.
The maximum value that the coherent SNR can take for any trigger, from background or injection, is the combined

SNR. The combined SNR is the square root of the quadrature sum of the individual detector SNRs. Figure 4 confirms
this statement for both simulated signals and background events. It is clear that most of the simulated signals fall
on diagonal. A relative few, especially of the weak kind, fall below the diagonal. This is because the contribution
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FIG. 5: Left: Receiver Operating Characteristic (ROC) curves from the injection and (partial) recovery of 2000 numerical
relativity simulated signals. The two curves here compare the performances of the coherent and coincident searches. Right:

The ROC curves for two different simulated signal families, namely, EOBNR and pN-NR, recovered with the same EOBNR
template bank.

from their cross detector terms to the coherent SNR is less than maximal. As expected most of background events
can be found below the diagonal due to the incoherence of their individual detector triggers. However, these is a
small fraction of background triggers that lie on the diagonal. A majority of these are triggers were associated with
sky positions that created issues for polarisation matrix inversion. Due to ill-posed polarisation matrix, detection
statistic of these triggers had un-physical values larger than the combined SNR. Therefore we assigned combined
SNR for detection statistic of such triggers allowing them to be on diagonal.

A. Comparing ROC curves

In this section we address the following two issues. First, we enquire if the coherent stage improves the detectability
of a CBC signal, which in NINJA-2 is limited to the pN-NR hybrid kind. If an improvement is found then it will
make the case for developing computationally viable fully coherent CBC searches. Second, we ask how much worse
does an EOBNR template-bank perform in detecting pN-NR signals than those modelled by the EOBNR formalism
itself. This exercise probes, in a limited way, if the differences in the deduction of the pN-NR waveforms, on the one
hand, and the EOBNR waveforms, on the other hand, are consequential enough to affect the ability of our search
pipelines to make a detection. The limitation of this exercise is that it does not address how different EOBNR and
pN-NR hybrid waveforms are from a fully accurate waveform solution from General Relativity. For readers interested
in that subject, we refer them to Refs. [33–37], and the references therein. We make both types of comparisons by
computing the Receiver Operating Characteristic (ROC) curves [10] for each case.
The ROC curves in the left panel of Fig. 5 compare the performances of the hierarchical coherent and coincident

searches for the same set of simulated pN-NR hybrid signals. The detection probability of the former is higher than
the latter for all values of the false alarm probability (FAP) that could be computed in this exercise. But the region
in this figure where this observation matters the most is the low FAP region around 10−5 − 10−4, where the first
GW detections are expected to be made. Note, however, that the improvement obtained by running the additional
coherent step in this coincident pipeline is limited by its hierarchical nature and, therefore, the utility of this study
is that it suggests that a fully-coherent, all-sky, all-time pipeline should perform even better.
The FAP at a given value of the detection statistic, ρthreshold, is obtained as follows

FAP(ρthreshold) =
Nbackground(ρ > ρthreshold)

Ntotal background

, (3.1)

where Nbackground(ρ > ρthreshold) is the number of background triggers that have the value of their chosen detection
statistic ρ greater than ρthreshold, and Ntotal background is the total number of background triggers, with any value of
ρ, found by the search. On the other hand, the detection probability is given by

Pdetection(ρ > ρthreshold) =
Nrecovered(ρ > ρthreshold)

Nrecovered(ρ > ρthreshold) +Nmissed

, (3.2)

where Nrecovered(ρ > ρthreshold) is the number of recovered simulated signals with the detection statistic value greater
than the value corresponding to a given false alarm probability, and Nmissed denotes the number of simulated signals
either with ρ < ρthreshold or totally missed by the detection pipeline.
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To get some insight into the relative behavior of the ROC curves in Fig. 5 note that the rate of change of FAP
with respect to the detection statistic is faster in the case of the coincident statistic than in the case of the coherent
statistic. However, the value of the detection statistic for an injection trigger scales inversely with its distance. Also,
the detection probability decreases with increasing source distance. Thus, it follows that the rate of change of FAP
with respect to the detection probability is faster in the case of the coincident statistic than the coherent statistic.
This is exactly what is found in the left plot in Fig. 5. The fact that the two ROC curves there should meet at
a high enough FAP, where the detection threshold is very small, then implies that the ROC curve of the coherent
search should be above that of the coincident search. The detection probability does not go to unity in that figure
because a hard cut-off of ρ = 5.5 was placed in each detector in the first stage, thereby, causing a fraction of the
triggers to be missed. In this experiment that fraction happened to be about 51%. Figure 8 shows how the loudness
of the background triggers is distributed for the two searches.
Figure 5 shows that at a FAP of 6 × 10−5 the difference between the detection probabilities of the coherent and

