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Search templates for stochastic gravitational-wave backgrounds
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Several earth-based gravitational-wave (GW) detectors are actively pursuing the quest for placing
observational constraints on models that predict the behavior of a variety of astrophysical and
cosmological sources. These sources span a wide gamut, ranging from hydrodynamic instabilities in
neutron stars (such as r-modes) to particle production in the early universe. Signals from a subset
of these sources are expected to appear in these detectors as stochastic GW backgrounds (SGWBs).
The detection of these backgrounds will help us in characterizing their sources. Accounting for such
a background will also be required by some detectors, such as the proposed space-based detector
LISA, so that they can detect other GW signals. Here, we formulate the problem of constructing a
bank of search templates that discretely span the parameter space of a generic SGWB. We apply it
to the specific case of a class of cosmological SGWBs, known as the broken power-law models. We
derive how the template density varies in their three-dimensional parameter space and show that for
the LIGO 4km detector pair, with LIGO-I sensitivities, about a few hundred templates will suffice
to detect such a background while incurring a loss in signal-to-noise ratio of no more than 3%.

PACS numbers: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym

Multiple earth-based gravitational-wave (GW) detec-
tors, including both resonant-mass and interferometric
ones, are currently in operation aiming to make the first
GW detection. As the sensitivities of these detectors im-
prove, they will place interesting limits on astrophysi-
cal event rates and strengths of GW backgrounds, thus
constraining or falsifying theoretical models. The sub-
ject of this paper is how to design a template bank for
searching and bounding the strength of a stochastic GW
background (SGWB). After formulating the problem for
a general SGWB, of either astrophysical or cosmologi-
cal origin, we apply it to the specific case of a SGWB
with a spectral profile that belongs to a class predicted
by a host of cosmological models, including inflationary
and string-theoretic ones. This profile is known as the
broken-power-law (BPL) spectrum, as described below
[1, 2].

Searching for SGWBs with BPL-type spectra is im-
portant because some of the cosmological models that
predict them also allow for their strengths to be large
enough to be detectable in the near future. In particular,
in the bandwidth of these detectors, their strengths can
be several orders of magnitude higher than that predicted
by the slow-roll inflationary model (SRIM) [1], while
being consistent with extant observational constraints,
such as arising from the anisotropy in the cosmic mi-
crowave background radiation [3, 4], the monitoring of
radio pulses from several stable millisecond pulsars [5],
and the empirical abundances of light elements in the
universe [6]. These models are, therefore, especially at-
tractive to the detectors in operation. Additionally, GWs
from those unresolved astrophysical sources that have a
duty cycle appreciably larger than unity will appear as a
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stochastic signal in these detectors, some with BPL-type
spectra and strengths that may be considerably larger
than that of a cosmological SGWB predicted by SRIM
[7]. Indeed in the planned space-based detector LISA [8],
the background from unresolved galactic binaries is ex-
pected to be large enough to form a “source-confusion”
noise and make it difficult to detect other GW signals [9].
Although optimal statistics and templates for searching
resolvable binaries exist [10, 11], strategies for character-
izing such a background in order to allow the detection
of other sources are beginning to be explored. While we
derive the limits on template spacings and template num-
bers for BPL-type cosmological spectra, the formalism
given here for obtaining the search templates is general
enough to be applicable to other cases, including astro-
physical SGWBs.
We begin by briefly outlining the search statistic for a

SGWB. The decision on whether a signal is present or
absent in a detector output is often based on the exam-
ination of data that are noisy. In decision theory, the
hypothesis that the data do not contain a signal is called
the null hypothesis, H0. Under the alternative hypoth-
esis, H1, the detector output is noise plus signal [12].
Thus, in the frequency domain, the output is

h̃(f ;ϑ)|H1
= ñ(f) +Aw̃(f ;ϑ) , (1)

where ñ(f) is the noise, A is the overall strength of the
signal and w̃(f ;ϑ) gives the spectral characteristics of the
signal for different choices of the signal parameter vector,
ϑ. In general, the waveform will have the appearance:

w̃(f ;ϑ) = y(f ;ϑ) exp [iΨ(f ;ϑ)] , (2)

where y(f ;ϑ) is a frequency-dependent amplitude, and
Ψ(f ;ϑ) is the signal phase. We assume that the detector
noise has a zero-mean Gaussian probability distribution;
it is described completely by the first two noise moments,
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ñ(f) = 0 and ñ∗(f)ñ(f ′) =
1

