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Galactic neutron stars are a promising source of gravitational waves in the analysis band of
detectors such as LIGO and Virgo. Previous searches for gravitational waves from neutron stars
have focused on the detection of individual neutron stars, which are either nearby or highly non-
spherical. Here we consider the stochastic gravitational-wave signal arising from the ensemble of
Galactic neutron stars. Using a population synthesis model, we estimate the single-sigma sensitivity
of current and planned gravitational-wave observatories to average neutron star ellipticity ε as a
function of the number of in-band Galactic neutron starsNtot. For the plausible case ofNtot ≈ 53000,
and assuming one year of observation time with colocated initial LIGO detectors, we find it to be
σε = 2.1×10−7, which is comparable to current bounds on some nearby neutron stars. (The current
best 95% upper limits are ε <∼ 7× 10−8.) It is unclear if Advanced LIGO can significantly improve
on this sensitivity using spatially separated detectors. For the proposed Einstein Telescope, we
estimate that σε = 5.6 × 10−10. Finally, we show that stochastic measurements can be combined
with measurements of individual neutron stars in order to estimate the number of in-band Galactic
neutron stars. In this way, measurements of stochastic gravitational waves provide a complementary
tool for studying Galactic neutron stars.

PACS numbers: 95.85.Sz, 04.30.Db, 97.60.Jd

I. INTRODUCTION

Of the estimated 108 − 109 neutron stars in the Milky
Way [1], approximately 50, 000 are expected to rotate
with O(ms) periods [2]. Neutron stars with periods
T < 200 ms emit gravitational waves (GWs) [3–7] in
the ∼ 10–2000 Hz analysis band of current GW detec-
tors such as LIGO [8] and Virgo [9]. GW observato-
ries have placed limits on GW emission from known pul-
sars [10–13], from nearby neutron stars with unknown
phase evolution [14, 15], and from electromagnetically
quiet neutron stars [16–19]. For nearby pulsars, direct
GW searches have bounded neutron star ellipticities to be
as low as ε <∼ 7× 10−8 at 95% confidence level (CL) [11].
With the imminent arrival of second-generation GW de-
tectors, the first detection of GWs from neutron stars
might be just around the corner. Even so, it is likely
that the vast majority of Galactic neutron stars are too
far away to observe individually in the near future.

Nonetheless, it may be possible to observe a stochas-
tic signal [20] from the superposition of weak gravita-
tional wave signals from the many Galactic neutron stars
that are too far away to detect individually. In this pa-
per we show how measurements of the stochastic signal
from Galactic neutron stars provide constraints that are

∗Electronic address: talukder@uoregon.edu

independent and complementary to those derived from
searches for individual neutron stars. Stochastic mea-
surements of Galactic neutron stars provide more than
just a cross-check for measurements of individual neu-
tron stars—though, a robust model-independent cross-
check is, in and of itself, useful. By combining stochastic
measurements with measurements of individual neutron
stars, it is possible to gain insights into the ensemble
properties of Galactic neutron stars, which are not oth-
erwise accessible. For example, one can estimate the total
number of in-band neutron stars in the Milky Way.

The remainder of this paper is organized as follows.
In Sec. II, we describe models of Galactic neutron stars
that can be employed by a stochastic search. In Sec. III,
we discuss the methods used to estimate average neu-
tron star ellipticity from stochastic signal measurements.
Then, in Sec. IV, we estimate the sensitivity of vari-
ous GW observatories (both past and future) to stochas-
tic signals from Galactic neutron stars. We show how
stochastic observations can be combined with observa-
tions of individual neutron stars to constrain the number
of in-band neutron stars in the Milky Way. In Sec. V, we
conclude by summarizing prospects for future work.

In the appendix we discuss alternative analyses for de-
riving constraints on populations of neutron stars using
the stochastic superposition of neutron star signals from
(A) the Virgo Cluster and (B) the entire universe. We ar-
gue that the stochastic signal from neutron stars in the
Milky Way is stronger than either of these alternative
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sources, and therefore yields the most interesting con-
straints. Using the Virgo Cluster as a case study, we
demonstrate how to measure neutron star ellipticity us-
ing the stochastic signal from an anisotropic source. This
methodology may be useful for future searches taking
into account the anisotropic distribution of Milky Way
neutron stars.

