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Chapter

Application of Polynomials in
Coding of Digital Data
Sujit K. Bose

Abstract

Communication of information is nowadays ubiquitous in the form of words,
pictures and sound that require digital conversion into binary coded signals for trans-
mission due to the requirement of electronic circuitry of the implementing devices
and machines. In a subtle way, polynomials play a very deep, important role in
generating such codes without errors and distortion over long multiple pathways. This
chapter surveys the very basics of such polynomials-based coding for easy grasp in the
realization of such a complicated technologically important task. The coding is done in
terms of just 0 and 1 that entails use of the algebra of finite Galois fields, using
polynomial rings in particular. Even though more than six decades have passed since
the foundations of the subject of the theory of coding were laid, the interest in the
subject has not diminished as is apparent from the continued appearance of books on
the subject. Beginning with the introduction of the ASCII codification of alpha-
numeric and other symbols developed for early generation computers, this article
proceeds with the application of algebraic methods of coding of linear block codes and
the polynomials-based cyclic coding, leading to the development of the BCH and the
Reed–Solomon codes, widely used in practices.

Keywords: coding, digital data, finite field, polynomial

1. Introduction

Communication from a “source” to a “receiver” forms a vast buzz of activity over
the entire globe. Physically, it is carried out as digital signals transmitted via different
pathways such as light pulses through fiber-optic cables and radiowaves through air
and even over the outer space. The digital signals are created in bits of pulses by
electronic circuitry that work on the principle of (nearly) 0 and + 5 volts (Leach et al.
[1], p. 3). A handy mathematical representation of the two voltages is just the set of
two elements {0, 1}. An information thus consists of a string of 0’s and 1’s carried
optically or electromagnetically through air or outer space as the case may be. The
physical channel of information transmission is naturally noisy that was treated
mathematically by Claude Shannon in a seminal paper [2] entitled “A mathematical
theory of communication”, showing that in such noisy channel, there is a number
called channel capacity such that reliable communication is achieved at any rate below
the channel capacity by proper encoding and decoding techniques of any information.
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This paper marked the beginning of the subject of Coding Theory for encoding and
decoding of information through the maze of channels.

In its widespread usage, information can be literal or numeric. It can also be audio
or video, all encoded in 0, 1f g bits. Moreover, special encoding and decoding is
required for compression of the data at the very source to reduce the volume, storage
on hard disks and encryption and decryption to maintain security of the data to be
transmitted. The subject is therefore vast, and the mathematics involved is very
special over the two numbers 0 an 1, studied in Abstract Algebra as a very special
example of a finite field. However, according to Richard Hamming, a pioneer of the
subject, “Mathematics is an interesting intellectual sport but it should not be allowed
to stand in the way of obtaining sensible information about physical processes”. In
that spirit, this article is aimed to provide just the flavor of introducing the use of
polynomials over the 0, 1f g field for developing a few practical methods of coding. No
attempt is made to describe the corresponding methods of decoding, keeping in view
the scope of this article. Detailed account of the subject and other methods of coding
not treated here can be found in the texts by Bose [3], Kythe and Kythe [4], Roth [5],
Moon [6], Ling and Xing [7], Blahut [8], Gathen and Gerhard [9], Proakis and Salehi
[10], Adámek [11], and Lin and Costello [12]. All of these texts deal with polynomials
over finite Galois fields to varying degrees of detail for the development of important
codes like the practically important cyclic codes introduced by Prange [13], the BCH
codes discovered by Bose, Ray-Chaudhuri [14] and independently by Hocqenghem
[15], and the RS codes developed by Reed and Solomon [16]. The texts cited above
also describe in detail, decoding methods of coded messages by a receiver, using
special polynomials called syndromes. Besides the polynomials-based coding methods,
the texts also give accounts of further development of codes with memory of past code
words (convolutional coding) and codes for modulation of data transmission. Infor-
mation theoretic probabilistic uncertainties of channelizing data transmission are also
discussed in these texts to considerable extent. The list of texts is indicative of the
continued interest in the topic of digital coding even now, ever since the appearance
of the paper by Shannon. In what follows, Sections 2, 3, and 4 may be considered as
preparatory coding methods before the appearance of polynomials over finite fields.

2. Coding

Transmission of a message of an information from a source to a destination is
broadly classified into two categories: source coding of the message and channel coding
for transmission through a channel. Both the types of coding are done mostly in terms
of bits 0 and 1, because of the requirement of electronic implementation. Errors may
occur at the source itself as well as in the transmission channel, and both of them
require rectification in the transmitted message. The coding must be such that it can
be uniquely decoded.

As an example of source coding, suppose that there is a message consisting of
decimal numbers 0, 1, 2, 3, 4, ..... and alphabets A, B, C, D, ...... The first list can be bit
converted by striking off the numbers 2, 3, ....., and 9. So that the binary code of 0, 1,
2, 3, 4, ..... becomes 0, 1, 10, 11, 100, ...... Coding a moderately large decimal number
would be prohibitively very large and may not be uniquely decodable. For instance,
the message 1011 could be decoded as 23 or 51 or 211. Giving a place value to the bits in
the list as in the case of decimal numbers, a binary number listed as a0a1a2a3⋯ can,
however, be uniquely converted to its decimal equivalent by the polynomial expression
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a0a1a2a3⋯ð Þ2 ¼ ⋯⋯a3 � 23 þ a2 � 22 þ a1 � 21 þ a0 � 20
� �

10 (1)

where the suffixes 2 and 10 on the two sides of Eq. (1) indicate the concerned
number to be binary or decimal as bases. Thus, the decimal equivalent of the binary

1011 ¼ 1� 23 þ 0� 22 þ 1� 21 þ 1� 20 ¼ 8þ 0þ 2þ 1 ¼ 11 (2)