2
P (|f |)δ(f − f ′) , (3)

where P (|f |) is the one-sided noise power-spectral density
(PSD) [13]. We define the inner (or scalar) product of a

pair of Fourier domain functions ã(f) and b̃(f) as

(

ã, b̃
)

= 4ℜ
∫ ∞

0

df
ã∗(f)b̃(f)

m(f)
, (4)

where ã(f) and b̃(f) are the Fourier transforms of tem-
poral counterparts a(t) and b(t), respectively, and m is
an inverse weight that, typically, depends on the noise
PSDs. Its exact form is decided by the detection statis-
tic at hand.
The search templates are modeled after the waveform:

ũ(f ;ϑ′) = N w̃(f ;ϑ′) , (5)

where ϑ
′ is the template parameter vector and N is a

normalization factor. The inner-product of a template
with itself,

(

ũ(ϑ′), ũ(ϑ′)
)

≡ κ(ϑ′) , (6)

will be taken to be positive definite. Above,
√
κ is the

template norm, which is parameter dependent, in gen-
eral. The normalization factor is related to the template
norm as follows:

N (ϑ′) =

√

κ(ϑ′)

2

[
∫ ∞

0

df
y2(f ;ϑ′)

m(f)

]−1/2

. (7)

To test a hypothesis, one computes the cross-correlation

of the data with the templates, viz.,
(

h̃(ϑ)|H1
, ũ(ϑ′)

)

,

which is termed as the matched-filter output (MFO). Un-
der H1, the mean of the MFO is

S(ϑ, δϑ) :=
(

h̃(ϑ)|H1
, ũ(ϑ′)

)

, (8)

where δϑ ≡ ϑ− ϑ
′.

One often uses in searches unit-norm templates,
namely,

κ(ϑ′) = 1 . (9)

The advantage of using such templates is that under H1

and for δϑ = 0, the mean of the matched-filter output
(MFO) is just the signal strength divided by the template
normalization factor, i.e.,

S(ϑ, δϑ = 0) :=
(

h̃(ϑ)|H1
, ũ(ϑ)

)

=
A

N (ϑ)
, (10)

assuming that the signal model is perfect.

To quantify the effect of a mismatch, δϑ, it is useful
to introduce the match or ambiguity function:

M(ϑ, δϑ) :=
(

ũ(ϑ), ũ(ϑ′)
)

, (11)

which tends to κ(ϑ) as δϑ → 0. Then the mean of the
MFO can be shown from Eq. (8) to be

S(ϑ, δϑ) =
A

N (ϑ)
M(ϑ, δϑ) . (12)

For small values of δϑ, one can Taylor expand M about
δϑ = 0 to obtain

M(ϑ, δϑ) = κ (ϑ)
[

1 + dµ(ϑ)δϑ
µ

−gµν(ϑ)δϑ
µδϑν

]

+O
(

δϑ3
)

(13)

where the Einstein summation convention over repeated
indices, µ and ν, was used and we defined

dµ :=
1

κ

[

∂M

∂δϑµ

]

δϑ=0
, gµν := − 1

2κ

[

∂2M

∂δϑµ∂δϑν

]

δϑ=0
.