II. SOURCE MODEL

In order to describe the stochastic signal from Galactic
neutron stars, we model their distribution in both space
and frequency. We do not aspire to achieve a high de-
gree of accuracy with our model, but only to sketch the
qualitative features of the stochastic signal from Galactic
neutron stars. We revisit our assumptions in Section V
and discuss how the results might vary for a more realis-
tic model.

Our starting point is a population synthesis model.
Following the formalism of [21], we derive the distribution
of neutron star period by evolving a set of simulated neu-
tron stars with O(ms) periods from the end of the spin
up phase to the present. We make the following assump-
tions: (i) uniform distribution of age t between 0–12 Gyr
(ii) log-uniform distribution of the initial magnetic field
between 108–1012 G (and no magnetic field decay) (iii)
the initial period P0 is assumed to match with the spin-
up period derived from the formula

P0 = 0.18× 103δ/7B
6/7
0 , (2.1)

where P0 is in ms and B0 is the initial magnetic field
in units of 108 G. The parameter δ is selected from a
ramp distribution that increases by a factor 4 between 0–
2.8 [21]. Finally, we assume that (iv) the deceleration due
to dipole magnetic breaking leads to a period evolution
given by

P =
(
P 2

0 + 0.154B2
0t
)1/2

, (2.2)

where P is in ms and t is in Gyr. Our simulation gives
us N(f)—the expected number density of neutron stars
in the Galactic disk (per Hz) as a function of frequency.

Here we assume a birth rate of 5 × 10−4 millisecond
neutron stars per century, corresponding to the upper
estimate in [21]1.The model does not include the contri-
bution from globular clusters.

The distribution of N(f) is shown in Fig. 1 labeled
by MW1. We also consider a model similar to MW1,

1 The model of [21] includes a deathline in the plane P–Ṗ remov-
ing the subpopulation of ms pulsars not observable in radio. In
principle this selection effect do not apply to GW observations
but pulsars above the deathline evolve very quickly toward pe-
riods outside of the detector frequency band so that including
them would not change the results significantly.

where we assume a log-normal distribution of the initial
magnetic field with mean 〈log(B0)〉 = 8.5 and standard
deviation 0.3. This distribution is consistent with the ob-
served distribution listed in the Australia Telescope Na-
tional Facility catalog [22], which we expect is not signif-
icantly affected by selection effects [23]. Its distribution
of N(f) is shown in Fig. 1 labeled by MW2.
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FIG. 1: The number density of Milky Way neutron stars
N(f) as a function of gravitational-wave frequency. There are
Ntot = 52800 neutron stars in band (10–1538 Hz) for MW1
and 40000 for MW2.

The GW strain amplitude for each neutron star is given
by [24]:

h0(f) = 4π2β
GεI

c4r
f2 , (2.3)

where β(≤ 1) is the orientation factor [25], I is its prin-
cipal moment of inertia, r is the distance to the source,
G is the Newton’s gravitational constant, c is the speed
of light, and ε is the ellipticity.

By combining Eq. (2.3) and the distribution of N(f)
from Fig. 1, we can obtain the spectral shape of GW
power spectral density H(f) from Milky Way neutron
stars:

H(f) =
1

2
〈h∗0(f)h0(f)〉N(f)

=8π4 0.4G2〈ε2〉〈I2〉
c8

〈
1

r2

〉
f4N(f).

(2.4)

Here the angled brackets denote an expectation value.
The factor of 1/2 comes from the fact that h0(f) is mea-
sured peak-to-peak whereas H(f)1/2 is the root-mean-
squared amplitude. We have assumed that β, I, ε, and r
are independent variables. Also, we utilize the fact that
〈β2〉 = 0.4, given the expected priors on neutron star
inclination angle and polarization angle. If we further
assume that I, ε, and r are independent of frequency,
then Eq. (2.4) completely determines the shape of the
GW power spectrum of the stochastic signal from Milky
Way neutron stars. We plot H(f) (with arbitrary nor-
malization) in Fig. 2.
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Note that while N(f) is peaked at ≈ 600 Hz, H(f) is
peaked at much higher frequencies due to the fact that
H(f) ∝ f4N(f). The normalization of H(f) depends on
the unknown normalization of N(f) and the unknown
average ellipticity. Thus, in the analysis that follows, we
rely on the shape of H(f), but not the overall normaliza-
tion.