But such a method is not applicable in the case of the alphabets A, B, C, D,......
Electronic hardware considerations on the other hand are realized for unique

decoding using linear block codes, in which every numeral and alphabet is written in
fixed length block of bits called word. In this respect the ASCII code of seven bits is
important. For succinct coding, octal codes are used, in which the base is 8 consisting of
the numbers 0, 1, 2, 3, 4, 5, 6, and 7 striking off the decimals 8 and 9. It can be easily
verified that the octal digits can be represented by blocks of 3 bits as the two bits can
be permuted in 23 ¼ 8

Octal digits 0 1 2 3 4 5 6 7

Binary blocks 000 001 010 011 100 101 110 111

The seven places of an ASCII word can be filled in 27 ¼ 128 ways by the two bits 0
and 1. Accordingly 128 symbols, alphanumeric or any other can be bit coded. A very
short list of ASCII words is presented below:

0 1 2 3 A B C < = >

0 60ð Þ8 0 61ð Þ8 0 62ð Þ8 0 63ð Þ8 1 01ð Þ8 1 02ð Þ8 1 03ð Þ8 0 74ð Þ8 0 75ð Þ8 0 76ð Þ8

A full table of the code is given in Adámek [8], p.10. In practice one additional bit
place is kept with every ASCII word as a check, so that the word length is actually 8.
An 8 bit word is called a byte. A computer usually uses a word length of 4 bytes or 32
bits. For representation in such long length, a base of 16 = 24 bits is used to represent
each symbol by 4 bits. Such coding is called hexadecimal represented by the 16
symbols 0, 1, 2,....., 9, A, B, C, D, E, F.

Audio and video information are continuous analog information. Such signals are
sampled (see Leach et al. [1], p. 3) at small time or space–time intervals and are thus
rendered discrete to generate digital data and suitably coded in bits. Foe instance, the
basic colors of red, green, and blue are coded as #FF0000, #00FF00, and #0000FF,
respectively, where the code of the symbol # is 0 43ð Þ8. The respective color codes of
white and black are #FFFFFF and #000000.

3. Algebraic formulation

A digital Code C is a sequence of words constituted of string of bits of some fixed
length n. A code word C can therefore be considered as an n�vector denoted as a ¼
a0a1a2⋯an�1 in which the elements a0, a1, a2,⋯, an�1 ∈ 0, 1ð Þ. The commas separating
the elements of a are dropped as unwanted symbol to form the block of bits. A code
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word of C usually carries the message bits and some extra bits for detection of errors
and their correction. This is necessary even though the loading time of bits increases to
some extent. If the message consists of k bits, and n� k bits for error detection and
correction, then it is called an n, kð Þ code. Evidently by permutation, the number of
messages in C that can be formed is 2k. As an example the 7, 4ð Þ code of three words

1000011 0100101 0010110

with the last three bits 011, 101, 110 of each message word represents the decimal
number 842 according to the 4 bit hexadecimal representation of the three decimal
digits.

A code C when transmitted through a channel may contain some error and trans-
mitted as b0b1b2 � bn�1 instead of the actual code a0a1a2⋯an�1. For error detection and
correction, the following definition named after Richard Hamming [17] is introduced
to keep the code words to be as wide apart as possible.

Definition (Hamming distance). Given two words a ¼ a0a1a2⋯an�1and b ¼
b0b1b2⋯bn�1 their distance d a,bð Þ is defined as the number of positions in which a
and b differ. Thus,

d a,bð Þ ¼ number of  indices if  or which ai 6¼ bi, i ¼ 0, 1, 2,⋯, n� 1ð Þ (3)

As an example consider three words x ¼ 1000011, y ¼ 0100101, and z ¼ 0010110
of the preceding example, then d x:y

� �

¼ d y, z
� �

¼ d z,xð Þ ¼ 4. But x and y as before
and z ¼ 1100110, one gets d x, y ¼ 4

�

, d y, z
� �

¼ d z,xð Þ ¼ 3. The 4 bit message of the
example in decimals is x ¼ 8, y ¼ 4, z ¼ 2 while z ¼ C (in Hex) or decimal 12, in the
second case. It may be observed that d x, y

� �

≤ d y, z
� �

þ d z,xð Þ and
d z,xð Þ≤ d x, y

� �

þ d y, z
� �

. In general, it can easily be shown that the Hamming dis-
tance d a,bð Þ is a metric on the set of words of length n satisfying the triangle inequal-
ity (Adámek [11], p. 46), as demonstrated in the example.

The definition of Hamming distance is useful for detection of errors in the follow-
ing manner. A block code C is said to detect t errors provided that for each code word a
and each word b obtained from a by corrupting 1, 2,⋯, t symbols b is not a code word.

Definition. The minimum distance d Cð Þ of a code C is the smallest Hamming
distance of two distinct code words of the code C, that is,

d Cð Þ ¼ min d a,bð Þ j a,b areword sin Cand a 6¼ bf g (4)

For example suppose that C ¼ 1000011 0100101 0010110½ �, d Cð Þ ¼ 4 and for
¼ 1000011 0100101 1100110½ �, d Cð Þ ¼ 3. The following proposition deals with the
question of detection of errors in a code.

Proposition 1. A code C detects t errors if and only if d Cð Þ> t.
Proof. If d Cð Þ≤ t, then C does not detect t errors. In fact, let a, a’ be correct and

received code words with d a, a0ð Þ ¼ d Cð Þ. Then d a, a0ð Þ≤ t, so the error which changes
the original code a to the received word a’ escapes undetected. On the other hand, if
d Cð Þ> t, then C detects t errors. For, by definition, 1≤ d a, a0ð Þ≤ t. Then a’ can not be a
code word since d Cð Þ≤ d a, a0ð Þ≤ t.