(14)
Above, gµν can be interpreted as the metric on the pa-
rameter space that maps parameter mismatches into dips
in the signal-to-noise ratio (SNR) [14], provided dµ van-
ishes. (The MFO of a unit-norm template is equivalent
to the SNR [15].)
It is important to note here that an observer also has

the choice of using unnormalized templates, such that
N = 1 in Eq. (5). This has the advantage that one does
not have to recompute N and, therefore, the search tem-
plates, for every value of ϑ or every time m (which can
be the noise PSDs of the detectors) changes. Indeed, this
choice was exercised by Ungarelli and Vecchio in their pi-
oneering work in Ref. [2]. However, the disadvantage of
such a choice is that the associated ambiguity function,
M(ϑ, δϑ), has first order errors arising from parameter
mismatches. Consequently, a “wrong” template (i.e., a
template with δϑ 6= 0) applied to a given data set can
actually trigger an MFO that is larger than that of the
“correct” template (with δϑ = 0) applied on the same
data set. Use of constant-norm templates, such as the
unit-norm ones defined above, avoids that problem.
To see explicitly why dµ need not be zero for unnor-

malized templates, note that the associated ambiguity
function obeys the Cauchy-Schwarz inequality [16]:

M(ϑ, δϑ) =
(

ũ(ϑ), ũ(ϑ′)
)

≤
√

κ(ϑ)κ(ϑ′) . (15)

Since, in general, κ(ϑ′) can be larger than κ(ϑ) for some
ϑ
′ 6= ϑ, the rhs above can actually exceed κ(ϑ). Thus,

κ(ϑ) need not be the maximum value ofM(ϑ, δϑ) for un-
normalized templates. Equation (13) then implies that
dµ need not be zero for such templates. However, for
unit-norm templates the rhs of Eq. (15) is identically
unity (and κ(ϑ) = 1 = κ(ϑ′)), independent of the value
of ϑ′ or ϑ. There, M(ϑ, δϑ) attains the maximum pos-
sible value of 1, when ϑ

′ = ϑ. Thus, dµ has to vanish for
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unit-norm (and constant-norm) templates, and gµν can
assume its role as a parameter-space map.
Without any means for distinguishing a stochastic

GW background in a detector from the detector’s in-
trinsic noise, the search for such a signal involves cross-
correlating the outputs of a pair of detectors. As shown
in Ref. [17], a useful statistic in decision making in this
context is the cross-correlation (CC) statistic,

S :=

∫ ∞

−∞

df

∫ ∞

−∞

df ′δT (f
′ − f)h̃∗

A(f
′)h̃B(f)ũ(f) , (16)

where h̃A(f) is the inverse Fourier transform of the strain
in the Ath detector, T is the observation time, δT (f) ≡
∫ T/2

−T/2
dt exp(−i2πft) is the finite-time approximation of

the Dirac delta function, and ũ(f) is a filtering function
that will be determined below. The CC statistic can also
be cast as the output of a matched filter:

S =
(

K̃|H1
, ũ

)

, (17)

where K̃|H1
is a functional of a pair of detector inputs:

K̃(f) :=
1

2

∫ ∞

−∞

df ′
h̃A(f

′)h̃∗
B(f)δT (f

′ − f)

PA(f)PB(f)
(18)

and the inner product is defined as in Eq. (4), with the

inverse weight there set to m = [PA(f)PB(f)]
−1

.

The product
[

h̃∗
A(f

′)× h̃B(f)
]

appearing in S is a ran-

dom variable since the SGWB strains, produced cos-
mologically or astrophysically (in some cases), are so.
The detection statistic, therefore, is the mean of the CC
statistic,

S =
(

K̃|H1
, ũ

)

. (19)

And the variance of S is

σ2 = S2 −
(

S
)2

, (20)

which defines the noise-squared of S. If one assumes that
the noise power in each detector due to terrestrial sources
is much larger than that due to a SGWB, then [17]

σ2 ≈ S2 ≈ T

4

∫ ∞

−∞

df |ũ(f)|2 PA(|f |)PB(|f |)

=
T

8
(ũ, ũ) . (21)

Above, it was assumed in the second approximation that
the cross-correlation of the terrestrial noises in the two
detectors is negligible. Thus, the SNR is

SNR =
S

σ
=

√

8

T

(

K̃|H1
, ũ

)