coincident searches is approximately (47.4 − 45.8)% = 1.6%. This implies that for a total of 2000 injections the
former search found 32 more than the latter, at that FAP.3 One must bear care, however, in drawing conclusions
for astrophysical searches from this simulation study because the source rate for aLIGO is estimated to be in the
several tens and not thousands [38], and the aforementioned improvement will affect the detection of very few sources.
Instead, the main conclusion is that while hierarchical coherent searches may not be worth investing resources into,
they demonstrate the (small) improvement we expect of them and, in turn, suggest that it may be worthwhile to
explore how much more gain in detection rate one can achieve with fully coherent all-sky, all-time algorithms in
realistic search pipelines.
We next enquire how much the detectability of a signal suffers owing to the fact the pN-NR hybrid waveforms

that are used to model the signals are not quite the same as the EOBNR waveforms used to model the templates
[16]. The right panel of Fig. 5 compares the performance of two sets, with the same number of simulated signals
injected at the same sky locations, but with two different signal families: The green curve corresponds to signals
modelled with the EOBNR family and the red curve represents simulated signals made using the NINJA-2 pN-NR
hybrid waveforms. Both sets of simulated signals were searched with EOBNR templates. As expected, simulated
signals from the same family as the templates, namely EOBNR, register a better performance, at all FAP values.
That figure also shows that the mismatch between the template and the signal families result in a small effect on the
detection probability, which is of the order of a few percent at the most.
The variation of detection efficiency with distance also shows the expected behavior. We define it to have the same

expression as Pdetection in Eq. (3.2), but now Pdetection, Nrecovered(ρ > ρthreshold), and Nmissed are all computed in
multiple distance bins. Figure 6 shows the detection efficiencies of the hierarchical coherent and coincident searches
at ρthreshold corresponding to FAP=0 and 10−3. The detection efficiencies for all of the searches are very similar;
they begin at 100% for nearby sources and fall off to zero near 2 Gpc, which is the greatest horizon distance [26] of
the set of BBH sources simulated here.

B. The null-stream

Real data is neither Gaussian nor stationary and a statistic that is optimal in Gaussian and stationary noise may
not remain so in real data. This makes the case for seeking a more effective detection statistic and signal-based
vetoes for LIGO/Virgo science data. An advantage of multi-detector coherent searches is that a detector network
with three or more baselines can (over-)determine the two waveform polarizations, in addition to identifying the
source location with time-delay triangulation [26]. In such cases, one can form a linear combination of detector
time-series outputs that contains no GW signal [21]. Such a combination is called the “null stream”. The null stream
is consistent with the noise in a detector network, and a noise artifact or a glitch in a detector that is uncorrelated
with noise in the other detectors is expected to leave a residue in the null stream. Therefore, its presence can be
used to veto a candidate event. The simplest example of the null-stream is the one for a network consisting two
co-located, co-aligned detectors. In the simple case where both detectors in such a pair have the same sensitivity,
the null stream corresponding to any search template is proportional to the difference of its matched-filter outputs
from the data of the two individual detectors. When the two detectors in the pair have different sensitivities, the
matched-filter outputs are inversely weighted with their respective template-norms before calculating the difference
[20]. The value of the null-stream time-series at the trigger time is called the null statistic.
Figure 7 presents the null-statistic distribution for simulations and background events as a function of their coherent

SNR. For very strong signals the null statistic is large since even a slightly imperfect subtraction of two large SNR
values can leave a moderately large residue. This is not a major concern since the distribution of loud injections on
this plot is well separated from that of the background triggers. However, the null statistic can play a critical role in
the detection of weak signals. Those occur in the region where their distribution on this plot mixes with that of the
background triggers. Figure 7 shows that nearly all the background triggers fall on a relatively tight band and only a