Regarding correction of codes, let a’ be the word obtained by corrupting 1, 2,⋯, t
bits of the code word a, then the Hamming distance d a, a0ð Þ is strictly smaller than that
between a’ and any other code word b, that is, d a, a0ð Þ< d b, a0ð Þ. This leads to the
following:
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Proposition 2. A code C corrects t errors if and only if d Cð Þ≥ 2tþ 1.
Proof. Let d Cð Þ≥ 2tþ 1> 2t, where d a, a0ð Þ≤ t. Hence for any other code word

b 6¼ a : d a,bð Þ≥ d Cð Þ> 2t, and by the triangle inequality

d a, a0ð Þ þ d a0,bð Þ≥ d a,bð Þ> 2t

Hence,

d a0,bð Þ> 2t� d a, a0ð Þ≥ 2t� t ¼ t≥ d a, a0ð Þ

which means that C is a t error correcting code.
The proof of the converse is more complicated (Adámek [11], p/49), but the

proposition has a simple geometric interpretation. Every code word of C can be
thought of as a point in the n-dimensional vector space. Hence, every code word of
Hamming distance of t or less would lie within a sphere centered at the code word
with a radius of t. Hence, d Cð Þ> 2t implies that none of these spheres intersect. Any
received vector a’ of a within a specific sphere will be closed to its center a and thus
decodable correctly, being the nearest neighbor.

4. Linear block codes: generator matrix

As one is dealing here with only two numbers 0 and 1, the arithmetic over the two
bits have to be redefined. For this purpose, congruence of two numbers from the
Theory of Numbers is employed. For a given integer n> 1, called modulus, two inte-
gers a and b are said to be congruent modulo m if a� bð Þ=m = an integer and one writes
a ffi b (mod m). Thus, for m ¼ 2

2 ffi 0 mod 2ð Þ, 3 ffi 1 mod2ð Þ, 4 ffi 0 mod2ð Þ, 5 ffi 1 mod2ð Þ, etc: (5)

Thus, addition and multiplication of the bits 0 and 1 adopting modulo 2 congru-
ence is conveniently represented in tabular form as:

This particular arithmetic is very useful in the development of very useful codes.
One is by use of matrices. In the table for addition, it is noteworthy that 1þ 1 ¼ 0 so
that �1 ¼ 1.

A message of length k in a binary n, kð Þ block C can be formed by permutation of 0
and 1 in 2k ways. In practice k is large, and so the dictionary of words becomes very
large. For abbreviation let it be assumed that the codewords belong to k-dimensional
linear vector space of n-vectors. The k basis vectors of the n-vectors can then be
employed to write any code word of C by a linear combination of the basis vectors.
This means that if e1, e2,⋯, ek are the (unit) basis vectors, then every code word a can
be written as a linear combination

a ¼
X

k

i¼1

ci ei (6)
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for a unique k-tuple of scalars ci. In other words, c1c2⋯ck determine a unique code
word. Eq. (6) can be written in matrix notation as

a ¼ c �G (7)

where

G ¼ e1 e2⋯ek½ �T (8)

G is called the generator matrix of the code C. Evidently it is much more convenient to
store G in the memory for generating any code word. For example, Adámek [11], p.72,
Kythe and Kythe [4], p.76) consider the Hamming (7, 4) of 24 ¼ 16 code words as under:

Code word Code word

0000 000 0110 011

1000 011 0101 010

0100 101 0011 001

0010 110 1110 000

0001 111 1101 001

1100 110 1011 010

1010 101 0111 100

1001 100 1111 111

employed by many authors for illustrative purposes of the coding methods, as the
actual code words in practice are very long for unveiling the special features of the
different methods of coding. The generator matrix of the code is

G ¼

1 0 0 0 0 1 1

0 1 0 0 1 , 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

2

6

6

6

4

3

7

7

7

5

(9)

Every code word of the code can be generated from it by a linear combination of
the rows. For instance, the second code word is generated by taking c1 ¼ 1, c2 ¼ c3 ¼
c4 ¼ 0 and the third by taking c1 ¼ 0, c2 ¼ 1, c3 ¼ c4 ¼ 0, etc.

By a change of basis the generator matrix changes. The most systematic way is to
send the message c0c1⋯ck�1 by sending it as c0c1⋯ck�1dk⋯dn�1 whose generator
matrix is

G ¼ I jP½ � (10)

where I is the k� k identity (unit) matrix, and P is a k� n� kð Þ matrix called the
parity matrix. In the above example, the generator matrix is in the systematic form with

PT ¼

0 1 1 1

1 0 1 1

1 1 0 1

2

6

4

3

7

5
(11)
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Definition. An n, kð Þ code C with a generator G ¼ I jP½ � in systematic form is
defined to have a parity check matrix H ¼ �P jI0½ � where I0 is the identity matrix of
dimension n� k.

From the above definition, it immediately follows that.
Proposition 3. The matrix HT is orthogonal to G.

Proof. GHT ¼ I jP½ �
�P

I’

� �

¼ �Pþ P ¼ 0

This relation can be checked for the Hamming 7, 4ð Þ code keeping in mind the
modulo-2 arithmetic for which 1þ 1 ¼ 0. This means that G is a correct generator of
the 7, 4ð Þ code.

If an incorrect code word is transmitted which does not make G satisfy the condi-
tion GHT ¼ 0, then that word does not belong to C, and the error is detected. In this
way, the parity matrix helps detect errors.

In general, one has the Hamming codes [17] having the properties:

Block Length : n ¼ 2m � 1

Message Length : k ¼ 2m �m� 1

then it can be shown that the minimum distance of such codes is 3, and therefore, a
Hamming code corrects a single error according to Proposition 2.

