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Abstract. A binary compact object early in its inspiral phase will be picked up by

its nearly monochromatic gravitational radiation by LISA. But even this innocuous

appearing candidate poses interesting detection challenges. The data that will be

scanned for such sources will be a set of three functions of LISA’s twelve data streams

obtained through time-delay interferometry, which is necessary to cancel the noise

contributions from laser-frequency fluctuations and optical-bench motions to these data

streams. We call these three functions pseudo-detectors. The sensitivity of any pseudo-

detector to a given sky position is a function of LISA’s orbital position. Moreover, at a

given point in LISA’s orbit, each pseudo-detector has a different sensitivity to the same

sky position. In this work, we obtain the optimal statistic for detecting gravitational

wave signals, such as from compact binaries early in their inspiral stage, in LISA data.

We also present how the sensitivity of LISA, defined by this optimal statistic, varies

as a function of sky position and LISA’s orbital location. Finally, we show how a real-

time search for inspiral signals can be implemented on the LISA data by constructing

a bank of templates in the sky positions.

http://arxiv.org/abs/gr-qc/0407008v1
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1. Introduction

The commissioning of Earth-based long-baseline gravitational wave (GW) interferom-

eters has finally come to fruition a little less than three decades since the discovery of

the Hulse and Taylor binary pulsar in 1974 [1] and the subsequent confirmation of the

emission of gravitational waves (GWs) by that system.[2] On the other hand, the Laser

Interferometric Space Antenna (LISA) is being designed as a space-based detector to

observe low-frequency GWs (in the milli- to deci-hertz band) to complement the high-

frequency observations (in the deca- to kilo-hertz band) of its Earth-based counterparts.

Many of the sources of low-frequency GWs fall in the category of compact binary ob-

jects, which include white dwarfs, neutron stars, and black holes. During the early stages

of the inspiral, these compact binaries will emit almost monochromatic low-frequency

gravitational waves, which will produce detectable signals in the LISA data.

LISA will comprise three spacecrafts located at the vertices of a nearly equilateral

triangle (as shown in Fig. 1) with the side lengths equal to 5 million kilometers.[3] Each

craft will house a couple of laser-mounted optical benches and proof masses and will

freely fall around the Sun in an orbit that lies on a plane slightly tilted with respect to

the ecliptic. The tilt will vary from one craft to the other. By inclining the plane of the

triangle to the ecliptic by a constant angle of 60◦, the side-length of the triangle can be

maintained at a fixed value. In the process, the triangle will complete one spin about

its normal while its centroid, trailing behind the Earth by about 8.3 million kilometers,

completes one orbit around the Sun.

The effect of a GW on LISA will be to change the physical distances between

its freely falling proof masses. This change will be registered as fractional frequency

shifts in the six laser beams exchanged among the three space-crafts. The shifts

will have additional contributions from various noise sources. These include two

primary ones, namely, the laser-frequency fluctuations (contributing a fractional shift

of about 10−13 Hz−1/2) and the optical-bench motions (with a fractional shift of about

10−16 Hz−1/2). In order to detect the GWs (with a strain around 10−21 Hz−1/2), it

is imperative that these noises be mitigated by several orders of magnitude. A data

analysis technique for achieving this goal was accomplished by Armstrong, Estabrook,

and Tinto.[4]. They showed that by combining appropriately the time-delayed versions

of these six data streams, with six additional ones arising from laser beam exchanges

between adjacent optical benches on each craft, one can eliminate the two primary

noises, thus, rendering the LISA data analyzable for GW signals.

In this paper, we formulate a strategy for detecting nearly monochromatic

gravitational waves from inspiraling compact binary objects in the LISA data. There

are two complementary aspects to such a strategy. The first is to deduce the maximum

number of noise-independent detectors that LISA offers. And the second is to construct

the appearance of a GW signal in them. This allows one to match the data from

these detectors with a template of the expected signal in them. Whether a match is

strong enough to warrant a detection is then decided based on the rate of false alarms
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at the level of that match. For the problem of detecting low-mass compact binaries,

involving white-dwarfs and neutron stars, the waveforms obtained by the quadrupole

approximation [5] suffice for accurately modeling the expected signal. This waveform

allows for a slightly “chirping” source, i.e., a source whose orbital frequency Ω0 is

increasing at a rate Ω̇0 ≪ Ω0/T , where T is the observation period. We will use this

waveform as a template in our detection strategy.

The layout of the paper is as follows. In Sec. 2, we enunciate the three noise-

independent data combinations, or “pseudo-detectors”, that were first obtained in Ref.

[6] by combining the frequency shifts of the twelve data streams exchanged among the

LISA spacecrafts through time-delay interferometry (TDI) [7]. In Sec. 3, we obtain

the form of the gravitational-wave strain caused by a compact binary source in these

three pseudo-detectors. This provides the templates required to search for signals from

such sources in the LISA data. We then study the antenna patterns of these pseudo-

detectors at different points in LISA’s orbit, emphasizing how their relative sensitivities

to a mildly chirping source vary as a function of sky position and source frequency.

The study bears out the fact that noise-independence of detectors is a property distinct

from their geometric independence. Indeed, at GW wavelengths larger than about 0.1

AU, which we will term as the long-wavelength limit, the strain of the third pseudo-

detector tends to the difference of the strain of the first two. We then derive the optimal

statistic for detecting gravitational waves from (non-spinning) compact binary inspirals

by coherently combining the data of the three pseudo-detectors in Sec. 4.

The statistic obtained here tracks the Doppler modulation of the source frequency

induced by the motion and time-varying orientation of LISA with respect to that

source.[9] For Gaussian noise, we derive the probability distribution of our statistic,

which can be used to compute the signal-to-noise ratio (SNR) of a candidate event.

We use this distribution to predict the behavior of false-alarm and detection rates as a

function of the detection threshold set for the statistic. In Sec. 5, we construct the metric

on the space of parameters that allows one to estimate the fractional loss of SNR for a

given mismatch between the template and the signal parameters. Using this metric we

esimate the number of templates that will be required to search the full astrophysically

relevant volume of the parameter space while suffering a loss in SNR of no more than

3%. We also estimate the computational speed required to implement such a search in

real time. We briefly summarize the results obtained in Sec. 6, especially, stressing the

applicability of our formalism to searches in the recently found second-generation TDI

data combinations.[11, 12, 13] Note that in the expressions appearing in this paper, we

set the gravitational coupling constant (G) and the speed of light (c) to unity.