3 Note that these two searches are correlated in the sense that a strong (weak) signal in one is highly likely to produce a strong (weak)
signal in the other.
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FIG. 6: Left: The detection efficiency is plotted as a function of the injected decisive distance (Mpc), for the hierarchical
coherent and coincident searches, at false-alarm rates (FAPs) of 0.000 and 0.001. Right: Detection efficiency comparison of
two different sets of simulated signals, namely, EOBNR and pN-NR.

couple lie outside it. Those two outliers are also the loudest background triggers in coherent SNR. Interestingly, these
are triggers for which the sky positions were such that the LIGO-Virgo network could not resolve the putative signal
polarizations. Just as for the injections, for these two triggers too the search pipeline used the coincident statistic as
the detection statistic, the values of which were found to be well below 10.0. Therefore, Fig. 7 demonstrates that the
null statistic is helpful in mitigating the impact of loud background triggers on a search pipeline’s detection efficiency.
Although we will not be employing hierarchical search pipelines in ADE it is important to understand its issues

in order to improve the efforts on developing fully coherent searches. As shown above, the thresholding criteria
used in current coincident and hierarchical coherent pipelines can limit the detection efficiency of the search. In
the current pipeline we only analyze triggers that cross the first matched-filtering stage with an SNR greater than
5.5. Additionally, we also require at least two such triggers in two different detectors within the window of light
travel time between two sites to claim a gravitational-wave detection. It is possible to have gravitational-wave signals
that only have threshold crossing trigger in one detector with significant coherent SNR. To investigate this in the
same NR simulations, we searched for such events. Numerical relativity simulations plotted in Fig. 8 have only one
threshold-crossing detector, yet their coherent SNRs are relatively strong: Out of a total of 2000 simulated pN-NR
signal injections, we found that 52 had coherent SNR above 9.5. For each of these found injections only one of
the three detectors in coincidence produced a single-detector SNR of above 5.5.4 Furthermore, 35 of them had a
coherent SNR higher than the loudest background trigger. Figure 9 reveals that some of these simulations had larger
single-detector SNRs in Virgo compared to those in the two LIGO detectors. Due to their similar orientation and
sky coverage, both LIGO detectors had very similar sensitivities in a large fraction of the sky. Additionally, their
similar noise PSDs means that signals from the same source will have very similar SNRs in those detectors most of
the time. But Virgo’s orientation is quite different from that of the LIGO detectors. Therefore, in Fig. 9 some of
the events have larger SNR contributions from Virgo than from any of the LIGO detectors.

IV. PARAMETER RECOVERY

Parameter estimation will play an important role in making astrophysical statements about the origin of the GW
signals we detect (see, e.g., Ref. [39]). For instance, by measuring the masses of BBH components through GW
observations we will be able to constrain stellar population synthesis models. This section presents results from our
EOBNR template searches of pN-NR simulated injections to educate us on how accurately one might be able to
measure the parameters of real BBH signals. In this study, parameters of those signals were estimated using the
maximum likelihood method [10]. Figure 10 shows that the measured coherent SNR is within a few percent of the
expected value when for signals the latter exceeds 20. Moreover, this observation holds across the whole range of
total-mass values of the injected non-spinning BBH systems.
A useful construct for describing the error in the measurement of the value of a dimensional parameter is:

fractional error =
measured value - injected value

injected value
, (4.1)

4 For a three-detector network with single-detector thresholds of 5.5 each, the minimum combined SNR for an event is
√
3× 5.5 = 9.52.
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FIG. 7: Left: We plot the null-statistic for background and pN-NR simulated signals as a function of their coherent SNR.
Most of the background triggers form a “band”, which helps to separate signals from them. Notice that two of the loud
background triggers prominently fall outside the band. These correspond to sky positions where the network does not resolve
the GW polarizations very well [20]. In such a case, the trigger is vetoed. A better way to handle such triggers would be to not
veto them but construct a more effective detection statistic by using a network’s polarization resolving power at the trigger’s
sky position. This aspect will be explored elsewhere. Right: Here we show the injection triggers above the background
triggers to highlight that for very weak injections, the null-statistic worsens and loses its discriminatory power.
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FIG. 8: Left: Distribution of background events in the coincident detection statistic used for the LIGO S6 - Virgo VSR2/3
high-mass search. Right: Distribution of background events in the coherent detection statistic.