5. Finite fields

The modulo arithmetic over the elements of a finite set is particularly useful
for algebraically extending further development of codes by introducing the
definition of fields. As is well known, a field F is a set of elements 0, 1, a, b, c,⋯f g

over which two closed operations ‘þ0 (addition) and ‘�0 (multiplication) can be
applied which satisfy the commutative, associative, and the distributive laws. For
a nonzero element a, it is also assumed that a multiplicative inverse a�1

∈Fexists
such that a � a�1 ¼ 1:. Usually one write a � b simply as ab. If in a set F the
multiplicative inverse does not exist, then it is called a Ring. If the number of elements
of F is finite, it is called a finite field. It is easy to verify that the field F 2ð Þ of the bit set
0, 1f g satisfying the mod 2 arithmetic is a finite field. However the set of all

decimal integers Z ¼ 0,�1,�2,⋯f g forms an infinite integer ring. Similarly, the set
of all polynomials F xð Þ ¼ a0 þ a1xþ⋯þ anx

n
: ai ∈ F, n≥0f g also forms a polyno-

mial ring.
Proposition 4. For every (decimal) prime p, Zp is a field.
Proof. Since Zp is a ring as noted earlier for Z it is only required to prove that every

element i ¼ 1, 2,⋯, p� 1 possesses an inverse. Firstly, i ¼ 1 has an inverse element
i�1 ¼ 1. Secondly, suppose that for i> 1 all the inverse elements 1�1, 2�1,⋯, i� 1ð Þ�1

exist. Now perform the integer division p=i, denoting the quotient by q 6¼ 0 and the
remainder by r; then one has

p ¼ qiþ r (12)

Now, as p is next to the last element p� 1∈Zp, so that in modulo p arithmetic
p ffi 0, and Eq. (13) means that
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�r ¼ q � i ¼ i � q (13)

Since q 6¼ 0 and i lie between 2 and p� 1, it follows that r 6¼ 0 so that r�1 exists and
i ¼ �q�1 � r. It follows that

i � �q � r�1� �

¼ � i � qð Þ � r�1 ¼ � �rð Þ � r�1 ¼ 1 (14)

which means that i�1 exists and is equal to �q � r�1, and the proposition is proved
by induction.

The above proposition shows that a number of finite fields exist, viz.
Z2,Z3,Z5,Z7,⋯. Of particular interest here is the field Z2 which will be written as
GF 2ð Þ and its extension GF 2mð Þ over the elements 0, 1, α, α2,⋯, α2

m
� 1

� �

which is
called the Galois field named after Éveriste Galois (CE 1811 – 1832), who earned
fame in his teen age to die early in a gun dual to pass into the history of stellar
mathematicians. The extension is based on the treatment of polynomials over the
binary field.

6. Binary field polynomials

Consider calculation with polynomials whose coefficients are the binary bits 0, 1f g
of GF 2ð Þ. A polynomial f xð Þ with one variable x and binary coefficients is of the form

f xð Þ ¼ a0 þ a1xþ a2x
2 þ⋯þ anx

n (15)

where ai ¼¼ 0 or 1 for 0≤ i≤ n. If an ¼ 1, the polynomial is called monic of degree
n. The variable is kept indeterminate and has only a formal algebraic role in coding.The
polynomials of degree 1 over GF 2ð Þ are evidently x and 1þ x. Similarly, the poly-
nomials of degree 2 are x2, 1þ x2, xþ x2, and 1þ xþ x2 and so on. In general, there
are 2n polynomials over GF 2ð Þ with degree n.

Polynomials over Galois field GF 2ð Þ can be added (or subtracted), multiplied, and
divided in the usual way of treating real and complex valued polynomials.. Let

g xð Þ ¼ b0 þ b1xþ b2x
2 þ⋯, bmxm (16)

be another polynomial over GF 2ð Þ, where m≤ n. Then, f xð Þ and g xð Þ are added by
simply adding the coefficients of the same power of x in f xð Þ and g xð Þ:

f xð Þ þ g xð Þ ¼ a0 þ b0ð Þ þ a1 þ b1ð Þxþ⋯þ am þ bmð Þxm þ amþ1x
mþ1 þ⋯anx

n

(17)

where ai þ bi is carried out in modulo-2 addition. For example, let ϕ xð Þ ¼ 1þ xþ

x3 þ x5 and ψ xð Þ ¼ 1þ xþ x2 þ x3 þ x4 þ x6, then

ϕ xð Þ þ ψ xð Þ ¼ 1þ 1ð Þ þ xþ x2 þ 1þ 1ð Þx3 þ x4 þ x5 þ x6 ¼ xþ x2 þ x4 þ x5 þ x6

(18)

as 1þ 1 ¼ 0. Similarly, when f xð Þ is multiplied to g xð Þ, the following product is
obtained
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c0 ¼ a0b0

c1 ¼ a0b1 þ a1b0

c2 ¼ a0b2 þ a1b1 þ a2b0

⋮

ci ¼ a0bi þ a1bi�1 þ a2bi�2 þ⋯þ aib0

⋮

cnþm ¼ anbm

(19)

the multiplication and addition of the coefficients being in modulo-2. As a result,
the polynomials ϕ xð Þ and ψ xð Þ satisfy the commutative, associative, and the distribu-
tive properties of addition and multiplication.