2. The pseudo-detectors

As illustrated in Fig. 1, LISA consists of three spacecrafts, labeled i =1, 2, and 3, located

clockwise at the correspondingly labeled vertices of an almost equilateral triangle. Let

the arm-lengths of this triangle be L1, L2, and L3, such that Li is the length of the arm
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Figure 1. LISA consists of 3 spacecrafts located at the vertices of an equilateral

triangle. These craft exchange six elementary data streams, labeled Ui and −Vi. The
Ui beams propagate clockwise, whereas the −Vi propagate counterclockwise.

facing the vertex i. For specifying the orientation of each arm, we assign unit vectors

n̂i along them, such that their directions are oriented anticlockwise about the triangle.

Each spacecraft will have two optical benches (denoted by i and i∗ in Fig. 1) equipped

with independent lasers and photodetectors. Thus, each spacecraft will shoot two beams

towards the other two spacecrafts, respectively, resulting in six one-way beams along

the 3 arms.

The effect of an impinging GW is to cause a shift in the frequency of the laser

beams. But a GW is not the only source causing such a shift. The laser-frequency

fluctuation is another source. If ν0 is the central frequency of all the lasers in LISA,

then the fractional shift caused by such fluctuations in the beam originating at optical

bench i is

Ci(t) ≡
∆νi(t)

ν0
. (1)

Similarly for the beam from the bench i∗. What is measured, however, is the frequency

fluctuation in the beam from one bench relative to that in the beam from a bench in
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one of the two other vertices. This way one obtains three “clockwise” oriented streams,

Ui, and three “anticlockwise” oriented streams, −Vi. The frequency fluctuation in the

beam from bench (i− 1) relative to that in the beam originating at bench i∗ is termed

Ui. ‡ Therefore, U1(t) ≡ C3(t−L2)−C1(t) is the data stream measured by beating the

beam transmitted by bench 3 against that of bench 1∗, measured at time t at bench 1.

The remaining two streams, namely, U2 and U3, can be obtained by cyclic permutation

of the indices in the U1 expression. (Thus, U2(t) ≡ C1(t−L3)−C2(t), and so on.) Three

more data streams, termed −Vi, are obtained by measuring the frequency fluctuation

in the beam from bench (i + 1)∗ relative to that originating at bench i. For instance,

−V1(t) ≡ C2(t − L3) − C1(t). Once again, the remaining two −Vi streams can be

obtained by cyclic permutation of the indices in the above expression for −V1. (Hence,
−V2(t) ≡ C3(t− L1)− C2(t), and so on.)

The fractional shift C3(t−L2) is constructed from C3(t) by shifting back the latter

stream in time by an amount L2. For brevity of expressions, we introduce the time-shift

operator ζi by its action on a data stream x(t) as in:

ζix(t) = x(t− Li) , (2)

where the label i denotes the arm along which the time-shift is affected. One can thus

define the 6 inter-craft streams as follows[14]:

U1 = ζ2C3 − C1 , U2 = ζ3C1 − C2 , U3 = ζ1C2 − C3 ,

V1 = C1 − ζ3C2 , V2 = C2 − ζ1C3 , V3 = C3 − ζ2C1 . (3)

Note that the effect of such a shift on the Fourier components, x̃(f) ≡
∫∞

−∞
x(t)e2πiftdt,

of the data is to change them to e−2πifLi x̃(f), where f is a frequency variable. Therefore,

the effect of the operator
∏3

i=1 ζ
αi

i on a data stream is to change its Fourier transform

by the factor e−2πif
∑3

i=1 αiLi.

These data streams, however, are expected to suffer from several noise sources, two

of which, viz., the laser-frequency fluctuations and the optical-bench motions, tower over

the others. The two other noise sources are the photon-shot noise and the fluctuations

in the motion of the proof masses. The laser-frequency fluctuations directly influence

the fractional frequency-shifts, Ci, and, therefore, the data streams Ui and Vi. The

effect of the optical bench motions on the Ci is additive: Let the random velocities of

the optical benches be vi and vi∗ . This causes a Doppler shift in the frequency of the

lasers mounted on those benches, which in turn modifies the Ci to

C1 → C1 − n̂3 · v1 ,

C1∗ → C1∗ + n̂2 · v1∗ . (4)

The remaining Ci and Ci∗ can be inferred by cyclically permuting the indices in the

above expression. If ui,i∗ are the random velocities of the proof masses on benches i and

‡ Note that the indices i and i±1 can take only 1, 2, and 3 as values. These three numbers are ordered

clockwise in Fig. 1. By convention, whereas i+1 equals the number next to i while going clockwise in

that figure, i − 1 equals the number preceding i. E.g., when i = 3, we take i − 1 = 2 and i + 1 = 1;

when i = 1, we take i− 1 = 3 and i+ 1 = 2.
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i∗, then it is easy to see that the value of U1 and V1 gets affected by additional terms

2n̂2 · u1∗ and 2n̂3 · u1, respectively. Finally, when there is a GW signal present, these

streams will receive additional contribution owing to the fractional frequency shifts

caused by it. Thus, in the presence of the above noise sources and signal, the data

streams get modified as

U1 → U1 = ζ2(C3 − n̂2 · v3)− (C1∗ + n̂2 · v1∗) + 2n̂2 · u1∗ + nshot
U1

+ UGW
1 ,

V1 → V1 = −ζ3(C2∗ + n̂3 · v2∗) + (C1 − n̂3 · v1) + 2n̂3 · u1 − nshot
V1

− V GW
1 ,(5)

where nshot
Ui,Vi

are the photon-shot noises and UGW
i and V GW

i are the GW signals present

in the Ui and Vi data streams, respectively. The four remaining Ui and Vi streams can

be obtained from the above expressions by cyclic permutations of the indices. In the

rest of the paper the Ui and Vi will refer to these modified streams. When a (GW)

signal is absent, they will still be given by these modified expression, but with UGW
i = 0

and V GW
i = 0. The form of UGW

i and V GW
i in the presence of a signal will be explored

in the next section.

