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We study, using the classical density functional theory (DFT), the fragility and short-time elastic
constants of a soft-sphere liquid. For the amorphous state, the order parameter is the inhomoge-
neous density function ρ(r) which is described in terms of Gaussian density profiles centered on
a set random lattice points {Ri}. The latter is characterized in terms of the Bernel pair function
gB(r). Based on the Adam–Gibbs-type relation between the α relaxation time τα and the config-
urational entropy Sc, a thermodynamic fragility mT for the liquid is defined. The concentration
or average density of the liquid is treated as the control parameter here instead of temperature.
The configurational entropy of the liquid is calculated using the DFT model. Variations in the
short-range structure of the amorphous state are made with different choices for the value of
gB(r) at short distances, and its implications on the correlation between fragility mT and the
softness index n are studied. The dependence of Poisson’s ratio ν on the softness index n of the
interaction potential is also obtained from the density dependence of the metastable state free
energy. The correlation between mT and ν follows.
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1. Introduction

The ergodic state of a liquid is characterized by the characteristic relaxation times for fluctuations
around an equilibrium state. The fragility index of a glass-forming liquid is related to the final
relaxation process near the glass transition point. A generic feature of the supercooled liquid state is
the rapid increase of its relaxation time τα(T ). The nature of this dependence is demonstrated with
the Angell plot [1], which presents ln[τα(T )/τ0] vs. x = Tg/T for different materials. Here, τ0 is a
characteristic time scale of the dynamics at high temperatures, and Tg is the so called calorimetric
glass transition temperature. The latter is defined as a characteristic property for the glass-forming
liquid through the relation

log
[

τ

τ0

]
T=Tg

= B, (1)

where B is a chosen number. For molecular glasses it is taken as 16. The Angell plot has been used
in the classification of various glass-forming systems as being strong and fragile [2,3]. Materials in
which a uniform increase of relaxation time is seen over temperatures ranging from high to deep
below the freezing point are termed strong liquids, e.g. B2O3 or SiO2. In the other limit, crossover in
the temperature dependence of the viscosity or relaxation times is observed for fragile liquids. For
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glass-forming materials, this property is quantified in terms of a corresponding fragility parameter
m which is the slope of the viscosity–temperature curve at T = Tg:

m = d ln τ

dx

∣∣∣∣
x=1

. (2)

For example, m = 81 for o-terphenyl and m = 20 for SiO2 illustrate two extreme cases of fragile
and strong systems. The above-described characteristic features of glassy dynamics for a molecular
system have also been observed in the relaxation behavior of colloidal suspensions [4–6]. In this
case the fragility and glass transition points are defined in terms of the density or concentration of
the particles, similar to the definition of Eq. (1) in terms of temperature. We have the glass transition
point at concentration ηg. For B = 5 a figure similar to the Angell plot was obtained [7] for soft
matter of deformable spheres.

The elastic response of a supercooled liquid approaching glass transition signifies a solid-like
behavior. In general, even a fluid much above its freezing point produces an elastic response over
very short time scales. The high-frequency elastic constants are expressed in terms of the interaction
potential u(r) between the fluid particles. To calculate these elastic coefficients for a liquid we apply
the model of Zwanzig and Mountain [8–10]. This is a microscopic approach in which the elastic
constants are obtained in terms of frequency-dependent viscosities for the system. These generalized
memory functions are written in terms of Greek–Kubo-type relations [11]. A full calculation of the
dynamics is avoided here since it is only the short-time or high-frequency elastic constant which is
computed. The final results are therefore obtained in terms of equal-time correlation functions. For
two-body interaction potentials this is simply the pair correlation functions g(r).