The division of f xð Þ by g xð Þ of nonzero degree can also be defined in the usual way
by the division algorithm, so that f xð Þ=g xð Þ leaves a unique quotient q xð Þ and a
remainder r xð Þ in GF 2ð Þ, that is

f xð Þ ¼ q xð Þg xð Þ þ r xð Þ (20)

As an example consider ψ xð Þ=ϕ xð Þ:

x5 þ x3 þ xþ 1Þx6 þ x4 þ x3 þ x2 þ 1 xð
x6 þ x4 þ x2 þ x

x3 þ xþ 1

noting that �x ¼ x in GF 2ð Þ. Hence, q xð Þ ¼ x and r xð Þ ¼ 1þ xþ x3. It can be
easily verified that

x6 þ x4 þ x3 þ x2 þ 1 ¼ x x5 þ x3 þ xþ 1
� �

þ x3 þ xþ 1

If a polynomial f xð Þ in GF 2ð Þ vanishes for some value a∈ 0, 1ð Þ, then a is called
a zero of f xð Þ as in the case of real and complex variables. If f xð Þ has even number
of terms such as in the case of the polynomial ϕ xð Þ, then it is exactly divisible by
xþ 1 as ϕ 1ð Þ ¼ 1þ 1þ 1þ 1 ¼ 0. A polynomial p xð Þ over GF 2ð Þ of degree m is
called irreducible over GF 2ð Þ if p xð Þ is not divisible by any polynomial over GF 2ð Þ

of degree less than m. Among the four polynomials of degree 2, viz. x2, x2 þ x, x2 þ 1,
x2 þ xþ 1, the first three are reducible, since they are divisible by x or xþ 1. How-
ever, x2 þ xþ 1 does not have x ¼ 0 or 1 as zero and so is not divisible by x or xþ 1.
Thus, x2 þ xþ 1 is an irreducible polynomial of degree 2. Similarly, x3 þ xþ 1 and
x4 þ xþ 1 are irreducible polynomials of degree 3 and 4, respectively, over GF 2ð Þ. It
can be proved in general that (Gathen and Gerhard [9]):

Proposition 5. The polynomial x2
m�1 þ 1 over GF 2ð Þ is the product of all irreduc-

ible monic polynomials.
Example 1. It can be verified by multiplication of the factors on the right hand

sides that.
If m ¼ 2, x3 þ 1 ¼ x2 þ xþ 1ð Þ xþ 1ð Þ.
If m ¼ 3, x7 þ 1 ¼ x3 þ xþ 1ð Þ x3 þ x2 þ 1ð Þ xþ 1ð Þ.
If m ¼ 4, x15 þ 1 ¼ x4 þ xþ 1ð Þ x4 þ x3 þ 1ð Þ x4 þ x3 þ x2 þ xþ 1ð Þ xþ 1ð Þ, etc.
An irreducible polynomial p xð Þ of degree m is said to be primitive if m is the

smallest positive integer for which p xð Þ divides x2
m�1 þ 1. It is not easy to identify a
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primitive polynomial because of difficulty in factorizing x2
m�1 þ 1. However, com-

prehensive tables have been prepared for them for reference purposes (Lin and
Costello [9]). A very short table is presented below:

m Primitive Polynomial

2 1þ xþ x2

3 1þ xþ x3

4 1þ xþ x4

5 1þ x2 þ x5

6 1þ xþ x6

7 1þ x3 þ x7

8 1þ x2 þ x3 þ x4 þ x8

9 1þ x4 þ x9

10 1þ x3 þ x10

Finally, the following interesting property holds.

Proposition 6. For any l≥0, f xð Þ½ �2
l

¼ f x2
l

� 	

.

Proof.

f 2 xð Þ ¼ a0 þ a1xþ a2x
2 þ⋯þ anx

n
� �
 �2

¼ a20 þ a0 � a1xþ a2x
2 þ⋯anx

n
� �

þ a0 � a1xþ a2x
2 þ⋯anx

n
� �

þ a1xþ a2x
2 þ⋯þ anx

n
� �2

¼ a20 þ a1xþ a2x
2 þ⋯þ anx

n
� �2

as 1þ 1 ¼ 0. By similar repeated expansion, it follows that

f 2 xð Þ ¼ a20 þ a1xð Þ2 þ a2x
2� �2

þ⋯ anx
nð Þ2

Now since, ai ¼ 0 or 1, a2i ¼ ai, so that

f 2 xð Þ ¼ a0 þ a1x
2 þ a2 x2

� �2
þ⋯þ an xnð Þ2 ¼ f x2

� �

Squaring again one has f 4 xð Þ ¼ f x4ð Þ and so on. Hence, the result for l≥0.

Corollary. If for an element β, f βð Þ ¼ 0, then f β2
l

� 	

¼ 0. The element β2
l

is called

a conjugate of β.

6.1 Construction of Galois field GF(2mÞ

The Galois field extension GF 2mð Þ from that of GF 2ð Þ ¼ 0, 1f g is obtained by
introducing a new element say α, in addition to 0 and 1. Then, by definition of
multiplication
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0 � α ¼ α � 0 ¼ 0, 1 � α ¼ α � 1 ¼ α;

α2 ¼ α � α, α3 ¼ α � α � α,⋯, αj ¼ α � α⋯α j timesð Þ
(21)

Thus, a set F is created by “multiplication” as

F ¼ 0, 1, α, α2,⋯, αj,⋯
� �

(22)

Next, a condition is put on α so that F contains only 2m elements and is closed
under the multiplication “�”. For this purpose, let p xð Þ be a primitive polynomial of
degree m over GF 2ð Þ such that α is a zero of p xð Þ, that is, p αð Þ ¼ 0 over GF 2mð Þ. Since
p xð Þ divides x2

m�1 þ 1 exactly according to Proposition 5, one has

x2
m�1 þ 1 ¼ q xð Þp xð Þ (23)

where q xð Þ is the quotient and zero the remainder. Hence, taking x ¼ α,

α2
m�1 þ 1 ¼ q αð Þp αð Þ ¼ q αð Þ � 0 ¼ 0 (24)

So that by modulo-2 addition

α2
m�1 ¼ 1 (25)

terminating the sequence in Eq. (26) at α2
m�1. Thus, under the condition p αð Þ ¼ 0,

the set becomes a finite set F ∗ consisting of the 2m elements

F ∗ ¼ 0, 1, α, α2,⋯, α2
m�1� �

(26)