In addition to the six inter-craft data streams discussed above there is

supplementary information available about the noise sources in the intra-craft beams

exchanged through the optical fibers connecting two adjacent optical benches i and i∗

located in the ith craft. In all there are six intra-craft beams, two per bench pair. But

the two intra-craft beams within a craft can be beaten against each other to produce

a single stream that is directly relevant to noise suppression. To wit, at craft 1, by

beating the frequency of the beam from bench 1 relative to that on bench 1∗, one forms

the stream,

W1 = (C1 − n̂3 · v1)− (C1∗ + n̂2 · v1∗) + n̂3 · u1 + n̂2 · u1∗ . (6)

Two other intra-craft data combinations, W2 and W3, can be obtained by the cyclic

permutation of indices in the above expression. Note that these intra-craft streams will

bear negligible influence from any impinging gravitational wave. Nevertheless, as we

explain below, they offer information on laser-frequency fluctuations and optical-bench

motions that can be used to render the Ui and Vi streams essentially free of any noise

from these two sources. Together with the Ui and Vi, the Wi form a a total of nine data

streams that a data analyst has recourse to in hunting for a GW signal in LISA.

Following the work of Tinto and Armstrong [7], it was shown by Dhurandhar et al.

[14] that by acting on the 6 inter-craft streams, Ui, Vi, and the 3 intra-craft streams,

Wi, with certain polynomials, pAi , q
A
i , and rAi , of the time-shift operators, ζi, one can

form several combinations of time-delayed data streams,

xA(t) =

3
∑

i=1

[

pAi Vi(t) + qAi Ui(t) + rAi Wi(t)
]

, (7)

that have the laser-frequency and the optical-bench motion noise eliminated. Above,

A labels the different combinations so obtained. The above technique of constructing
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such data combinations of pseudo-detectors is called time-delay interferometry. The

pseudo-detectors can be recast as

xA = Trace
[

eA · Z
]

, (8)

where

eA =





pA1 pA2 pA3
qA1 qA2 qA3
rA1 rA2 rA3



 and Z =





V1 U1 W1

V2 U2 W2

V3 U3 W3



 . (9)

Thus, for a given choice of the data streams Ui, Vi,Wi (and, therefore, the matrix Z), the

matrix eA of the time-shift polynomials forms a representation of the pseudo-detectors

xA.

Of the several possible pseudo-detectors, only 3 are linearly independent and have

a non-vanishing GW strain in them, in general [6, 15]. The three that will be discussed

here are defined by their corresponding eA:

e1 =





1− ζ 1 + 2ζ −2− ζ

1 + 2ζ 1− ζ −2− ζ

ζ2 − 1 ζ2 − 1 2(1 − ζ2)



 , e2 =





−ζ − 1 1 ζ

−1 1 + ζ −ζ
1− ζ2 −1 + ζ2 0



 ,(10)

and

e3 =





1 1 1

1 1 1

−1− ζ −1− ζ −1− ζ



 . (11)

In the above expressions, it is assumed that all arm lengths are almost identical.

Therefore, ζ1 ≃ ζ2 ≃ ζ3 ≡ ζ . It is important to note that these data combinations

diagonalize their noise covariance matrix [16] and, therefore, are also noise-independent.

Although the laser-frequency noise is eliminated in the xA(t), there is still present

the noise associated with the acceleration of the proof masses onboard each craft and

the photon-shot noise. In general,

xA(t) = nA(t) + hA(t) , (12)

where

hA(t) =

3
∑

i=1

[

pAi V
GW
i (t) + qAi U

GW
i (t)

]

, (13)

is the gravitational-wave strain in pseudo-detector A and nA(t) is the time-delayed sum

of the remaining noise components. One typically assumes that these components and,

hence, the total noise, has a Gaussian probability distribution with a zero mean. Their

variance-covariance matrix elements are given as follows. For the photon-shot noise,

these elements are

ñshot∗
Ui

(f) ñshot
Uj

(f ′) = ñshot∗
Vi

(f) ñshot
Vj

(f ′)

= ñshot∗
Wi

(f) ñshot
Wj

(f ′) =
1

2
P shot(f)δ(f − f ′)δij ,

ñshot∗
Ui

(f) ñshot
Vj

(f ′) = ñshot∗
Vi

(f) ñshot
Wj

(f ′) = ñshot∗
Wi

(f) ñshot
Uj

(f ′) = 0 , (14)
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for any i and j. Above, P shot(f) is termed as the one-sided power-spectral density

(PSD) of the photon-shot noise. Furthermore, one assumes the proof-mass noise to be

isotropic, such that:

(

n̂i · ũ∗
j (f)

)

(n̂k · ũl(f ′)) =
(

n̂i · ũ∗
j∗(f)

)

(n̂k · ũl∗(f ′)) =
1

2
P proofδ(f − f ′)δjl ,

(

n̂i · ũ∗
j∗(f)

)

(n̂k · ũl(f ′)) =
(

n̂i · ũ∗
j(f)

)

(n̂k · ũl∗(f ′)) = 0 , (15)

for any i, j, k, and l. Also, the covariance of the shot noise in any data stream

with the noise in the motion of any proof-mass is zero. It is estimated that

P shot = 1.8 × 10−37[f/1Hz]2Hz−1 and that the proof-mass noise PSD is P proof =

2.5× 10−48[f/1Hz]−2Hz−1.[3] While the proof-mass noise enters the very low frequency

band of LISA, the shot noise enters the higher end of LISA’s sensitivity band.

It is now possible to deduce the noise PSD, P (A)(f), of each of the pseudo-detectors

from the above expressions. It follows from them that in the absence of a signal, each

pseudo-detector is pure noise, xA(t) ≡ nA(t), with a zero mean Gaussian probability

distribution. The variance of this distribution is

ñA∗(f)ñB(f ′) =
1

2
P (A)(f)δ(f − f ′)δAB . (16)

By substituting for xA from Eq. (7) (with UGW
i and V GW

i set to zero there) in the above

equation and using the covariances of the noise components defined in Eqs (14) and (15)

one finds [14]:

P (A)(f) =
3
∑

i=1

[

(|2pAi + rAi |2 + |2qAi + rAi |2)P proof

+ (|2pAi |2 + |2qAi |2)P shot
]

(17)

The resulting noise spectra for each pseudo-detector is [8]:

P (1)(f) = P (2)(f) = 8 sin2(πfL){ [2 + cos(2πfL)]P shot

+ [6 + 4 cos(2πfL) + 2 cos(4πfL)]P proof} ,

P (3)(f) = [2 + 4 cos(2πfL)]
[

P shot + 4 sin2(πfL)P proof
]

. (18)

Therefore, the data analysis challenge is to detect signals in this remaining noise.