It is well known that the dynamics of a dense liquid is strongly affected by its structural properties
[12], which are determined by the interaction potentials between its constituent particles. In confir-
mation of this dependence the α relaxation time scale for long-time dynamics has been linked with
the configurational entropy Sc of a glassy system [13] through an Adam–Gibbs-like relation [14].
Following this link, a thermodynamic fragility index mT is obtained in terms of Sc, analogous to
the usual kinetic fragility [1] obtained from relaxation behavior. For calculating Sc we use here the
classical density functional theory (DFT) [15–18]. The DFT model requires the following two basic
inputs:

(a) The static correlations of the uniform liquid state. These are obtained in terms of the basic
interaction potential u(r) between the fluid particles.

(b) The solid-like structure for the amorphous metastable state. This is realized with a suitable choice
for the inhomogeneous density function ρ(r) in terms of Gaussian density profiles centered
around a set of points {Ri} forming an amorphous structure.

For part (a) above, we will consider here a purely repulsive soft-sphere potential for the particles:

u(r) = ε0

(σ

r

)n
. (3)

The configurational entropy Sc, and hence the thermodynamic fragility for the metastable state, is
sensitive to this underlying structure {Ri} used to describe the corresponding heterogeneous density
distribution in part (b). In the present work we study the role of this short-range structure on the
correlation between high-frequency elastic response and the thermodynamic fragility mT for the
metastable liquid. The average density ρ0 is expressed in terms of the dimensionless parameter
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η = πρ0σ
3/6. The quantity σ is a basic length scale associated with the two-particle interaction given

in Eq. (3). For the hard-sphere system, σ is the hard-sphere diameter and η is the packing fraction. We
study how the softness index n in Eq. (3) correlates with the corresponding thermodynamic fragility
index mT, as well as the ratio of short-time elastic coefficients for the liquid. The dependence of
the fragility on the interaction potential approaching the hard-sphere limit is also obtained from the
extrapolation of our results.

The paper is organized as follows: In Sect. 2, we describe the basic properties for the supercooled
liquids we study in this work. In Sect. 3 we focus on classical DFT and discuss the necessary inputs
for the calculation, with some of the details being presented in the appendices. We present here how
the metastable states of a liquid with inhomogeneous density distributions are identified as local
minima of the free energy functional. We describe the scheme for calculation of thermodynamic
fragility using results for configurational entropy and its density dependence. We also present in this
section the model equations used for computation of the short-time elastic constants. In Sect. 4 we
present the numerical results obtained. This includes how of the fragility index mT depends on the
soft-sphere interaction potential exponent n. The relation between dynamic and elastic properties is
also presented here. We end the paper with a discussion of the results.

2. Fragility and elasticity

In this section we describe very briefly the basic quantities of interest in this study and discuss the
methods used for calculating these.

2.1. Thermodynamic fragility

We first illustrate how the thermodynamic fragility of a glass-forming system is directly linked to
its configurational entropy. The idea of thermodynamic fragility is based on the generally accepted
link between relaxation time τ and configurational entropy Sc [19] in a supercooled liquid. This is
similar to the Adam–Gibbs-type relation originally proposed for polymeric systems [14]:

τ ∼ τ0 exp
[

η

Sc

]
. (4)

Hence, the relaxation time τ → ∞ as Sc → 0. The Kauzmann point ηK represents an ultimate point
such that as η → ηK, the configurational entropy Sc → 0. The packing at this Kauzmann point, ηK,
is obtained by doing a fit of Sc(η) for η < ηK with the simple form

Sc = S0(ηK − η)a. (5)

The configurational entropy Sc, calculated using the density functional model, is fitted with the form
in Eq. (5), and the exponent a is generally less than unity. The Sc(η) vs. η relation is useful in
estimating the thermodynamic fragility mT. To see this connection, consider the relaxation time τ/τ0

being expressed as a function of η. By taking the derivative with respect to 
 = η/ηg, analogous to
the case of kinetic fragility m [20–23], we define the thermodynamic fragility:

mT ∼ d

d

ln

[
τ

τ0

] ∣∣∣∣

=1

= 1

Sc(ηg)

[
1 + a


K − 1

]
. (6)

The quantity 
K is defined as 
K = ηK/ηg. We estimate the thermodynamic fragility mT by
evaluating the right-hand side of Eq. (6). We also need the glass transition point ηg to calculate mT.
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At the so-called glass transition point ηg we have, from Eq. (4),

η

Sc

∣∣∣
η=ηg

= ln
[

τ

τ0

]
η=ηg

= 1

a0
, (7)

where a−1
0 = B ln(10). Equation (7) is useful for computing ηg for the liquid. Next, we consider the

calculation of the high-frequency elastic response.