The nonzero elements of F ∗ are closed under the operation of multiplication. For
proving this property, consider the product αi � αj ¼ αiþj. If iþ j< 2m � 1, αiþj

∈F ∗ . If
iþ j≥ 2m � 1, then writing iþ j ¼ 2m�1 � 1

� �

þ r, where 0≤ r< 2m � 1,

αiþj ¼ α2
m�1þr ¼ 1 � αr ¼ αr (27)

by Eq. (26), in which αr is an element of F ∗ .
The nonzero elements of F ∗ are also closed under the operation of addition. For

this purpose, divide xi, 0≤ i≤ 2m � 1ð Þ by p xð Þ the primitive polynomial of degree n,
where p αð Þ ¼ 0 as before; then for 0≤ i< 2m � 1 one can write

xi ¼ qi xð Þp xð Þ þ ri xð Þ (28)

in which qi xð Þ and ri xð Þ are quotient and remainder, respectively. The
remainder ri xð Þ is a polynomial of degree m� 1 or less over GF 2ð Þ and hence is of
the form

ri xð Þ ¼ ri0 þ ri1xþ ri2x
2 þ⋯þ ri,m�1x

m�1 (29)

Hence, setting x ¼ α

αi ¼ ri0 þ ri1αþ ri2α
2 þ⋯þ ri,m�1α

m�1 (30)
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Similarly if 0≤ j< 2m�1, αj can be represented as a polynomial at most of degree
m� 1. Thus, αi þ αj would be a polynomial at most of degreem� 1, and by addition of
the two polynomials, the summand would be equal to some αk where 0≤ k< 2m�1.
This proves the assertion.

Example 2. As in Lin and Costello [12], p. 32, let m ¼ 4, so that
GF 24

� �

¼ 0, 1, α, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14
� �

. Its primitive poly-
nomial over GF 2ð Þ is p xð Þ ¼ 1þ xþ x4, so that set p αð Þ ¼ 1þ αþþα4 ¼ 0, or adding
1þ α to the two sides of the equation α4 ¼ 1þ α. Hence,

α5 ¼ α � α4 ¼ α � 1þ αð Þ ¼ αþ α2, α6 ¼ α � αþ α2
� �

¼ α2 þ α3,

α7 ¼ α3 þ α4 ¼ 1þ αþ α3, α8 ¼ αþ α2 þ α4 ¼ 1þ α2, etc:

The highest power of α is 3 in these elements and the 4-tubles form the block code
words of length 4, which can be represented in the hexadecimal code as well:

Power representation Polynomial representation 4-tuple representation Hexadecimal

0 0 (0 0 0 0) 0

1 1 (1 0 0 0) 8

α α (0 1 0 0) 4

α2 α2 (0 0 1 0) 2

α3 α3 (0 0 0 1) 1

α4 1+α (1 1 0 0) C

α5 α þ α2 (0 1 1 0) 6

α6 α2 þ α3 (0 0 1 1) 3

α7 1þ α þ α3 (1 1 0 1) D

α8 1þ α2 (1 0 1 0) A

α9 α þ α3 (0 1 0 1) 5

α10 1þ α þ α2 (1 1 1 0) E

α11 α þ α2 þ α3 (0 1 1 1) 7

α12 1þ α þ α2 þ α3 (1 1 1 1) F

α13 1þ α2 þ α3 (1 0 1 1) B

α14 1þ α3 (1 0 0 1) 9

Proposition 7. The elements of GF 2mð Þ form all the zeros of x2
m
þ x.

Proof. The proposition obviously holds for the element 0. For a nonzero element

β∈GF 2mð Þ let, β ¼ αi then β2
m�1 ¼ αi 2

m�1ð Þ ¼ α2
m�1

� �i
¼ 1i ¼ 1 by Eq. (26). Hence, by

modulo-2 addition one has β2
m�1 þ 1 ¼ 0 or, β2

m

þ β ¼ 0.
The next proposition determines the minimal polynomial corresponding to an

element β∈GF 2mð Þ:
Proposition 8. If f e is the smallest integer for which β2

e

¼ β, then the minimal
polynomial ϕ xð Þ corresponding to β∈GF 2mð Þ is given by
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ϕ xð Þ ¼ Π
e�1
i¼0 xþ β2

i
� 	

(31)

Proof. Since β is a zero of ϕ xð Þ, ϕ βð Þ ¼ 0. Hence, by the Corollary to Proposition 6,

ϕ β2
i

� 	

¼ 0 which means that β2
i

is also a zero of ϕ xð Þ. Hence, ϕ xð Þ is the product of

the factors xþ β2
i

, provided that i is one less than that makes β2
i�1 ¼ 1 or, β2

i

¼ β.
Example 3. For β ¼ α3 ∈GF 24

� �

, the conjugates of β are

β2 ¼ α6, β2
2
¼ α12, β2

3
¼ α24 ¼ α9. The minimal polynomial of β is ϕ xð Þ ¼

xþ α3ð Þ xþ α6
� �

xþ α12 xþ α9ð Þ ¼ x2 þ α2xþ αþ α3ð Þ x2 þ 1þ α2ð Þxþ α2þ½ð

α3� ¼ x4 þ x3 þ xþ 1, using the table given above, with α15 ¼ 1.The following table
gives the minimal polynomials for all the powers of α (Adámek [11], p. 216):

Elements Minimal Polynomial

0 x

1 x + 1

α, α2, α4, α8 x4 þ xþ 1

α3, α6, α9, α12 x4 þ x3 þ x2 þ 1

α5, α10 x2 þ xþ 1

α7 , α11, α13, α14 x4 þ x3 þ 1

Thus, all the irreducible minimal polynomial factors of x2
4�1 þ 1 are obtained.