With Fig. 2, we have a working model for the distribu-

tion of neutron stars in frequency; we now consider their
distribution in space. Using the distributions of neutron
stars’ radial distance from the Galactic center (and the
vertical distance from the Galactic plane) from Ref. [21],
and assuming that the Earth is 8.3 kpc from the Galactic
Center, we estimate that 〈1/r2〉−1/2 ≈ 6.0 kpc. We can
thereby write Eq. (2.4) as:

H(f) =
(

7.0× 10−27 Hz−1/2
)2
(

〈ε2〉
(1× 10−7)2

)(
〈I2〉

(1.1× 1045 g cm2)2

)(
〈1/r2〉

1/(6.0 kpc)2

)(
f

900 Hz

)4

N(f) (2.5)
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FIG. 2: The power spectral density H(f) of a stochastic
signal formed from the incoherent superposition of gravita-
tional waves from Galactic neutron stars. The solid blue
dashed curve represents MW1 with Ntot = 52800 while
the dashed red represents MW2 with Ntot = 40000. This
plot is generated assuming 〈ε2〉1/2 = 10−7, the average dis-

tance measure 〈1/r2〉−1/2 = 6.0 kpc, and moment of inertia
I = 1.1× 1045 g cm2.

For our present purposes, Eq. (2.5) is nearly sufficient
to describe the stochastic signal from Milky Way neutron
stars. For the sake of simplicity, in the discussion that
follows we assume that 〈1/r2〉 and 〈I2〉 are reasonably
well-constrained from population synthesis models and
nuclear physics, respectively. This establishes a simple
relationship

H(f) = κ 〈ε2〉N(f) , (2.6)

where κ is a proportionality factor that can be readily
obtained from Eq. (2.4). By measuring H(f) with GW
detectors, it is therefore possible to constrain the prod-
uct 〈ε2〉N(f). This is the topic of the next section. In
Section V, we revisit our assumptions about 〈1/r2〉 and
〈I2〉, and discuss how a more careful treatment can in-
corporate systematic error from our imperfect knowledge
of these two quantities.

The final ingredient in a description of the stochastic
signal from Galactic neutron stars is their angular distri-
bution in the sky P(n̂). A priori, we expect P(n̂) to be
highly peaked toward the Galactic center. Most previous
searches for the stochastic background, however, assumed
an isotropic distribution. For comparison, therefore, in
the analysis that follows it will be useful to make the
(inaccurate) assumption that P(n̂) is isotropic.

By assuming isotropy, our results will be overly conser-
vative, though no less accurate. This is because the sen-
sitivity of detectors like LIGO to isotropic stochastic sig-
nals is diminished (in comparison to pointlike sources) by
the signal interference encoded in the overlap reduction
function [20, 26]. The loss of signal due to the overlap
reduction function affects only spatially separated detec-
tors; colocated detectors are immune. We therefore in-
clude results for both colocated and separated detectors.
The results for colocated detectors limit the maximum
possible improvement that can be achieved with more
careful modeling of P(n̂).

III. METHODOLOGY

For the sake of simplicity, we assume a network of two
detectors denoted 1 and 2. As our starting point, we
begin with an unbiased estimator for H(f):

Ŷ (f) =
1

N
5

γ12(f)
Re (s̃∗1(f)s̃2(f)) , (3.1)

and the associated uncertainty:

σ̂Y (f) =
1√
2

5

γ12(f)

√
P1(f)P2(f). (3.2)

Here, s̃I(f) is the Fourier transform of the strain mea-
sured by detector I, N is a Fourier normalization con-
stant, PI is the strain autopower spectrum for detector I,
and γ12(f) is the normalized overlap reduction function
for the detector pair [27]. The factor of 5 comes from
averaging the detector response over direction and polar-

ization states. Ŷ (f) and σ̂Y (f) are the standard outputs



4

of isotropic stochastic analyses; see e.g., Ref. [28]. The

wide-hat on a quantity denotes its estimator. Ŷ (f) can
be rewritten in units of energy density:

Ω̂(f) =
2π2

3H2
0

f3Ŷ (f), (3.3)

where H0 is the Hubble constant. In this paper we take
H0 = 68 km sec−1Mpc−1 [29].

From Eq. (3.1) and Eq. (2.5) we can obtain the fol-
lowing estimators for average neutron star ellipticity
squared, given N(f):

ε̂2(f) =
(
1× 10−7

)2 [ 1

N(f)

(
Ŷ (f)

4.9× 10−53 Hz−1

)(
(1.1× 1045 g cm2)2

〈I2〉

)(
1/(6.0 kpc)2

〈1/r2〉

)(
900 Hz

f

)4
]

=
(
1× 10−7

)2 [ 1

N(f)

(
Ω̂(f)

4.8× 10−8

)(
(1.1× 1045 g cm2)2

〈I2〉

)(
1/(6.0 kpc)2

〈1/r2〉

)(
900 Hz

f

)7
]
.