2.2. The short-time elastic constants

The high-frequency or short-time response of the isotropic metastable liquid is obtained in terms of
the corresponding elastic constants K∞ and G∞ and thermodynamics pressure P. In the following
we express these three thermodynamic quantities in units of ρ0kBT , where ρ0 is the equilibrium
density and T is the temperature. Following the model of Mountain and Zwanzig [8,9], we write

G∞ = 1 + 4η

5

∫ ∞

0
drg(r)

d

dr

[
r4 du

dr

]
, (8)

K∞ = 2

3
+ P + 4η

3

∫ ∞

0
drg(r)r3 d

dr

[
r

du

dr

]
, (9)

P = 1 − 4η

∫ ∞

0
drg(r)r3 du

dr
. (10)

In writing the above relations in a dimensionless form we scale length with the microscopic scale
σ of the interaction potential. The three quantities K∞, G∞, and P are related through the linear
relation

K∞ = 5

3
G∞ + 2(P − 1). (11)

3. The density functional model

In the present work we consider an inhomogeneous metastable liquid for which the free energy
is obtained using the classical density functional model. In DFT, the free energy of the liquid is
expressed as a functional of the inhomogeneous density ρ(x), which is treated as an order parameter
for the supercooled state. The inhomogeneous density ρ(x) is expressed as a sum of Gaussian density
profiles centered on the random lattice structure {Ri}. The standard parametric form of ρ(x) used in
the present work is

ρ(r) =
N∑

i=1

(α

π

) 3
2
e−α|r−Ri|2 . (12)

Here, α is the width parameter for the Gaussian density profiles, and is assumed to be the same for
all points on {Ri}. The equilibrium free energy is obtained by identifying the corresponding width
parameter α = αmin at which the free energy is a minimum. The total free energy f per particle is
expressed as a sum of two parts,

f [ρ(x)] = fid[ρ(x)] + fex[ρ(x)]. (13)

The ideal part of the free energy fid involves the entropic contribution for the noninteracting system
[24], while the excess part fex includes the role of interactions. In simple DFT the quantity fex[ρ(x)]
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is expressed in a low-order functional Taylor expansion in terms of density fluctuations δρ(x) =
ρ(x)−ρ0, around an average densityρ0 for the uniform state [25–28]. However, with sharply localized
density distributions (corresponding to large values of ασ 2 in Eq. (12) for the inhomogeneous
density), the fluctuations are large and a bare functional expansion in terms of δρ(x) proves to be
inadequate. The excess part fex is therefore calculated using an effective medium approach referred
to as the modified weighted density approximation (MWDA) [29–31]. The procedure is standard
and is sketched briefly in the next section and Appendix A. As already discussed in the introduction,
the calculation of fex with this approach requires two key inputs, namely a structural description
of the uniform density homogeneous liquid, and also for the amorphous state with inhomogeneous
density. In the following we will discuss how we implement these two inputs in our calculation.