3. The Signal

Since LISA will be orbiting the solar-system barycenter (SSB), it is convenient to

introduce a reference frame centered at the SSB. As shown in Fig. 2, we define the

x̂ and ŷ axes of this SSB frame to lie on the ecliptic, and the ẑ axis to be normal to

it and pointing towards the north ecliptic pole. The x̂ axis points towards the vernal

equinox. We take the GW source to be located in the direction given by the vector

ŵ. A gravitational wave from this source will arrive at the SSB origin traveling along

−ŵ. The sky position {θ, φ} defines the Cartesian components of the propagation

direction, i.e., ŵ = (sin θ cosφ, sin θ sinφ, cos θ). Thus, the sky-position angles are



Optimal statistic for detecting inspirals with LISA... 9

equivalently characterized by two of the three components of ŵ, say, w1 = sin θ cosφ

and w2 = sin θ sin φ. Also, θk and φk define the plane transverse to ŵ:

θ̂ ≡ ∂ŵ

∂θ
, φ̂ ≡ 1

sin θ

∂ŵ

∂φ
. (19)

The perturbation created by the wave at a spacetime location (t, r) is given by

hkl(t, r) = h+(t− ŵ · r)(θkθl − φkφl) + h×(t− ŵ · r)(θkφk + θlφl) , (20)

where h+(t) and h×(t) are the two GW polarizations and r is the position vector of the

spatial location of the perturbation in the SSB frame. In the time domain, the strain

induced along the ith arm is

hi(t) = hkl(t)n
k
i n

l
i = hi+(t)ξi+(w1, w2) + hi×(t)ξi×(w1, w2) , (21)

where we used the Einstein summation convention over the repeated indices k and l.

Above,

ξi+ = (θ̂ · n̂i)2 − (φ̂ · n̂i)2 , ξi× = 2(θ̂ · n̂i)(φ̂ · n̂i) (22)

are the beam-pattern functions of the ith arm for the two polarizations.

Figure 2. The solar-system barycentric (SSB) frame, denoted by the (x, y, z) axes.

The angles (θ, φ) specify the sky position, ŵ of a GW source. The axes of the wave-

frame associated with a gravitational wave emanating from that source are labeled by

the unit-normal vectors (x̂w, ŷw, ẑw). The orientation of the wave frame relative to

the SSB frame is given by the Euler angles, (φ− π/2, π − θ, ψ), where ψ is the angle

between the line of nodes and x̂w (as explicitized further on the left panel in Fig. 3).

The celestial longitude is drawn as a dashed arc passing through the origin of the wave

frame.

An impinging GW causes a change in the light-travel time along an arm that

can be calculated by solving the null geodesic equation in the corresponding perturbed
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spacetime. This in turn causes a time-varying Doppler shift, which clearly depends on

the difference between the GW strains at the two space-crafts at the end of the arm.

One also expects this shift to be dependent on the position of the source relative to the

arm, ŵ · n̂i. Thus, the GW contribution to the data stream Vi is given by [14]

V GW
i (t) =

−1

2(1− ŵ · n̂i)
[h(t− ŵ · ri+1)− h(t− ŵ · ri−1 − L)] (23)

where ri is the position vector of the ith craft in the LISA frame.

Figure 3. The left panel shows the wave frame and the right panel shows the

orientation of the compact binary’s orbit. The orientation of the wave frame is such

that its ẑw axis points towards the origin of the SSB frame (as shown in Fig. 2) and its

x̂w axis lies along the semi-major axis of the wave’s polarization ellipse. The tangent,

l̂, to the longitude at the source’s sky-position is perpendicular to the line of nodes,

which lies on the ecliptic. The two form a plane on which x̂w lies making an angle ψ

with the line of nodes. Therefore, β = π/2− ψ. In the right panel, COM is the center

of mass of the binary. The normal, ô, to its orbit is along the binary’s orbital angular

momentum vector and has an inclination of angle ǫ (introduced in the main text) with

the line of sight, ŵ. The projection of ô on the celestial sphere is ôp, which makes an

angle β with respect to l̂. The angle between ô and ôp is ι. These two angles,β and ι,

completely specify the orientation of the orbit’s normal. Thus, ι = π/2− ǫ.

We now consider the effect of a signal from a non-spinning compact binary, with

member masses m1 and m2, on V GW
i (t). The two polarization amplitudes for the ith

arm are

hi+ (t) = H(Ωi)

[

1 + cos2 ǫ

2
cos 2ψ cos(Φi(t) + δc) + cos ǫ sin 2ψ sin(Φi(t) + δc)

]

,(24)

hi× (t) = H(Ωi)

[

−1 + cos2 ǫ

2
sin 2ψ cos(Φi(t) + δc) + cos ǫ cos 2ψ sin(Φi(t) + δc)

]

,(25)

where Φi(t) is the phase received at that arm, {ψ, ǫ} are the polarization and inclination

angles of the binary source (as explained in Fig. 3) and δc is the initial phase at the
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origin of the LISA frame. For binaries that include a white-dwarf, the signal will be

essentially monochromatic, with Φi(t) = Ωit. Above, H(Ωi) is the signal amplitude at

LISA defined as:

H(Ωi) = 1.188× 10−22

[ M
1000 M⊙

]5/3 [
R

1Gpc

]−1 [
Ωi

2π × 1mHz

]2/3

(26)

where M = (m1m2)
3/5/(m1 +m2)

1/5 is the chirp mass, R is the distance to the source

and

Ωi = Ω0γi (27)

is the Doppler shifted source frequency, Ω0, at the ith arm owing to LISA’s motion

with respect to the solar-system barycenter. Note that γi is the sky-position dependent

Doppler factor,

γi = (1− ŵ · η̂i) , (28)

where η̂i is the velocity of the geometrical center of the ith arm. Substituting the GW

strain deduced from Eqs. (24) and (21) in the V GW
i (t) expression (23), mainfests its

dependence on the source parameters. One can similarly obtain UGW
i (t) as a function of

these parameters. We first discuss the case of the monochromatic signal. The extension

to slightly chirping sources is straightforward and will be presented subsequently.