(3.4)

Eq. (3.4) is framed in terms of ellipticity squared, but
it is more convenient to work with just ellipticity. We

can write the expectation value of ε̂2(f) as

〈ε̂2(f)〉 = ε2(f) + Σ2
ε(f), (3.5)

where Σ2
ε(f) is the intrinsic variance of the ellipticity

distribution and ε(f) is the mean value. (We use cap-
ital Σ2

ε(f) to denote the intrinsic variance and lower-case
σ2
ε (f) to denote the variance associated with the estima-

tor ε̂(f) defined in Eq. (3.7).) Physical ellipticity is a
positive definite quantity. Thus, it is possible to make
the rough approximation that

〈ε̂2(f)〉 ≈ ε2(f). (3.6)

This is an excellent approximation if, for example, ellip-
ticity turns out to be log-normally distributed. If, on the
other hand, ellipticity is exponentially distributed, then
Σε(f) = ε(f), but even then, the approximation results
in a modest 40% overestimate of ε(f).

Thus, for the sake of simplicity, we define the following
biased estimator for average ellipticity:

ε̂(f) =

√
ε̂2(f). (3.7)

Since ellipticity is positive-definite, there is good moti-
vation for supposing that the bias associated with ε̂(f)
is relatively small, and so this approximation will be a
useful simplifying assumption. Moreover, sensitivity es-
timates derived with ε̂(f) will be conservative since non-
zero Σε(f) will tend to increase the detectability of a
stochastic signal given a fixed ε(f).

We henceforth work with ε̂(f) under the assumption
that Σε(f) <∼ ε(f). In the event that a stochastic sig-
nal from Galactic neutron stars is detected, there are at
least two ways to potentially account for the bias. First,
Σε(f) could be estimated using measurements of indi-
vidual neutron stars. Second, Σε(f) could be estimated
using a theoretical model.

It is worthwhile to note how ε̂(f) depends on other
parameters. We obtain more constraining limits [ε(f) is
smaller] when N(f) is increased (we assume the existence
of more neutron stars) and when σ̂Y (f) is decreased (the
detector is less noisy).

The uncertainty associated with ε̂(f) (Eq. (3.7))—
denoted σε(f)—can be expressed in terms of σΩ(f) [or,
equivalently, σ̂Y (f)] as follows. The likelihood functions

for Ŷ (f) and Ω̂(f) are known to be essentially Gaus-
sian [20, 28, 30], e.g.,:

pΩ(Ω̂(f)|Ω(f)) =
1√

2πσΩ(f)
e−(Ω(f)−Ω̂(f))2/2σ2

Ω(f).

(3.8)
It follows from Eqs. (3.4) and (2.6) that the likelihood
function for ε̂(f) is given by

pε(ε̂(f)|ε(f)) =

√
8

π

ε(f)

κσΩ(f)
e−(ε2(f)−ε̂2(f))2/2κ2σ2

Ω(f) ,

(3.9)
which is not a Gaussian distribution. The latter function,
however, is simple enough such that its mean and vari-
ance can be obtained in closed form in some special cases.

One such case is when Ω̂(f) = ε̂(f) = 0. In that event,
the mean and variance of the distribution in Eq. (3.9) are

[〈ε(f)〉]ε̂(f)=0 =
23/4

√
πκσΩ(f)

Γ
(

1
4

)
≈0.82

√
κσΩ(f)

σ2
ε (f)

∣∣∣
ε̂(f)=0

=
[
〈ε2(f)〉 − 〈ε(f)〉2

]
ε̂(f)=0

=

[√
2

π
− 23/2π

Γ2
(

1
4

)] κσΩ(f)

≈0.12κσΩ(f),

(3.10)

assuming that physical values of Ω(f) and ε(f) must be
positive.
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In the more desirable case of ε̂(f) > 0, one finds that

〈ε(f)〉 =

√
κσΩ(f) e−ε̂

4(f)/(4κ2σ2
Ω(f))

√
2

×D−3/2

(
− ε̂2(f)

κσΩ(f)

)
,

(3.11)

where D−3/2 is a parabolic cylinder function. It is
straightforwardly shown that this expression yields the
correct value in the limit of vanishing ε̂(f).