3.1. The homogeneous liquid: soft-sphere interaction

In classical DFT, the free energy of the inhomogeneous state is therefore calculated using the corre-
sponding uniform liquid state as a reference. The functional Taylor series expansion for the excess free
energy fex[ρ(x)] in terms of fluctuation of δρ(x) involves, at the lowest order, the Ornstein–Zernike
[32] direct correlation functions c(r; ρ0) of the uniform liquid of density ρ0. In the present calcula-
tion for the soft-sphere potential, the corresponding c(r; ρ0) is calculated using the Bridge function
method. The structural properties for the homogeneous liquid in which the constituents are inter-
acting through two-body potential u(r) are primarily represented in terms of the pair function g(r).
To calculate these structural properties like c(r) or g(r) of the homogeneous liquid with soft-sphere
interaction, we represent the system in terms of an equivalent hard-sphere liquid. The equivalent
hard-sphere diameter dn is determined by imposing that the free energies of the actual and equiva-
lent systems match to linear order in fluctuations. This gives rise to the standard Barker–Henderson
[32,33] formula:

dn =
∫ ∞

0
dr(1 − e−βu(r)). (14)

In the present case, u(r) is the repulsive soft-sphere potential of Eq. (3). Here, the diameter dn

depends on the inverse temperature (β) and also on the index n for the soft-sphere potential [34]. In
Fig. 1 we show the equivalent hard-sphere diameter dn vs. the index n characterizing the soft-sphere
potential defined in Eq. (3) corresponding to (kBT/ε0) = β−1 = 2.0.

There are different methods for computing the pair function for a hard-sphere liquid using integral
equation approaches [32]. Here, this is computed using the Bridge function method of Rogers and
Young [35,36]. The argument r of g(r) is expressed in units of a characteristic microscopic length,
generally associated with the interaction potential. This is σ for the soft-sphere potential of Eq. (3)
in the present case. The function g(r) also depends on the softness parameter n for the potential,
and the average density ρ0 for the fluid (η = πρ0σ

3/6). Figure 2 shows the pair function g(r/σ)

for η = 0.523 corresponding to interaction potentials with indices n = 25, 30, 35, and 60. The
inset shows how the position of the respective first peak of g(r/σ) changes with n. With the pair
correlation function, the corresponding c(r) is also obtained through the Ornstein–Zernike relation.

3.2. Structural input for the DFT

In DFT calculations, an average description of the corresponding density distribution characterizing
this inhomogeneous state is required as an input. This is similar to the case of a crystal for which a
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Fig. 1. The diameter of the equivalent hard-sphere system in units of σ vs. softness index n at β = 0.5.

suitably chosen lattice with long-range order characterizes the corresponding inhomogeneous density
distribution. The DFT approach does not explain spontaneous breaking of the isotropic symmetry in
the homogeneous liquid; rather, it allows one to identify the crystal symmetry in the inhomogeneous
state by picking up the appropriate density function ρ(x), which is then tested to find a minimum
of the free energy functional. In the present context of the glassy state, Gaussian density profiles are
taken to be centered on an amorphous lattice {Ri}. Averages of physical properties over different
choices of lattice {Ri} are expressed in terms of a corresponding radial distribution function w(r, n).
For the isotropic system we consider here, the pair function depends on the radial distance r as well
as the parameter n of the soft-sphere interaction. This pair function describing the distribution of
{Ri} also depends on the average density η for the liquid state. This η dependence of w(r, n) is not
shown here to avoid clutter. We model this distribution function w(r, n) characterizing the metastable
state for the soft-sphere liquid (with softness index n) with average density η in terms of the Bernal
pair function gB(R) [37,38] for a system of randomly packed hard spheres. The argument R here
denotes distance scaled by the diameter dn of the spheres. We incorporate the n and η dependence
of the function w(r) in terms of gB(R) through the scaling relation [38,39]

w(r, n) = gB

[
r̃

(
η

η0

)1/3
]

. (15)

The Bernal function gB(R) is constructed using the Bennett algorithm [40]. The n dependence is
present on the right-hand side of Eq. (15) in terms of the scaled length scale r̃ = r/dn in units of
the corresponding equivalent hard-sphere diameter dn given in Eq. (14). The density dependence
on the right-hand side of Eq. (15) is present with respect to the chosen parameter η0. On scaling
the argument r of the pair function w(r, n), the argument of gB changes to r̃(η/η0)

1/3, making the
structure more scaled out compared to the hard-sphere case since η0 ≥ η.
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Fig. 2. g(r/σ) vs. r/σ for different values of the soft-sphere potential index n = 25 (solid), 30 (dotted), 35
(dashed), and 60 (dot-dashed). The density is η = 0.523. The inset shows the height of the first peak in g(r)
vs. n.