If the laser-frequency and optical-bench motion noises were at the level of the other

noises, one could hunt for GW signals in the Ui and Vi data streams. But as we saw in

the last section, this is not the case and, hence, one has to search for them in the pseudo-

detectors xA(t) in which the contributions of these noises stand canceled. Working with

the xA(t), however, makes the data analysis formulation a little non-trivial since one

has to contend with time-delaying appropriately the six inter-craft data streams that

can potentially harbor a GW signal, hA(t). Implementing this is somewhat easier in the

Fourier domain. Thus, the algorithm we follow in the rest of this section is as follows.

We begin by first computing the Fourier transform of the data streams V GW
i (and UGW

i ).

These will then be time-delayed and combined to calculate the frequency components

h̃A(ω) (where ω = 2πf) of the GW signal in the Ath pseudo-detector, along the lines of

Eq. (13). Its inverse Fourier transform will finally yield hA(t), which is the quantity we

aim to search for in the xA(t). In the process, we get an explicit expression for h̃A(ω),

which is useful since the implementation of a search is faster in the Fourier domain,

where one can avail of the existing Fast Fourier transform algorithms.[17]

We begin by defining two new functions of {ψ, ǫ} that appear naturally in the

Fourier transforms, Ṽ GW
i (ω) and ŨGW

i (ω), of the six streams:

l× = − i
(

T 2
2 (ψ, ǫ, 0)− T−2

2 (ψ, ǫ, 0)
)

,

l+ =
(

T 2
2 (ψ, ǫ, 0) + T−2

2 (ψ, ǫ, 0)
)

, (29)

where T ±2
2 are Gel’fand functions [18],

T ±2
2 (ψ, ǫ, 0) =

1

4
(1± cos ǫ)2 exp (∓i2ψ) . (30)
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To find Ṽ GW
i (ω), we use the GW strain Eqs. (24) and (21) in the expression for V GW

i (t)

in Eq. (23). Taking the Fourier transform of the result gives

Ṽ GW
i (ω) = H(Ω0)T

[

sinc ((ω − Ωi)T ) e
−iδc ×

(

l∗+(ψ, ǫ)F
∗
Vi+1;+

(Ωi) + l∗×(ψ, ǫ)F
∗
Vi+1;×

(Ωi)
)

+ sinc ((ω + Ωi) T ) e
iδc ×

(

l+(ψ, ǫ)FVi+1;+(Ωi) + l×(ψ, ǫ)FVi+1;×(Ωi)
)

]

. (31)

The orientation of the ith arm resides in the functions,

FVi+1;+,× = −ibi ξi;+,×sinc
(

ΩiLik
−
i

)

eiτiΩiLi ,

FUi−1;+,× = ibi ξi;+,×sinc
(

ΩiLik
+
i

)

eiτiΩiLi , (32)

where

bi ≡
Ω0γ

5/3
i Li
2

, τi ≡
1

2

(

1− ŵ · r̂i√
3

)

, k±i =
(1± ŵ · n̂i)

2
, (33)

are all real quantities. The FUi;+,× similarly determine the fractional frequency shift

ŨGW
i . Note that the dependence on the angles {ψ, ǫ} has been separated out in the

form of l+,×. We will exploit this separation of variables in the next section to eliminate

the computational cost in searching over the {ψ, ǫ} angles for a GW signal.

The Fourier components of the GW strain h̃A(ω) can now be found by combining

the above Ṽ GW
i (ω) (and ŨGW

i (ω)) via the Fourier analogue of Eq. (13). Thus,

h̃A(ω) = iH(Ω0)T
3
∑

i

[

e−i(δc+σAi )sinc ((ω − Ωi) T ) T
ρ∗
2 DA∗

ρi e
−iτiΩiLi

+ ei(δc+σ
A
i )sinc ((ω + Ωi) T )T

ρ
2 D

A
ρie

iτiΩiLi

]

, (34)

where there is an implicit sum over ρ = ±2. Also, we define

DA
±2j ≡ bj |MA

j |
(

ξj+ ∓ iξj×
)

, (35)

where

MA
i ≡ qAi−1sinc

(

ΩiLik
+
i

)

− pAi+1sinc
(

ΩiLik
−
i

)

(36)

and σAi = arg(MA
i ).

The time-domain expression of the GW strain in the pseudo-detector A is obtained

by taking the Fourier transform of h̃A(ω), and is found to be

hA(t) = H(Ω0)

3
∑

j=1

ℜ
[

e−iδEA∗
j Sj(t)

]

, (37)

where δ = δc + π/2,

SAj (t) ≡ eiΩj(t−Ljτj)+iσAj /gAj and EA
j ≡ gAj T

ρ
2 D A

j ρ . (38)
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Above, gAj is a normalization constant such that

〈SAj , SAj 〉(A) ≡ 4

∫ ∞

0

df

∣

∣

∣
S̃Aj (f)

∣

∣

∣

2

P (A)(f)
= 1 , (39)

which implies that for an observation duration (i.e., signal integration time) T ,

gAj =

[

2T

πP (A)(Ωj)

]1/2

. (40)

When considering a slightly chirping source (i.e., when Ω̇0 ≪ Ω0/T ) one can expand

the signal phase as

Φi(t) = Ωit +
1

2
Ω̇it

2 . (41)

In that case, the only modification to hA(t) occurs in the SAi term:

SAj (t) = eiΩj(t−Ljτj)+i( 1
2
Ω̇jt2+σAj )/gAj , (42)

which defines the time-domain template for chirping compact-object binaries. Note that

apart from the normalization constant, the template SAj (t) is a pure phase term. We

will find this useful when deducing the matched filter in the following section.