Searches for the stochastic background gain a signifi-
cant boost in sensitivity through the optimal combina-
tion of measurements from many frequency bins [27].
Using this principle, and assuming ε is independent of
frequency, we obtain an optimal broadband estimator:

ε̂opt =

∑
f ε̂(f) σ̂−2

ε (f)∑
f σ̂
−2
ε (f)

, (3.12)

with associated uncertainty

σ̂opt =

∑
f

σ̂−2
ε (f)

−1/2

. (3.13)

Note that σ̂ε(f) is an estimator for the uncertainty asso-
ciated with ε̂(f) whereas Σε(f) is the intrinsic width of
the distribution of ε(f).

In order to calculate ε̂opt, we need to know the shape of
N(f). This allows us to weight different frequency bins
based on the expected number of neutron stars in each
bin. However, the absolute normalization of N(f) is un-
known. Since ε̂opt ∝ N−1/2(f), the product ε̂2optNtot does
not depend on the overall normalization of N(f). Thus,
to minimize systematic errors from theoretical unknowns,
it is useful to constrain the quantity ε2Ntot where

Ntot ≡
∫

band

df N(f) (3.14)

is the total number of neutron stars emitting in some
observing band. In the next section we apply this for-
malism to constrain ε2Ntot using previously published
results. We also estimate the sensitivity of future possi-
ble observations.

IV. RESULTS

A. Projected sensitivity of current and planned
observatories

In Fig. 3 we present the projected one-sigma sensitivity
for a variety of experiments in the ε–Ntot plane assum-
ing 1 yr of observation time. We include projections for
initial LIGO and Advanced LIGO using the spatially sep-
arated H1L1 detector network and the colocated H1H2
detector pair. Here we use publicly available sensitivity

curves [31, 32]. Work is underway to relocate the H2 de-
tector to India for Advanced LIGO, but we include the
colocated pair to make comparisons with projections for
the Einstein Telescope [33], which has colocated inter-
ferometers in its design. We also include the sensitivity
obtained from a previously published analysis by initial
LIGO and Virgo [30].
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FIG. 3: One-sigma sensitivity curves in the ε–Ntot plane.
The parameter space above a curve will, on average, produce
a signal with a signal-to-noise ratio greater than unity. We
show theoretical sensitivity curves (assuming 1 yr of observa-
tion time) for initial LIGO H1L1, initial LIGO H1H2, Ad-
vanced LIGO H1L1 [34], Advanced LIGO H1H2, and for the
Einstein Telescope. (While efforts are underway to move H2
to India, we include the H1H2 detector pair for illustrative
purposes.) We also show the measured sensitivity obtained
in previously published results using data from both initial
LIGO and Virgo [30]. The vertical dashed cyan line indi-
cates Ntot = 52800. These results are obtained using MW1.
Results obtained with MW2 agree to within 15% in ε.

In Fig. 4 we consider the case where Ntot = 52800 in
order to see how well ε can be constrained by stochastic
measurements given a plausible value of Ntot. The solid
curves show the sensitivity as a function of frequency
whereas the dashed curves show the combined broadband
sensitivity σopt. The values of σopt are summarized in
Table I.

For initial LIGO, it might be possible to achieve
σopt ≈ 2× 10−7 using the colocated H1H2 detector pair.
This is also close to what can be achieved during Ad-
vanced LIGO with the H1L1 detector network. A pair of
colocated Advanced LIGO detectors could, in principle,
achieve a sensitivity of ≈ 7 × 10−9, which is an order of
magnitude better than the current limits on individual
neutron star ellipticity from targeted GW searches [13].
As we pointed out above, a more sophisticated analysis,
with an improved model for the anisotropy of the stochas-
tic signal, will likely yield a sensitivity for aH1L1 that is
somewhere between the aH1L1 and aH1H2 sensitivities
given in Table I.