√

(ũ, ũ)
, (22)

which is maximized when the filtering function matches
the signal, i.e.,

ũ = λK̃|H1
. (23)

where λ is a proportionality constant. Although S and
σ are dependent on the choice of this constant, the SNR
itself is independent of it.
Equation (23) suggests ũ as templates for searching

an astrophysical or cosmological SGWB, as long as the
assumptions made above remain valid. We now concen-
trate in the rest of the paper on the search templates re-
quired for a cosmological SGWB. (A similar problem for
the astrophysical SGWB will be studied elsewhere [18].)
Theoretically, the strain due to a cosmological SGWB
in each detector is expected to have a Gaussian probabil-
ity distribution with zero mean; their variance-covariance
matrix elements are given by [19]:

h̃∗
A(f)

∣

∣

∣

H1

h̃B(f ′)
∣

∣

∣

H1

=
3H2

0

20π2
|f |−3γAB(|f |)ØGW(|f |;ϑ)

×δ(f − f ′) , (24)

where H0 is the Hubble constant, γAB is the overlap-
reduction function (ORF) for the detector pair [20], ØGW

is the energy density of the stochastic GW per logarith-
mic frequency bin divided by the critical energy density
required to close the universe, and ϑ are the signal pa-
rameters on which it depends. Heretofore, we will iden-
tify γAB ≡ γ. The ORF for co-located and co-aligned
interferometric detectors with orthogonal arms is nor-
malized so that it is identically unity. Using the above

strain-power density in the expression for K̃|H1
yields the

cosmological SGWB template:

ũ = N γ(|f |)ØGW(|f |;ϑ)
|f |3PA(|f |)PB(|f |)

, (25)

where, for unit-norm templates,

N =

[

2

∫ ∞

−∞

df
γ2(|f |)Ø2

GW(|f |;ϑ)
f6PA(|f |)PB(|f |)

]−1/2

. (26)

We now show how to obtain the spacing between such
templates on the ϑ parameter space such that its dis-
creteness, δϑ, is small enough to guarantee an SNR of
≥97% of that obtained in the ideal case of δϑ = 0,

1. Single power-laws

Before studying the template spacings of the BPL spec-
tra, let us consider the simpler case where ΩGW(f) is in
the form of a single power-law (SPL) in frequency,

ΩGW(f) = Ω0

(

f

fp

)k

, (27)

where k is a real power, and Ω0 and fp are positive-
definite real constants. In the bandwidths of LISA or
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LIGO-type detectors, the SGWB spectrum predicted by
SRIM will appear as a special case of the above, with k ≈
0. In such a case the only intrinsic search parameter is
the index k and the ambiguity function can be expanded
around δk := k − k′ = 0 as

M(k, δk) = 1− 1

2

[

α(2)− α2(1)
]

δk2 +O
(

δk3
)

, (28)

where α (n) is the template-space mean of ln (f/fp):

α (n) = (ũ(k), [ln (f/fp)]
n ũ(k))

=

∫ f+/fp

f−/fp

dx
γ2(fpx)x

2k−6 [lnx]n

PA(fpx)PB(fpx)

×
[

∫ f+/fp

f−/fp

dx
γ2(fpx)x

2k−6

PA(fpx)PB(fpx)

]−1

. (29)

Above, n is any real number, and f−, f+ are the lower
and upper limits of the frequency integral, respectively.
For the LIGO-Hanford (LHO) and -Livingston (LLO)
pair, with LIGO-I sensitivity, we choose f− = 40Hz
(determined by the detectors’ seismic-noise cut-off) and
f+ = 512Hz, respectively. For this inter-site correlation,
the statistic does not receive any appreciable contribu-
tion from higher frequencies owing to a weak γ(f). By
contrast, for co-located interferometers, γ(f) = 1 for all
frequencies, and the upper cut-off frequency is deter-
mined by the worsening sensitivity due to the photon
shot-noise [13, 22]. An optimal way of computing the
CC statistic on the data from a set of multiple detectors
that includes a co-located pair, while accounting for
intra-site terrestrial noise, was obtained in Ref. [21].
For searches in this kind of a detector network, the
value of f+ should be revised upward of 512Hz. As
such, the expressions here are applicable to any pair of
GW detectors. However, the template-spacings, number
of templates, and the figures are computed for the
LLO-LHO (4km) pair, with LIGO-I sensitivities [22].
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FIG. 1: The only metric component, g11, for a single power-
law SGWB plotted as a function of k. The template spacing
is a minimum near the global maximum at k = 0.5000+0.0625

−0.0625 .