Equations (27) and (28) show that Ω̇j is related to the sky position and the intrinsic

chirp rate Ω̇0. In order to ensure that the phase evolution of a template models that of

a signal well, it is important to allow for non-zero Ω̇0 in searches of binaries involving

masses higher than those of white dwarfs, such as in searches of neutron-star binaries

and binaries involving a neutron star and a black hole. This is because the gravitational

radiation reaction on these sources is stronger than those involving white-dwarfs. The

post1-Newtonian waveform reveals that for small chirp masses and source frequencies,

the waveform phase can be expanded as in Eq. (41), with

Ω̇0 =
48

5

(M
2

)5/3

Ω
11/3
0 , (43)

Thus, determining Ω̇0 is significant since, together with Ω0, it determines the binary

chirp mass M. And as shown by Eq. (26), additional knowledge of the amplitude will

then help in estimating the distance to the binary.[19]

To summarize, the GW strain in pseudo-detector A is given by Eq. (34) and is

determined by eight independent parameters, {R, δ,Ω0, Ω̇0, ψ, ǫ, θ, φ}. To search for a

signal we must devise a strategy to seek these strains for a range of parameter values

accessible to LISA’s pseudo-detectors. This is what we deal with in the next section.

4. The Optimal Statistic

Given three independent pseudo-detectors, xA, we now ask what is the optimal detection

statistic to look for GW signals, hA, in them. In the absence of any prior probabilities

and costs, the optimal detection strategy is the one that minimizes the rate of false

dismissals for a given rate of false alarms. This is termed as the Neyman-Pearson
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criterion. Under this criterion, and for zero-mean Gaussian noise, the detection statistic

is the likelihood ratio, λ, defined as [20]

lnλ =

3
∑

A=1

(

〈hA, xA〉(A) −
1

2
〈hA, hA〉(A)

)

, (44)

where the first term is the sum of the cross-correlations of the expected signal, hA, with

the respective data, xA, over all pseudo-detectors. The cross-correlation for pseudo-

detector A is given by

〈hA, xA〉(A) ≡ 4ℜ
∫ ∞

0

df
h̃A∗(f)x̃A(f)

P (A)(f)
, (45)

where ℜ(X) denotes the real part of a complex number X . The second term in Eq. (44)

is an overall normalization that is independent of the data. Substituting for hA from

Eq. (37), we get:

3
∑

A=1

〈hA, xA〉(A) =
3
∑

A=1

3
∑

i=1

ℜ
[

e−iδ EA∗
i CA

i

]

, (46)

where

CA
i ≡ 〈SAi , xA〉(A) . (47)

The double summation in Eq. (46) can be replaced with the single sum over a new

index k,

3
∑

A=1

3
∑

i=1

Y A
i ≡

9
∑

k=1

Y
⌈k
3
⌉

(k−1)%3+1 , (48)

where A = Ceiling(k/3) = ⌈k
3
⌉ and i = Mod(k−1, 3)+1 = (k−1)%3+1.[21] We simplify

the above expressions further by consistently identifying Y
⌈k
3
⌉

(k−1)%3+1 with Y
k, which form

the components of a 9-dimensional vector Y. Thus, Y k=1 ≡ Y A=1
i=1 , Y k=2 ≡ Y A=1

i=2 ,

Y k=3 ≡ Y A=1
i=3 , Y k=4 ≡ Y A=2

i=1 , and so on. We use this algorithm to map the DA
i , E

A
i ,

and CA
i to the components, Dk, Ek, and Ck of 9-dimensional vectors D, E, and C,

respectively.

In the new notation, the cross-correlation statistic becomes

3
∑

A=1

〈hA, xA〉(A) =
9
∑

k=1

ℜ
[

e−iδ E∗
k C

k
]

= ℜ
[

e−iδ E ·C
]

(49)

and
3
∑

A=1

〈hA, hA〉(A) = H2(Ω0)

9
∑

k=1

E∗
kE

k ≡ H2(Ω0) ‖ E ‖2≡ κ2 , (50)

where ‖ Y ‖ denotes the norm of vector Y. Therefore, κ2 is a measure of the signal

power accessible to LISA. It is usually less than the peak power H2(Ω0) owing to LISA’s

non-optimal orientation, E, to a given source. The relative sensitivities of the three

pseudo-detectors to different sky positions can now be studied by plotting the analogue
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Figure 4. Sensitivities zA ≡ ∑

3

i=1
Ei∗

AE
A
i /(g

A
i )

2 of the three pseudo-detectors as

functions of sky positions, {θ, φ}, in radians. Note that the Doppler shift in the source

frequency has been ignored here; so gAi is the same for all i, i.e., gAi ≡ gA. These

plots have been evaluated for Ω0 = 1 mHz at the “initial” orbital position of LISA

labeled t = 0. As illustrated above, direction of maximum sensitivity varies from one

pseudo-detector to another.

of κ2 for each individual pseudo-detector, as shown in Fig. 4. This figure, plotted for

Ω0 = 1 mHz, verifies the fact found in Ref. [6] that the third pseudo-detector has a

much smaller sensitivity than the first two. It also, shows that the peak sensitivity of

the pseudo-detector labeled as A = 1 is the best of the three. However, at any given

location on LISA’s orbit, there are sky positions to which pseudo-detector 2 has the best

sensitivity. We also plot in Figs. 5 and 6, the sensitivities of pseudo-detector 1 and the

optimal combination of all the pseudo-detectors, for three different locations on LISA’s

orbit. These figures show that for all sky positions the optimal-sensitivity is better than

the usually best pseudo-detector, labeled A = 1.

The likelihood ratio now takes the following form:

lnλ = κ
3
∑

A=1

〈ĥA, xA〉(A) −
1

2
κ2, (51)

where

ĥA ≡ hA

H(Ω0) ‖ E ‖ (52)

is the normalized counterpart of hA, such that
∑3

A=1〈ĥA, ĥA〉(A) = 1. The likelihood

ratio can be maximized over κ and δ to yield

lnλ |κ̂,δ̂=
1

2
| Q ·C |2 , (53)

where the hat on a parameter denotes its value at which lnλ stands maximized with

respect to that parameter and Q is the normalized orientation vector, Q ≡ E/ ‖ E ‖,
such that ‖ Q ‖= 1. Also, we find κ̂ =

∑3
A=1〈ĥA, xA〉(A) and δ̂ = arg(C ·Q).