The inclusion of additional detectors such as Virgo
and KAGRA [35] is expected to improve the results
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network σopt

iH1L1 3.7× 10−6

iH1H2 2.1× 10−7

aH1L1 1.8× 10−7

aH1H2 6.7× 10−9

ET-D 5.6× 10−10

S5VSR1 4.5× 10−6

TABLE I: One-sigma sensitivity to ellipticity from Galac-
tic neutron stars assuming the model MW1 (with Ntot =
52800 in-band neutron stars), average distance squared

〈1/r2〉−1/2 = 6.0 kpc, and moment of inertia I = 1.1 ×
1045 g cm2. (Results obtained with model MW2 agree to
within 15%.) We assume a cut-off frequency f ≤ 1538 Hz.
Results are shown for initial LIGO H1L1, initial LIGO H1H2,
Advanced LIGO H1L1, Advanced LIGO H1H2, and for the
Einstein Telescope. Each entry is calculated assuming 1 yr
of integration except for S5VSR1, which is derived from a
previously published paper from initial LIGO and Virgo [30].

marginally since the overlap reduction function is most
favorable for the LIGO pair, though, this remains an
area of future investigation. Finally, the proposed Ein-
stein Telescope is expected to achieve a sensitivity of
σopt ≈ 6× 10−10. This is significantly below the current
best limits on neutron star ellipticity [13], which suggests
that the Einstein Telescope may have sufficient sensitiv-
ity to observe a stochastic signal from Galactic neutron
stars.

B. Combining with measurements of resolvable
neutron star signals

It is interesting to consider what we can learn by com-
bining a stochastic background measurement with GW
measurements of individual neutron stars. Since the lat-
ter constrain ellipticity directly, searches for individual
neutron stars can be used to break the degeneracy in
stochastic background measurements between ε and Ntot,
allowing us to estimate the number of in-band Galactic
neutron stars. In this subsection we estimate roughly
how well we can constrain Ntot by combining a stochastic
search with a future GW detection of individual neutron
stars.

To begin, we assume that the fractional uncertainty in
ε from measurements of individual neutron stars is small
compared to the fractional uncertainty in Ω ∝ ε2Ntot,
which is measured by a stochastic search. It follows that
the fractional uncertainty on Ntot is σN/Ntot ≈ σΩ/Ω ≈
1/SNR. If we imagine, for example, that the Einstein
Telescope is able to detect an SNR = 5 stochastic signal
from Galactic neutron stars, and that the average ε is by
then tightly constrained from observations of individual
neutron stars, it should be possible to estimate Ntot to
within a single-sigma uncertainty of ≈ 20%.
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FIG. 4: One-sigma sensitivity to average ellipticity of Galac-
tic neutron stars. The solid lines are narrowband results
calculated with 0.25 Hz-wide bins whereas the dashed lines
show the broadband values of σopt obtained through the
optimal combination of all the frequency bins. This plot
assumes Ntot = 52800 in-band neutron stars, average dis-
tance squared 〈1/r2〉−1/2 = 6.0 kpc, and moment of inertia
I = 1.1 × 1045 g cm2. We show theoretical sensitivity curves
(assuming 1 yr of observation time) for initial LIGO H1L1,
initial LIGO H1H2, Advanced LIGO H1L1, Advanced LIGO
H1H2, and for the Einstein Telescope. The difference in spec-
tral shape between the S5VSR1 curve and the iH1L1 curve
is due to the different overlap reduction functions for H1L1,
H1V1, and L1V1. (While efforts are underway to move H2
to India, we include the H1H2 detector pair for illustrative
purposes.) We also show the measured sensitivity obtained
in previously published results using data from both initial
LIGO and Virgo [30]. These results are obtained using model
MW1. Results obtained with model MW2 agree to within
15% in ε for Ntot = 40000.

V. CONCLUSIONS

We have shown how observations of stochastic gravi-
tational waves can be used to constrain both the number
of Galactic neutron stars in some analysis band Ntot as
well as their average ellipticity ε. We calculate the sen-
sitivity of past, present, and future experiments in the
ε–Ntot plane. We demonstrate that our predictions are
fairly robust to details in the modeling of Galactic neu-
tron stars.

For the reasonable values of Ntot ≈ 40000–53000, we
find that a colocated pair of initial LIGO detectors can,
in principle, achieve a sensitivity of σε ≈ 2×10−7, which
is already an interesting part of parameter space. Ad-
vanced LIGO, without a colocated detector pair, may
have difficulty improving significantly on the sensitivity
of a colocated initial LIGO pair. However, the proposed
Einstein Telescope will be able to probe σε ≈ 6× 10−10.
We demonstrate that stochastic measurements can be
combined with measurements of individually resolvable
neutron star signals in order to break the degeneracy be-
tween ε and Ntot, thereby providing an estimate of the
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total number of Galactic neutron stars in band.