It has been known from earlier DFT calculations [28,31] with hard-sphere systems that a key
factor in minimizing the free energy is the corresponding value of gB(1) at contact being used in
the model. To study the soft-sphere system we treat the corresponding property of the structure
function w(r, n) as an independent parameter characterizing the metastable structure, and make it
explicitly dependent on the softness index n of interaction potential, as well as the average density
η. This contact value of the structure function w(r, n) in particular relates to the short-range density
distributions in the amorphous state. We model its n and η dependence, i.e. wc(n)≡w(1, n), for
the soft-sphere system borrowing from the results for g(1, n) of the corresponding uniform system
having the same interaction potential as Eq. (3) and the same density η:

wc(n)≡w(1, n) = gB(1)

[
1 + c0

{
g(1, n)

g(1, ∞)
− 1

} ]
, (16)

where c0 is treated as an adjustable parameter. The contact function g(1, n) for the uniform system
is obtained using the Bridge function method. In the hard-sphere case, i.e. for the n → ∞ limit, the
above prescription for wc(n) reduces to the corresponding result gB(1) for the Bernel function [28,31].
To summarize, the structure function w(r, n) used in averaging over a corresponding amorphous
lattice {Ri} is modelled here using Eqs. (15), and its contact value is specifically chosen as given in
Eq. (16). This is an important ingredient in calculating the free energy of the inhomogeneous state,
and hence for the calculation of the configurational entropy of this state as well.
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To calculate the free energy fex using MWDA, the strongly inhomogeneous amorphous solid-
like state is replaced by an effective liquid of uniform density η̂. The latter is obtained from the
solution of the integral equations in Eqs. (A.4) and (A.5), following the procedures briefly discussed
in Appendix A. Generally, η̂ has a much lower value than η and hence the free energy of the
effective liquid is obtained using standard formulas for the liquid state. The integral equations for
the concentration η̂ of the equivalent liquid involve taking an average over different realizations of
the {Ri} and are implemented with the structure function w(r). The metastable state of the liquid is
identified with a local minimum of the free energy with respect to variation of the width parameter α

for the density profiles defined in Eq. (12). Next, the configurational entropy Sc for this metastable
state is calculated. For this, we need to obtain the total free energy f and also identify its vibrational
part fvib. In Appendix B we outline how the configurational entropy Sc is obtained using density
functional theory.

3.3. Elastic constants

The free energy of the inhomogeneous solid in the metastable state is calculated using MWDA,
and this result becomes an important ingredient in the calculation of the elastic constants for the
inhomogeneous state. We consider the short-time or high-frequency elastic response of the system.
In the inhomogeneous metastable state identified in the density functional calculations, we assume
that the relation in Eq. (11) between the elastic constants and pressure obtained in the Zwanzig–
Mountain formulation (based on general principles for a many-particle system) holds. Using the
density dependence of f (ρ) of the DFT calculation, we obtain the corresponding pressure using the
relation [32]

P = ρ
∂f

∂ρ
− f . (17)

For the inhomogeneous solid-like state, the bulk viscosity is obtained in terms of the second derivative
of the free energy [38] f per unit volume. To see this, we note that the free energy f of the solid-like
state is written in terms of the shear and bulk modulus with the following general formula, which
follows from the definition [41]:

F = 1

2

∫
ddCijkluijukl . (18)

Here, the uij represent the symmetric strain tensors and Cijkl the elastic constants tensor. Being an
isotropic symmetric tensor, Cijkl satisfies the relation

Cijkl = λδijδkl + μ(δikδjl + δilδjk), (19)

where λ and μ are called the Lamé coefficients. Using the above form for the elastic tensor given in
Eq. (19), the corresponding free energy for an isotropic inhomogeneous solid is obtained as