The only metric component for the above SGWB signal

is readily deduced from Eq. (28) as

g11(k) =
1

2

[

α(2)− α2(1)
]

, (30)

which has the following properties: First, the Cauchy-
Schwarz inequality can be used to prove that g11(k) is
non-negative for all real k [15]. Second, Eqs. (28) and
(29) show that it is dependent on k, which is confirmed
by Fig. 1. This implies that for the optimal coverage of
the k-space the template-spacings must be chosen to vary
in step with the g11(k) values. The template spacing is a
minimum at the global maximum of g11(k) (at k ≃ 0.5),
and is:

dk = 0.637

(

1−MM

0.01

)1/2

, (31)

where MM is the minimal match required by an observer
between the discretely spaced templates and a signal.
Typically, MM is set equal to 97%. But we find above
that dk is as large as 0.637 for a minimal match as high
as 99%, as is evident in Fig. 2.
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FIG. 2: The ambiguity function, M(k, δk), for a single power-
law SGWB plotted as a function of k and the mismatch, δk.
For any given k, the function attains the maximum possible
value of unity when δk = 0. And for any given δk, the function
is a minimum at k = 0.5000+0.0625

−0.0625 , which is consistent with
the behavior of the metric depicted in Fig. 1 [23].

If one were to choose the template-spacing to be uni-
formly equal to the above value and, therefore, err on the
side of over-covering the parameter space, then the num-
ber of templates required for a search with k ∈ [−4, 4]
and a minimal match of at least 99% is [24]

N = Ceiling

[

kmax − kmin

0.637

]

= 13 , (32)

which is easily implementable in real time on the data of
a detector pair.
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2. Broken power-laws

A likely character of ΩGW(f) will be in the form of a
broken power-law (BPL) in frequency [2],

ΩGW(f) = Ω0

[

Θ

(

1−
f

fp

)(

f

fp

)k−

+Θ

(

f

fp
− 1

)(

f

fp

)k+

]

,

(33)

where k− ≥ 0, k+ ≤ 0 are real power-law exponents,
and the peak frequency, fp, and Ω0 are positive-definite
real constants. The first three are intrinsic search pa-
rameters, which define the three-dimensional parameter
space, ϑ = (fp/fp0, k−, k+). Here fp0 is an arbitrary
reference frequency chosen large enough so that δfp/fp0
is small and the O

(

δϑ3
)

terms in Eq. (13) are indeed
negligible.
We calculate the ambiguity function for the templates

in Eq. (25), with the above ΩGW(f), and compute the
metric from its second derivatives using Eq. (14). These
derivatives now involve the following integrals of the log-
arithm and different powers of f :

D :=

[

∫ 1

f−/fp

dx
γ2(fpx)x

2k−−6

PA(fpx)PB(fpx)

+

∫ f+/fp

1

dx
γ2(fpx)x

2k+−6

PA(fpx)PB(fpx)

]−1

,

α± (n) := ∓D

∫ 1

f±/fp

dx
γ2(fpx)x

2k±−6 [lnx]
n

PA(fpx)PB(fpx)
,

β± (n) := ∓Dkn±

∫ 1

f±/fp

dx
γ2(fpx)x

2k±−6

PA(fpx)PB(fpx)
,

β(n) := β−(n) + β+(n) , (34)

where the dependence of D, α±(n), β±(n), and β(n) on
the detector indices A and B is implicit.