A promising area of future work is the development
of directional Galactic search for stochastic gravitational
waves. Using a λ-statistic analysis (as in Appendix B),
it should be possible to improve the sensitivity (for non-
colocated detectors) beyond the estimates stated here.
A directional analysis—combined with measurements of
individual neutron stars—might also provide further in-
formation, e.g., about the spatial distribution of neutron
stars in the Milky Way. The analysis can be further im-
proved by taking into account theoretical uncertainty in
the expectation values 〈I2〉 and 〈1/r2〉, which are used in
the estimation of ε2Ntot.
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Appendix A: Stochastic background from the Milky
Way, the Virgo Cluster, and the entire universe

In this paper we have derived constraints on the av-
erage properties of Milky Way neutron stars by consid-
ering their combined stochastic gravitational-wave sig-
nal. It is worthwhile to consider if this is, indeed, the
best means of constraining average properties of neutron
stars. While the Milky Way contains ≈ 40000 neutron
stars in the band of Advanced LIGO, the ≈ 1000 galax-
ies making up the Virgo Cluster contain many more.
While the Virgo Cluster contains many more neutron
stars, they are further away. A typical Galactic dis-
tance is 10 kpc whereas the the Virgo Cluster is signifi-
cantly further away ≈ 16.5 Mpc. Which source produces
a brighter gravitational-wave signal: the nearby neutron
stars of the Milky Way or the more distant, but more
numerous neutron stars of the Virgo Cluster? For that
matter, how do these two signals compare to the sig-
nal arising from the extremely large number of neutron
stars in the entire universe, the vast majority of which
are very far away? These questions, which we attempt to
answer here, amount to a variation on Olbers’ paradox
(see Ref [36] for further discussions).

Our answer consists of a back-of-the-envelope calcula-
tion. We begin by comparing the signal from the Milky
Way with the signal from the Virgo Cluster. Assum-
ing a network of two identical Advanced LIGO detectors
operating at design sensitivity with strain noise power
spectral density P (f), the expected signal-to-noise ratio
from a stochastic neutron star signal [27] scales like

SNR ∝
[∫

df
γ2(f)H2(f)

P 2(f)

]1/2

. (A1)

Combining Eq. (A1) with Eq. (2.5),

SNR ∝
〈

1

r2

〉[∫
df
γ2(f)f8N2(f)

P 2(f)

]1/2

. (A2)

Here r is the distance to the neutron stars, N(f) is the
number of neutron stars in given frequency bin, P (f) is
the strain power spectral density of the detectors (as-
sumed to be identical), and γ(f) is the overlap reduction
function.

The factor of 〈1/r2〉 encodes the advantage of look-
ing at nearby sources whereas the factor of N(f) de-
scribes the advantage gained by looking at a source with
more neutron stars. The overlap reduction γ(f) penal-
izes searches for diffuse sources, which create less easily
detectable signal than pointlike sources. The factor of f8

arises through Eq. (2.3).
Plugging in 〈1/r2〉−1/2 = 6 kpc for the Milky Way and

and 〈1/r2〉−1/2 = 16.5 Mpc for the Virgo Cluster, and
assuming N(f) is 1000 times larger for the Virgo Clus-
ter, we evaluate Eq. (A2) with the Advanced LIGO noise
curve. Using the Hanford-Livingston detector pair, we
find that the SNR from the Milky Way is ≈ 67× greater
than that from the Virgo Cluster. Using colocated detec-
tors, the Milky Way SNR is ≈ 140× greater due to the
more favorable overlap reduction function for colocated
detectors.

Appendix B: Measuring a stochastic background
from the Virgo Cluster

In this section we present a framework for measuring
a stochastic signal from a population of neutron stars
in the Virgo Cluster. As we demonstrated above, the
Virgo Cluster search is expected to yield a less stringent
constraint on neutron star ellipticity than the Milky Way
search, which is the focus of this paper. However, we
include this example to demonstrate a general framework
for measuring neutron star ellipticity with an anisotropic
stochastic background. We expect this demonstration to
be useful for future work targeting an anisotropic Milky
Way source.