which we will use especially for studying the error in the measured or recovered chirp-mass values. Comparing the
injected and recovered parameter values helps us in determining if any systematics can develop in searching for
pN-NR signals with a specific waveform family. Consider, e.g., the chirp-mass recovered by EOBNR templates in
Fig. 11. There, in most cases, the injected chirp mass is greater than the recovered one. This can happen owing
to the following possibilities: (a) For some cases of pN-NR waveforms EOBNR templates with a smaller mass have
the same or similar number of cycles. If this is true, then this is information that the hybridization schemes of those
pN-NR waveforms can use to correct for this bias. (b) Templates that are longer in time and have more cycles than
these pN-NR injections perform better at finding them. Longer templates would accrue noise from the cycles that do
not overlap with any part of the signal and would, therefore, lose SNR. However a mismatch between an injection and
the template, in amplitude or phase, can cause the projection of the signal on the template manifold to select a longer
template as the best fit. Indeed, the chirp-mass recovery and end-time recovery plots reveal that pN-NR injections
tend to be found often with relatively higher chirp-mass EOBNR templates. Since higher chirp-mass templates will
have a smaller duration than lower chirp-mass ones, all else being the same, one would expect that this bias should
be accompanied by a systematic error whereby the template (or recovered) end-time occurs earlier than the injected
(pN-NR) end-time. This expectation is confirmed in Fig. 12.
The end-time difference of recovered simulated signals in Fig. 12 is computed by subtracting the injected end time

from the measured end time. A negative end-time difference implies that the pN-NR signal is found at a later time
than its injected value. A majority of the signals were recovered within 10 msec of the injected end time. A few
outliers with a greater positive (smaller negative) end-time difference arise from systems with a large (small) total
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FIG. 10: Recovered coherent SNR versus its injected value for NR simulated signals. The colorbar shows the total mass of
the BBH systems whose pN-NR hybrid waveforms were injected.

mass and relatively low coherent SNR.
The results for the measurement of the symmetrized mass-ratio η are presented in Fig. 13. The end-time difference

is computed by subtracting the injected value from the measured one. As shown in Ref. [16], only six mass-ratio
values were used to model and inject non-spinning pN-NR signals. For EOBNR signals, we produced a greater
variety of mass ratios and, therefore, η, as can be seen in the top-right plot in that figure. The measured values of
η are always between 0.00 and 0.25 because those are the boundaries of the template bank that was employed, and
correspond to mass ratios of infinity and 1, respectively. It is interesting to note that in a large fraction of cases
small (large) η, or low (high) mass ratio, templates detect large (small) η signals. This bias is, in fact, correlated
with low (high) chirp-mass templates detecting high (low) chirp-mass signals, as confirmed by Fig. 14 for injections
of pN-NR as well as EOBNR signals. This covariance of errors occurs because templates with low (high) η and
low (high) Mchirp can have similar number of wave cycles and bandwidths as signals with high (low) η and high
(low) Mchirp.

5 In the same figure, also note how the degree of covariance changes somewhat as one goes from low
total-mass systems (shown in blue) to high total-mass systems (shown in red). A similar behavior was observed in

5 A similar correlation of errors in η and the total-mass M was found in Ref. [14] where the effect of using inspiral-only templates for
searching inspiral-merger-ringdown signals on detection and parameter estimation was studied.
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FIG. 11: Left column: Errors in the measurement of the chirp mass of pN-NR simulated signals. Right column: Same as
in the left column but for EOBNR simulated signals. Top panel: Recovered chirp mass as a function of injected chirp mass
for pN-NR simulations (left) and EOBNR simulations (right), with the colorbar showing the coherent SNR. Middle panel:

Fractional chirp-mass difference as a function of coherent SNR with the colorbar displaying the total mass of the BBH system.
Bottom panel: Fractional chirp-mass difference as a function of the total mass of the BBH system, with the colorbar showing
the coherent SNR. According to the bottom panel the overall chirp mass recovery is slightly better for EOBNR simulations
than the pN-NR ones, due to better match with the templates in the former case.