7. Cyclic codes

Cyclic codes introduced by Prange [13] form an important subclass of linear codes
by the introduction of additional algebraic structure that a cyclic shift of a code word
is also a code word. Thus, if in a code word a ¼ a0, a1,⋯, an�1ð Þ of a cyclic code, a shift
of one place to the right is made a new word a 1ð Þ ¼ an�1, a0, a1,⋯, an�2ð Þ is formed.
Similarly, a shift of l places to the right is made, then the word

a lð Þ ¼ an�l, an�lþ1,⋯, an�1, a0, a1,⋯, an�l�1ð Þ (32)

is formed. It may be checked that the 7, 4ð Þ Hamming code noted after Eq. (8) is
not a cyclic code.

The special algebraic properties of the cyclic codes are described by a polynomial
representation formed by the component elements of a:

f xð Þ ¼ a0 þ a1xþ a2x
2 þ⋯þ an�1x

n�1 (33)

where x is indeterminate, and the degree is n� 1 or less according to an�1 ¼ 1 or 0.
Here, the polynomial is called a code polynomial, and the code word al is represented
by the polynomial

f lð Þ xð Þ ¼ an�l þ an�lþ1xþ⋯þ an�1x
l�1� �

þ a0x
l þ a1x

lþ1 þ⋯þ an�l�1x
n�1� �

(34)
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The polynomial f lð Þ xð Þ can be represented in a compact form.
Proposition 9. f lð Þ xð Þ ¼ xlf xð Þ mod xn þ 1ð ).
Proof.

xlf xð Þ ¼ a0x
l þ a1x

lþ1 þ⋯þ an�l�1x
n�1 þ an�lx

n þ⋯þ an�1x
nþl�1

¼ an�l þ an�lþ1xþ⋯þ an�1x
l�1� �

þ a0x
l þ⋯þ an�l�1x

n�1

þan�l x
n þ 1ð Þ þ an�lþ1x xn þ 1ð Þ þ⋯þ an�1x

l�1 xn þ 1ð Þ

¼ q xð Þ xn þ 1ð Þ þ f lð Þ xð Þ

(35)

where q xð Þ ¼ an�l þ an�lþ1xþ⋯þ an�1x
l�1

�

, which proves the theorem.
In general, consider an n, kð Þ cyclic code C that possesses a code polynomial

g xð Þ ¼ 1þ g1xþ g2xþ⋯þ gr�1x
r�1 þ xr (36)

of minimum degree r (such as 1þ xþ x3 in the above given example), then the
polynomials xg xð Þ ¼ g 1ð Þ xð Þ, x2g xð Þ ¼ g 2ð Þ xð Þ,⋯, xn�r�1g xð Þ ¼ g n�r�1ð Þ xð Þ represent
cyclic shifts of the code polynomial g xð Þ that are code polynomials in C. Since C is
linear, a linear combination

ψ xð Þ ¼ b0 g xð Þ þ b1xg xð Þ þ⋯þ bn�r�1x
n�r�1g xð Þ

¼ b0 þ b1xþ⋯þ bn�r�1x
n�r�1� �

g xð Þ
(37)

is also a code polynomial with bi ¼ 0 or 1 of degree n� 1 or less. The number of
such polynomials is 2n�r. However, there are 2k code polynomials in C, so that n� r ¼
k or, r ¼ n� k. Thus,

Proposition 10. In an n, kð Þ cyclic code C, one unique code polynomial

g xð Þ ¼ 1þ g1xþ g2x
2 þ⋯þ gn�k�1x

n�k�1 þ xn�k (38)

of degree n� k called the generator polynomial yields every binary polynomial code
of degree n� 1 or less by multiplication with another polynomial of degree k� 1.

From Eq. (39), one can find a generator polynomial from the following:
Proposition 11. The generator polynomial g xð Þ of an n, kð Þ cyclic code is a factor of

xn þ 1.
Proof.Multiplying g xð Þ by xk in Eq.(39), one obtains a polynomial xkg xð Þ of degree

n. Hence, according to Eq. (36)

xk g xð Þ ¼ xn þ 1ð Þ þ g kð Þ xð Þ (39)

where gk xð Þ is the remainder, which is a polynomial obtained by k cyclic shifts of
the coefficients of g xð Þ. Hence, g kð Þ xð Þ is a multiple of g xð Þ, say ψ xð Þ of degree k, viz.
g kð Þ xð Þ ¼ ψ xð Þg xð Þ. Thus,

xn þ 1 ¼ xk þ ψ xð Þ
� �

g xð Þ (40)

which completes the proof.
In practice where n is large xn þ 1 may have several factors of degree n� k to

describe cyclic codes. For example (Lin and Costello [12], p. 90)
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x7 þ 1 ¼ 1þ xð Þ 1þ xþ x3
� �

1þ x2 þ x3
� �

in which either of the last two factors can be selected for a generator polynomial. In
the example considered earlier, we selected g xð Þ ¼ 1þ xþ x3. In practice, it is difficult
to make a choice because of implementation difficulty. Nevertheless it is possible to
form the generator matrix of a cyclic code and parity-check matrix for error detection
and correction. Lin and Costello [9] give an excellent treatment of the whole topic.