F = 1

2

∫
dx

{
λ′ū2 + 2μũij ũji

}
, (20)

where we have substituted ū = uii as the trace of the uij matrix, and ũij = uij − δij ū/d is the traceless
part of uij. Here, we have used the Einstein convention of repeated indices being summed over. In
Eq. (20), λ′ = (λ + 2μ/3) and μ respectively denote the bulk and shear muduli of the isotropic
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solid. From this expression the bulk modulus is obtained in terms of the second derivative of the free
energy density,

λ + 2μ

3
= ρ2 ∂2f

∂ρ2 , (21)

and is obtained from the density dependence of the DFT-value free energy for the metastable state.
For the shear modulus μ of the solid we use the relation in Eq. (11) for the high-frequency limit, i.e.
λ = μ+ 2(P − 1), with the pressure P obtained from the DFT result in Eq. (17). The corresponding
Poisson ratio ν is obtained in terms of λ and μ as

ν = λ

2(λ + μ)
. (22)

With the calculation of the short-time elastic constants in terms of the Lamé coefficients {λ, μ}, we
obtain the Poisson ratio ν corresponding to a chosen value of the softness index n. To summarize, in
the present calculation we have used the free energy for the inhomogeneous system obtained from
the density functional methods [38,42,43] and computed the elastic constants in the high-frequency
limit.

4. Results and interpretation

We now present the numerical results for the fragility and elastic constants obtained using the models
described in the previous sections. The nature of the correlation between these two properties which
follows from these results is the primary observation of this work. The first step in this is identification
of the metastable state for the liquid with a chosen interaction potential. This is done by minimization
of the free energy functional f [ρ] from the appropriate density distribution.

4.1. Free energy with MWDA

Using the inputs outlined in the previous section we identify the metastable state of the liquid as a
local minimum of the free energy and calculate the configurational entropy Sc for the liquid. The
density function is characterized with the choice of {Ri} in terms of the pair function w(r) defined
in Eq. (15). Figure 3 shows the Bernal pair function gB(r) vs. r for the hard-sphere system, with r
being scaled with respect to the hard-sphere diameter. It should be noted that the pair function gB(r)
represents distribution of the centers of Gaussian density profiles and not that of the actual particles.
Thus, for the hard-sphere system the value of gB(r) is a maximum at a distance r > σ and not at
the contact. The inset of Fig. 3 shows our choice for the respective variations of the contact value
of w(r = σ , n), i.e. wc(n) (see Eq. (16) for the definition) vs. the softness index n. We consider two
specific structures as test cases in which the constant c0 is respectively chosen as 0.02 and 0.08.
We refer to these two structures characterized by the respective wc(n) as structures A and B in the
following discussion. These represent otherwise similar structures, differing only at very short length
scales ∼σ . The packing fraction considered is η = 0.60, and for the scaling parameter introduced
in Eq. (15) we choose η0 = 0.70.

To demonstrate the DFT calculation, the total free energies amorphous structures A and B are
calculated for systems with soft-sphere interaction potential with n = 25. The integral equations of
MWDA, stated in Eqs. (A.4) and (A.5) of Appendix A, are solved using the input structure factor c(r)
for the corresponding equivalent hard-sphere system of diameter dn. The latter is obtained using the
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Fig. 3. The Bernal structure function gB(r) vs. r/σ for the hard-sphere system introduced on the right-hand
side of Eq. (15). The inset shows the values of the structure function w(r, n) at closest approach, denoted as
wc(n), vs. the softness index n for the soft-sphere system corresponding to structures A (solid) and B (dashed).
For both structures A and B shown in the inset, the packing fraction is η = 0.60 and the parameter η0 is chosen
as 0.70; wc(n) is calculated following Eq. (16) with c0 = 0.02 (structure A) and 0.08 (structure B).