the Monte Carlo studies in Ref. [39] of statistical errors in measuring BBH mass parameters with phenomenological
waveforms [40].
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FIG. 12: Difference between the measured and injected end time of detected simulated signals (in seconds). Top left: The
end-time difference is plotted as a function of the coherent SNR for pN-NR simulations. The colorbar represents the total
mass of the binary system (in M⊙). Top right: The same quantity is plotted for EOBNR simulations. For pN-NR simulated
signals a few were recovered with relatively high negative end-time difference, i.e., ≥ 0.01 sec, in the total-mass range 40M⊙

to 62M⊙, at both high and low coherent SNRs. Bottom panel: The end-time difference is plotted as a function of the total
mass of the system.

V. DISCUSSION

Testing the preparedness of search pipelines to detect real signals in the ADE is one of the primary goals of NINJA.
This study helped to quantify the sensitivity of one of the existing CBC search pipelines to numerical-relativity based
BBH waveforms in early advanced detectors albeit in simulated Gaussian, stationary data. As we found here, the
EOBNR waveforms, which employed only NASA-Goddard NR waveforms for calibration, were able to detect pN-NR
signals produced by a number of NR collaborations. This is borne out by the fact that the ROC curve of EOBNR
injections tracks that of the NR injections very closely. Additionally, we studied some aspects of a coherent CBC
search. Since a coherent search explores a larger dimensional parameter space than a coincident search it is more
expensive, which makes the estimation of the background for the former type of search especially difficult. Therefore,
we used the hierarchical coherent CBC search pipeline described in Ref. [20] on the same NR based injections. Such
an exercise is also useful to teach us about a subset of the potential issues we may face in a fully coherent search in
the future. Here we demonstrated that the performance of that search conforms to expectations. Specifically, the
characteristics of its background are consistent with theoretical predictions. Moreover, the coherent stage provides
the null-stream statistic, which is a powerful multi-baseline signal consistency test, and can be employed to improve
the performance of the search. This test is especially useful for high-mass CBC searches where the chi-square test is
less effective than low-mass ones, owing to fewer waveform cycles of high-mass signals in the detector band.
Finally, NINJA provided an important opportunity to test how well we might be able to measure the signal

parameters. To address this question, we compared the maximum-likelihood estimates obtained by using the EOBNR
family of templates. We focused our attention on only non-spinning injections. Here again the parameter accuracies
of EOBNR injections are very similar to those of the pN-NR ones. The only small disagreement occurs for a few
injections, mainly in the small total-mass region. For most of them, its cause was traced to the fact that compared
to other injected waveforms these ones were a priori known to have a somewhat poorer match (by a few percent)
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FIG. 13: Left column: Errors in the measurement of the symmetrized mass-ratio η or “Eta” of pN-NR simulated signals.
Right column: Same as in the left column but for EOBNR simulated signals. Top panel: This panel shows the η difference
as a function of injected η values. Since pN-NR simulations are only available for a discrete set of η values the left plot only
has a few different values of injected η compared to EOBNR counterpart, which is plotted in the right. Since η ∈ (0, 0.25], the
maximum (minimum) η difference is 0.25 (-0.25). Middle panel: This panel shows that the η difference of pN-NR hybrids
is slightly worse compared to that of EOBNR simulations due to template mismatch. This is most apparent above at large
coherent SNR values. Bottom panel: Eta difference of two simulation categories is shown as a function of the total mass of
the system.
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FIG. 14: Covariance of chirp-mass error with η error. The left figure shows this covariance for pN-NR injections and the
right figure shows it for EOBNR injections. In both cases EOBNR templates were used to conduct the search. The colorbar
shows the total mass of the BBH systems (in M⊙).

[16] with the waveforms produced by the Spectral Einstein Code (SpEC). (See Ref. [41] for details about SpEC.)
To study systematic errors stemming from signal-template mismatch in more detail, studies are ongoing with NR
waveforms with spin and a variety of different mass ratios. Additionally, to study the impact of real data, which
can be non-Gaussian and non-stationary, we plan to study the NINJA-2 waveforms injected in a recolored data set,
where real data from past science runs will be scaled to have early aLIGO or aLIGO ASDs [32].
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