8. The BCH codes

The Bose, Chaudhuri, Hocqenghem (BCH) [14, 15] codes form a large class of
powerful random error-correcting codes (Lin and Costello [9]). It generalizes the
Hamming code in the following manner:

Block length : n ¼ 2m � 1

Parity check bits : n� k≤mt

Minimum distance : d≥ 2tþ 1

(41)

where m≥ 3, and t< 2m�1.
This code is capable of correcting any combination of t or fewer errors in a code

word of length n ¼ 2m � 1 bits and is called a t�error�correcting code.The generator
polynomial of the code g xð Þ of length 2m � 1 is the lowest degree polynomial over GF 2ð Þ
which has

α, α2, α3,⋯, α2t (42)

as its zeros, that is to say, g αi
� �

¼ 0 for 1≤ i≤ 2t. It follows from the Corollary to
Proposition 6 that the conjugates of the zeros α, α2, α3,⋯, α2t are also zeros of g xð Þ. If
ϕi xð Þ is the minimal polynomial of αi, then g xð Þ must be the lowest common multiple
(LCM) of ϕ1 xð Þ,ϕ2 xð Þ,⋯ϕ2t xð Þ, that is

g xð Þ ¼ LCM ϕ1 xð Þ,ϕ2 xð Þ,⋯,ϕ2t xð Þf g (43)

Now, if i is an even integer, it can be written as i ¼ i0 2l where i0 is an odd number

and l≥ 1. Then, for such i, αi ¼ αi
0� �2l

, which is conjugate of αi
0

, and therefore, αi and
αi

0

have the same minimal polynomial, that is

ϕi xð Þ ¼ ϕi0 xð Þ (44)

Hence, every even power of α in the sequence (44) has the same minimal polyno-
mial as some preceding odd power of α in the sequence. As a result, the generator g xð Þ
given by Eq. (44) reduces to

g xð Þ ¼ LCM ϕ1 xð Þ,ϕ3 xð Þ,⋯,ϕ2t�1 xð Þf g (45)

Since the degree of each minimal polynomial is m or less, the degree of g xð Þ is at
most mt. This means that the number of parity-check bits n� k of the code is at most
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mt. There is, however, no simple formula for enumerating the parity n� k bits, but
tables do exist for various values of n, k, and t (Lin and Costello [9]).

In the special case of single error correction for a n ¼ 2m � 1 long code word,
g xð Þ ¼ ϕ1 xð Þ which is a primitive polynomial of degree 2m. Thus, the single error
correcting BCH code of length 2m � 1 is a cyclic Hamming code.

Example 4. As in Lin and Costello [12], p. 149, let α be a primitive element of
GF 24

� �

such that α4 þ αþ 1 ¼ 0. From Example 2,

ϕ1 xð Þ ¼ 1þ xþ x4

ϕ3 xð Þ ¼ 1þ xþ x2 þ x3 þ x4

Hence, the double error correcting BCH code of length n ¼ 24 � 1 ¼ 15 is
generated by

g xð Þ ¼ LCM ϕ1 xð Þ,ϕ3 xð Þf g ¼ ϕ1 xð Þϕ3 xð Þ

¼ 1þ xþ x4
� �

1þ xþ x2 þ x3 þ x4
� �

¼ 1þ x4 þ x6 þ x7 þ x8

It is possible to construct the parity matrix H of this code and is presented in Lin
and Costello [9].

9. The RS codes

In the construction of BCH codes, the generator polynomials over GF 2ð Þ were
considered using the elements of the minimal polynomials over the extended field
GF 2mð Þ. Since the minimal polynomial for an element β also has all the conjugates of β
as the zeros of the minimal polynomial, the product of the minimal polynomials
usually exceeds the number 2t of the specified zeros. In the Reed–Solomon (RS) codes
[16], this situation is tackled by considering the extended GF 2mð Þ as the starting point.
An element β∈GF 2mð Þ has obviously the minimal polynomial xþ β. If β ¼ αi where
α∈GF 2mð Þ, the required generator g xð Þ of degree 2t as in Eq. (46) becomes

g xð Þ ¼ xþ αi
� �

xþ αiþ1� �

⋯ xþ αiþ2t�1� �

(46)

There are no extra zeros in g xð Þ included by the conjugates of the minimal poly-
nomial. So the degree of g xð Þ is exactly 2t. Thus, n� k ¼ 2t for a RS code and the
minimum distance by Proposition 2 is d ¼ 2tþ 1 ¼ n� kþ 1. Hence, an RS code is

Block length : n ¼ 2m � 1

Parity check bits : n� k ¼ 2t

Minimum distance : d ¼ n� kþ 1

(47)

Example 5. Let n ¼ 24 � 1 ¼ 15, and consider three error codes t ¼ 3ð Þ over
GF 24

� �

, having the primitive polynomial p xð Þ ¼ 1þ xþ x4. Taking i ¼ 1 in Eq. (47)
the required generator polynomial is

g xð Þ ¼ xþ αð Þ xþ α2
� �

xþ α3
� �

xþ α4
� �

xþ α5
� �

xþ α6
� ��
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where α4 ¼ 1þ α, and α15 ¼ 1. Thus simplifying, one gets the generator polyno-
mial for the (15, 9) code over GF 24

� �

as

g xð Þ ¼ α6 þ α9xþ α6x2 þ α4x3 þ α14x4 þ α10x5 þ x6

The corresponding code word is α6α9α6α4α14α101. Using the table of Example 2,
one obtains the binary equivalent over GF 2ð Þ as

0011010100111100100111101000

The length of the binary word is 28. This type of code is called derived
binary code.

10. Conclusion

In this information age transmission of data is all pervasive due to immense
development of electronic technology. In this general scenario, it is rarely recognized
that the foundations of this information web were layed by “Amathematical theory of
communication” propounded by Claude E. Shannon [2] that called for means of error-
free transmission of information as digital data. This realization led to the creation of
Theories of Coding by more mathematicians, pioneered by Richard W. Hamming [17]
emphasizing that data need to be appropriately coded for realizing the objectives. As
digital data consist of just two bits 0 and 1, special algebra were employed which were
based on the algebra of finite fields. In this endeavor, several types of data coding have
been discovered and put to practical use depending on the application. Some of the
codes developed depend on polynomials over the binary field of 0 and 1; prominent
among them being the BCH [14, 15] and the RS codes [16] that are widely used in
practice. This chapter gives a simple mathematical preview of this type of code
development and is intended for those who may be interested to further delve into the
subject of coding of digital data.
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