To maximize the statistic in Eq. (53) with respect to {ψ, ǫ}, note that Q can be

expressed in terms of its components as follows:

Q ≡ Q+2D̂+2 +Q−2D̂−2, (54)
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where

D̂±2 ≡
D±

‖ D ‖ and Q±2 ≡ T±2
2 ‖ D ‖
‖ E ‖ . (55)

Above, we have used the fact that ‖ D+ ‖=‖ D− ‖≡‖ D ‖. The statistic in Eq. (53)

depends on {ψ, ǫ} solely through Q. Therefore, it stands maximized with respect to

those parameters when Q gets aligned with C. The fact that this alignment is physically

realizable was shown in Ref. [23]. The maximized statistic is

lnλ|κ̂,δ̂,ψ̂,ǫ̂ =
1

2
‖ CH ‖2 , (56)

where CH is the projection of C on a 2-dimensional complex space, H, spanned by

{D̂+2, D̂−2}. Since it is always possible to choose a pair of real basis vectors to define

this two-dimensional space, we take these vectors to be

ô± ≡
(

d̂1 ± d̂2

)

/ ‖ d̂1 ± d̂2 ‖ , (57)

where d1 = ℜ(D+2) and d2 = ℑ(D+2). Thus, we may define the network search statistic

as

Λ ≡‖ CH ‖2= |C+|2 + |C−|2 = (c+0 )
2 + (c+π/2)

2 + (c−0 )
2 + (c−π/2)

2 , (58)

where C± = ô± · C ≡ c±0 + ic±π/2. The maximizing values of the two parameters are

ψ̂ = arg(̟)/4 and ǫ̂ = cos−1
[

(1−
√

|̟|)/(1 +
√

|̟|)
]

, where ̟ ≡ C+2/C−2.

The above statistic is still a function of the sky position through the parameters

{w1, w2}. Since it is not possible to maximize the statistic over these parameters

analytically, one must resort to a numerical maximization scheme as described in the

following section. By comparing the values of the statistic for each pixel in the sky

with a threshold value, Λ0, a decision on the presence or absence of a signal in the data

can be made. The threshold itself is determined by the false-alarm probability that one

can afford. Note that in the absence of a signal, Λ is a random variable that has a χ2

probability distribution,

p0(Λ) =
Λ

4
exp (−Λ/2) , (59)

with 4 degrees of freedom [18]. This is because each of the c±0 and c±π/2 is a Gaussian

random variable with a zero mean and a unit variance. The false-alarm probability is

Q0 =

∫ ∞

Λ0

p0(Λ)d(Λ) =

(

1 +
Λ0

2

)

exp (−Λ0/2) . (60)

In the presence of a signal, the probability distribution of Λ is non-central χ2,

p1(Λ) =

√
Λ

2κ
exp

(

−Λ + κ2

2

)

I1

(

κ
√
Λ
)

, (61)

with the non-centrality parameter as κ2, which is a measure of the signal power [18].

Above, I1 is the modified Bessel function.
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Figure 5. Sensitivity z1, as defined in Fig. 4, evaluated at Ω0 = 1 mHz for three

different angular orbital positions (in radians), {0, π
3
, 2π

3
}, with respect to the “initial”

location denoted in Fig. 4. The left plot above is identical to the left plot in Fig.

4 since it corresponds to the same pseudo-detector and orbital location. Note that

the sky positions corresponding to the sensitivity maxima vary from one location to

another on LISA’s orbit.

0

1

2

3

theta

0

2

4

6

phi

0.02

0.04

0.06

zopt

0

1

2

3

theta

0

1

2

3

theta

0

2

4

6

phi

0.02

0.04

0.06

zopt

0

1

2

3

theta

0

1

2

3

theta

0

2

4

6

phi

0.02

0.04

0.06

zopt

0

1

2

3

theta

Figure 6. Network sensitivity zopt ≡
∑

9

k=1
E∗

kE
k/(g1)2 evaluated at Ω0 = 1 mHz for

the same orbital positions that appear in Fig. 5. It is manifest that pseudo-detector 3

makes negligible contribution to the zopt at this frequency. Note that g1 = g2. At any

given sky position, the optimal statistic has better sensitivity than any zA.

5. Template Spacing and Computational Costs

The Λ statistic in Eq. (56) must be maximized over the remaining intrinsic parameters,

namely, ϑ = {Ω0, Ω̇0, w1, w2}. As a first calculation, we will set Ω̇0 = 0 and will focus on

the number of templates required to scan the space of {Ω0, w1, w2} for this case. As noted
above, the ensuing template spacings will still be relevant to a large number of compact

binaries that involve white-dwarfs. The corrections arising to these spacings for non-

zero Ω̇0 will be studied elsewhere. The maximization can then be achieved numerically

using a discrete template bank over this three-dimensional parameter space. The drop

in the value of the statistic and, therefore, the signal-to-noise ratio (SNR) that one can

afford determines how coarsely one can space the templates. In practice, there are limits

posed by the available computational resources on how fine the spacing can be. The
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loss in SNR is related to the template spacing through the ambiguity function.[20]

The ambiguity function corresponding to the Λ statistic is derived from it by

replacing the data xA there by a signal hA(ϑ′). We distinguish the signal parameter

values from those of the template by denoting the former with a prime. The parameter

values of a template used in a search may not be the same as those of a signal hiding in

the data. Let the parameter mismatch be ∆ϑ ≡ (ϑ′−ϑ). Then the ambiguity function

is a real quantity expressed as

m(ϑ,∆ϑ) ≡ p l
kQ

′kQ
′∗
l Θ(k)(l), (62)

where Q
′k depends only on the signal parameters and

Θ(k)(l) = 〈S ′ k, Sk〉∗(k)〈S
′ l, Sl〉(l)

= eiΨkeiΨlsinc(Ω
′

kT − ΩkT )sinc(Ω
′

lT − ΩlT ), (63)

and p l
k ≡ o+lo+k + o

−lo−k is an amplitude factor. It is important to note that as ∆ϑ → 0,

one has m(ϑ,∆ϑ) → 1, which is the maximum value it can attain. The correlation

phase, Ψk, is defined as

Ψk = L(Ω
′

kτ
′

k − Ωkτk) = Ωk
r̂k1

2
√
3
∆w1 + Ωk

r̂k2

2
√
3
∆w2 − τk∆Ωk. (64)

The drop in the value of m(ϑ,∆ϑ) caused by non-zero, but small ∆ϑµ, can be

ascertained by Taylor expanding it about the maximum at ∆ϑ = 0. [22, 23] The first

order term is zero since by definition the statistic has a maximum when the template

parameters match the signal parameters. Thus,

1−m(ϑ,∆ϑ) ≃ γαβ∆ϑ
α∆ϑβ , (65)

γαβ is determined from the second order term in that expansion:

γαβ = −1

2

(

∂2m(ϑ,∆ϑ)

∂∆ϑα∂∆ϑβ

)∣

∣

∣

∣

∆ϑ=0

. (66)

It defines the metric on the 3-dimensional parameter space.