The six independent components of the symmet-
ric metric on the three-dimensional parameter space,
(fp/fp0, k−, k+), are:

g00 =
1

2

(

fp0
fp

)2
[

β(2)− β2(1)
]

g11 =
1

2

[

α−(2)− α2
−(1)

]

,

g22 =
1

2

[

α+(2)− α2
+(1)

]

,

g01 =
1

2

(

fp0
fp

)

[β(1)− k−]α−(1) ,

g02 =
1

2

(

fp0
fp

)

[β(1)− k+]α+(1) ,

g12 = −1

2
α−(1)α+(1) , (35)

where the parameter vector components were taken to
be ϑ0 = fp/fp0, ϑ

1 = k−, and ϑ2 = k+. Once again it
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FIG. 3: The template-density ρ (normalized here to have a
maximum value of 1) for a BPL parameter-space plotted as
a function of k± and fp, two variables at a time. The fixed
parameters in these plots are (clockwise from top) fp = 50Hz,
k− = 0.125 and k+ = −0.125.
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FIG. 4: The ambiguity function, M(ϑ, δϑ), for a broken
power-law SGWB plotted as a function of fp and the mis-
match, δfp (both in Hz). Here, we set k± = ∓2 and δk± = 0.
Note how quickly M asymptotes to a value of unity for large

fp, implying a small number of templates for fp
>
∼ 200Hz. The

ambiguity function is within 99% for: (a) fp ∈ [50, 120]Hz, if
δfp ≤ 4Hz, (b) fp ∈ (120, 150]Hz, if δfp ≤ 10Hz, and (c)
fp > 150Hz, if δfp ≤ 20Hz.

is clear that the metric is dependent on the parameters,
as confirmed by Fig. 3. Thus, the template spacing for
a fixed minimal match is not uniform [25].

The number of templates, N , can be estimated from
the above metric by dividing the parameter space volume,
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FIG. 5: M(ϑ, δϑ) for BPL spectra plotted as a function of k+
and k− for four values of fp = 50, 100, 190, 450Hz (clockwise
from top left). The mismatch values are δk± = 0.25 and
δfp = 2.5Hz. As fp increases, note how littleM varies with k+
(for any given k−). This is indicative of the template spacings
being larger along k+ than along k−. This is expected since
most of the contribution to the CC statistic arises at lower
frequencies, where the k− index has support (especially, when

fp
>
∼ 200Hz).

V =

∫

d3ϑ
√

det ‖gµν‖ , (36)

by the volume of a unit cell in three-dimensional space,
v = (2

√

(1−MM)/3 )3 [14]. We numerically compute
the above volume and find that

N ≃ 250

(

1−MM

0.03

)−3/2

, (37)

where we again err on the side of over-coverage by re-
laxing the numerical computation to allow for MM ≥
97%. The parameter-dependence of the template den-
sity, ρ =

√

det ‖gµν‖/v, is illustrated in Fig. 3. The
above value ofN is consistent with the near-unity value of
the ambiguity function shown in Figs. 4-7 for template-
spacings as large as δk± = 0.25 and δfp = 2.5Hz.
It has been projected in Ref. [17] that LIGO-I and Ad-

vanced LIGO may succeed in placing upper limits on Ω0

of the order of 5 × 10−6 and 5 × 10−11, respectively, for
the k = 0 SPL spectrum. The first science run at LIGO
already demonstrated successfully the application of a
single template (i.e., the k = 0 case of SPL) on the data
from the LIGO detector pairs to obtain bounds on Ω0

[26, 27]. With the upcoming science runs at LIGO, the
sensitivities are fast approaching closer to the designed
target so as to make the first upper limit given above
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FIG. 6: M(ϑ, δϑ) for a broken power-law SGWB plotted as
a function of k− and fp for four values of k+ = -4, -2, -1, 0
(clockwise from top left). The mismatch values are δk± =
0.25 and δfp = 2.5Hz.
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(clockwise from top left). The mismatch values are δk± =
0.25 and δfp = 2.5Hz.

realizable in the near future. This progress necessitates
the availability of techniques and templates to look for a
variety of proposed astrophysical and cosmological SG-
WBs in the ever-so sensitive data. This paper addresses
this issue for the latter category of signals, which assumes
the background to be isotropic and unpolarized. The for-
mer case of an astrophysical background will be discussed
elsewhere [18].
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