The angular extent of the Virgo Cluster is about 6◦

in radius, hence we consider it a localized source in the
stochastic GW searches. We apply multibaseline GW ra-
diometry, a method that is optimal for searching for a lo-
calized stochastic signal with a network of detectors [37].
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The search statistic itself is derived from the cross cor-
relations of the data across all possible baselines in the
network. Following Refs. [14, 38] the GW energy density
is characterized by

Ω(f) =
2π2

3H2
0

f3H̄(f)

∫
S2

dn̂P(n̂) , (B1)

where P(n̂) specifies the angular distribution of GW
power as a function of the sky-position unit vector n̂,
and H̄(f) its spectral shape. Note that H̄, defined as
H̄(f) ≡ H(f)/H(f0), is a dimensionless function of fre-
quency, normalized so that H̄(f0) = 1, where f0 is a
reference frequency. An extended source with an arbi-
trary angular distribution can be expanded in spherical
harmonic basis as

P(n̂) =
∑
l,m

P lmYlm(n̂) . (B2)

The series is truncated at l = lmax, which sets the angular
scale of the search to be ∼ 2π/lmax. The choice of lmax is
determined by the detector network’s angular resolution
and the source power spectrum.

10
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VC1

FIG. 5: The number density of Virgo Cluster neutron stars
N(f) as a function of gravitational-wave frequency. For this
model, the normalization is chosen here to be Ntot = 4× 107

neutron stars in the analysis band of 40 Hz–1500 Hz.

Following Ref. [37] one can combine the information
about the network geometry and the source to define the
following multibaseline statistic for detecting a stochastic
signal:

λ =
P̂µ†Xµ√
P̂ν†Γντ P̂τ

, (B3)

where µ ≡ {l,m}, P̂ is the unit vector along P , Xν is
the dirty map, and Γµν is the beam matrix or Fisher
matrix defined in Ref. [14]. The maximized-likelihood
ratio statistic in Eq. (B3) is obtained by maximizing the
likelihood ratio over the overall source power α, which is
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FIG. 6: The map of a modeled signal-strength vector of the
Virgo Cluster. In this map, the spherical harmonic coefficients
are set to zero for l > (lmax = 30).

defined by P ≡ αP̂ . The estimator of the overall power
is given by

α̂ =
P̂µ†Xµ

P̂ν†Γντ P̂τ
, (B4)

with the associated uncertainty

σα̂ =
1√

P̂ν†Γντ P̂τ
. (B5)

Note that α̂ has units of strain2Hz−1sr−1. One can
extend these single-baseline quantities to the case of a
multibaseline network, which is discussed in Ref. [37].

We model the signal-strength vector P̂model of the
Virgo Cluster such that its non-zero components follow a
Gaussian distribution, centered at 12h 26m 32s RA and
+12◦43

′
24

′′
Dec, extended over 12h-13h RA and 5◦−20◦

Dec. Figure 6 shows the signal-strength vector for the
Virgo Cluster. The spherical-harmonic coefficients P lm
are set to zero for l > (lmax = 30). This corresponds to
an angular scale of about 12 degrees.

In order to estimate the sensitivity of our searches
to the signal from the Virgo Cluster, we analyze data
from the LIGO fifth science and the Virgo first science
runs [8, 9]. Here we use LIGO and Virgo time-shifted
data by shifting one data stream relative to another in
time, to remove any astrophysical correlations. The data
is taken from GPS time: 815184013-875145614. The
search bandwidth considered here is 40-1500 Hz. The
analysis is performed using the S5 stochastic analysis
pipeline [14]. We parse the time series into 60 second in-
tervals, Hann-windowed, 50%-overlapping segments, and
coarse-grained to achieve a 0.25 Hz resolution. We also
mask frequency bins associated with instrumental lines
and injected lines for detector calibration and pulsar sig-
nal simulation. We apply the stationarity cut described
in Ref. [39], which rejects a small percentage (namely,
∼ 3%) of the segments. The cross-correlation analysis
is performed on each segment of time-shifted data. The
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outputs from the segments are then combined into a final
result and the network maximized-likelihood ratio statis-
tic is computed. We then estimate the GW strain power
from the Virgo Cluster.

We assume that the neutron stars in the Virgo Cluster
follow the spectral profile VC1 of Fig. 5. And the normal-
ization is chosen such that the expected total number of

neutron stars is 4×107. The distance to the Virgo Cluster
is assumed to be 16.5 Mpc. We estimate the GW energy
density using Eq. (B1) and Eq. (B4). Following Eq. (3.4)
and Eq. (3.12) we estimate one-sigma sensitivity to the
average ellipticity of neutron stars in the Virgo Cluster
is σε < 9.6× 10−5.
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