The computational cost for the search can be reduced by taking advantage of the

Fast Fourier Transform algorithms [17] and computing the cross-correlation components,

C, in the Fourier domain. This defines the strategy for searching for the source

frequency, Ω0. To search for the remaining parameters, {w1, w2}, one must design a

bank of “templates” with values of these sky positions spaced such that the loss in

SNR is never more than the desired fraction, say, µ. To find the metric, gij, on the

two-dimensional space P, spanned by {w1, w2}, we project γαβ orthogonal to Ω0,

gij = γi j −
γ0 iγ0j
γ00

, (67)

where i and j span only the {w1, w2} space, and the index 0 denotes the Ω0 axis. The

volume of a P is then given by

V =

∫

P

√

det‖gab‖dPϑ , (68)
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where P = 2 is the dimensionality of the space. The number density of templates,

ρP (µ), is determined as a function of µ to be [23]:

ρP (µ) =

(

1

2

√

P

µ

)P

. (69)

Setting the fractional SNR loss µ = 3% yields a template density of ρ2(0.03) = 16.6.

Therefore, the total number of templates is just the overall parameter volume times the

template density, i.e., Ntemplates = V × ρP (µ).

The parameter volume, obtained via the metric computation, turns out to be about

5 for Ω0 = 1 mHz. Considering that the template density per unit volume is only 16.6

implies that the number of sky-position templates required for a search with 3% loss of

SNR is about 80. The smallness of this number is not surprising, given how slowly the

ambiguity function varies as a function of ∆θ and ∆φ, as shown in Fig. 7.

As is manifest from Eq. (62), in principle, this variation can arise from either the

time delays in Θkl or the weights p l
k . However, for wavelengths much larger than the

LISA arm length, the ability to discern between different sky positions through the time

delays in Θkl is negligible. The main contribution to m(ϑ,∆ϑ), therefore, arises from

the p l
k . For detailed studies of the angular resolution achievable by LISA, we refer the

reader to Refs. [24, 25].
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Figure 7. The ambiguity functionm plotted as a function of the template parameters,

{θ, φ}, for three different source sky positions (in radians), namely, {θ′, φ′} =

{π/2, 4π/3}, {π/6, π/3}, and {π/2, π}.

To get a handle on the computational costs associated with a search of this nature,

one must determine the overall number of sampling points in a single data train. For

our analysis, we have chosen a sampling rate of 1 Hz. Therefore, the number of sampling

points is just the length of the data train, T . The number of floating point operations

associated with an FFT with T sampling points is:

Nfl−opts = T log2T. (70)

Considering that this must be done for each template, the resulting expression for

the total number of floating point operations for an arbitrary template bank is just
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Ntemplates×Nft−opts. However, the real quantity of interest is the the number of operations

per second,

Cflops ≡ Ntemplates ×Nft−opts

T
= Ntemplateslog2T . (71)

Therefore, the computational costs of implementing a real-time search with about

80 templates on a year’s worth of data is trivial since the number of flops scales

logarithmically with the integration time.

6. Discussion

In this paper, we developed an optimal method for detecting slightly chirping compact-

binary inspiral signals in the LISA data. We also studied the geometrical properties

and sensitivities of the three noise-independent pseudo-detectors or data combinations

of LISA. Following the earlier work on TDI data combinations, it was found [11, 12, 13]

that the rotational motion of LISA and the time-variation of LISA’s arm-lengths

would prevent the noise contribution of the laser-frequency fluctuations from being

mitigated to the level of the secondary noises. In order to tackle this problem,

second generation pseudo-detectors were introduced as simple differences of their first

generation counterparts, appropriately time-shifted:

xĀ(t) ≡ xA(t)− xA(t− L1 − L2 − L3) ≃ xA(t)− xA(t− 3L) . (72)

The analysis presented above can be easily extended for detecting inspiral signals in the

second generation pseudo-detectors, xĀ(t), by implementing the next two steps: First,

by following the derivation in Sec. 2 it can be verified that the noise PSDs of the new

detectors are given in terms of the old ones by:

P (1̄,2̄,3̄)(f) = 4 sin2(3πfL)P (1,2,3)(f) . (73)

Second, since a GW contribution to xĀ(t) will also get differenced as in Eq. (72), the

template that must be matched against xĀ(t) should itself be modified accordingly:

SĀi (t) ≡ SAi (t)− SAi (t− L1 − L2 − L3) ≃ SAi (t)− SAi (t− 3L) . (74)

None of the formal analysis presented in this paper is affected by this change. For

example, the analytic maximization of the likelihood ratio over four source parameters

(namely, the signal strength, the initial phase, the polarization angle and the orbital-

inclination angle), and the concomitant computational gain achieved in the process, still

hold so long as the matched-filter output in Eq. (47) is redefined to be

CĀ
i = 〈SĀi , xĀ〉(Ā) . (75)

Also, the sensitivity plots in Figs. 4, 5, and 6 for the first generation detector A are

the same as those of its second generation counterpart, i.e., detector Ā. This is because

the (geometric) sensitivity, zA, depends on the orientation of a detector relative to the

source and is independent of the noise PSDs. Similarly, the formal expressions for the

ambiguity function in the last section above remain unchanged. But, since this function
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depends on the noise PSDs, its numerical value is affected by the change in Eq. (73).

Nevertheless, we have found that this change has negligible effect on the number of

templates deduced in Sec. 5.

A useful by-product of our analysis is that it yields the maximum-likelihood

estimates of the initial phase, the polarization angle, and the angle of inclination (in

addition to, of course, the signal amplitude). To complete the parameter estimation

problem, however, one needs to derive the errors associated with them as well as in the

parameters that will be searched for numerically, viz., {Ω0, Ω̇0, θ, φ}. That problem will

be addressed elsewhere.
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