Barker–Henderson formula in Eq. (14). The total free energy corresponding to structure A depicted
above [for c0 = 0.02 in Eq. (16)] is obtained from Eq. (A.1), and the results for different densities
are displayed in the main panel of Fig. 4. The MWDA free energies corresponding to different
values of the width parameter α are presented here. The free energy at the minimum represents
the corresponding metastable state. For structure A, the density dependence of the optimum width
parameter αmin at the free energy minimum is shown in the inset of Fig. 4. How the respective free
energies of the metastable states per particle change with the density η is displayed in Fig. 5. We
also calculate the free energy of the uniform liquid state (for α → 0) at the same density. Figure 5
shows that for both structures A and B the free energy values are very similar, and both structures
become metastable with respect to the uniform liquid state at around the same value of η. While the
actual values of the respective total free energies are not very different for the two structures, the
variation of the MWDA density of the equivalent liquid, i.e. η̂, with the softness index n becomes
qualitatively different corresponding to those two structures. This difference is displayed in Fig. 6,
where we show the variation of the effective liquid density η̂ with respect to the index n as obtained
from calculations done with structures A and B. The main panel and the inset of Fig. 6 respectively
show these two cases with qualitatively opposite behaviors. This occurs due to the difference in short-
range structures corresponding to the choices of the respective contact values for the pair function
w(r) in cases A and B. To summarize the key observations, the correlation between effective fluid
density η̂ and the softness index n of the interaction potential sensitively depends on the short-range
amorphous structure for the metastable state.

10/23

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/7/073I02/5877293 by guest on 26 M

arch 2023



PTEP 2020, 073I02 A. Mondal and S. P. Das

100
α

5.0

5.5

6.0

6.5

f
0.60 0.63

η

200

400

α m
in

Fig. 4. MWDA free energies vs. α for packing fraction η = 0.565 (solid), 0.578 (dotted), 0.586 (dashed), and
0.597 (dot-dashed) for soft-sphere interaction with n = 25 (main). The inset shows the optimum αmin at the
free energy minimum vs. the corresponding η.

4.2. Elastic constants

For the soft-sphere interaction potential characterized by a specific choice of the index n, we follow
the procedures for the MWDA outlined above and obtain the free energy of the metastable state as
a function of the average density. By calculating numerically the derivatives of f [ρ] with respect
to ρ, we obtain the corresponding high-frequency elastic constants from the formulas in Eqs. (17)
and (21). The Poisson ratio ν at the corresponding density is calculated using the relation in Eq. (22).
These results for ν vs. the softness index n are shown in Fig. 7 for a few different fixed densities and
also corresponding to the two chosen structures, A (main panel) and B (inset). The elastic properties
and the Poisson ratio are dependent on the density. On the other hand, for a fixed density it becomes
essentially independent as the potential becomes very steep with n going beyond 60.

4.3. Thermodynamic fragility

To evaluate the thermodynamic fragility mT as defined in Eq. (6), we calculate the configurational
entropy Sc(η) as a function of the density η. This also requires the ratio 
K = ηK/ηg for the
corresponding material; ηK and ηg are therefore determined by extending the density functional
theory to calculate the configurational entropy.

Kauzmann point: The configurational entropy Sc is determined following the steps described in
Sect. 2 andAppendix B. The density at which the extrapolated Sc goes to zero marks the Kauzmann
point, ηK. As an example, in Fig. 8 we display, for a set of index parameters n of the interaction
potential, the η dependence of Sc. Here, the chosen value of wc(n) corresponds to the input
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Fig. 5. Free energy f vs. packing η for soft potential index n = 25 corresponding to the uniform density liquid
state (dashed), structure A (solid), and structure B (dotted).

structureA. The results for Sc(η) shown here are fitted to the form in Eq. (5) and the corresponding
packing function ηK is obtained by extrapolation of the Sc curve. The same calculation is also done
for structure B. Variations of the parameters S0 and ηK on the softness index n of the interaction
potential are respectively displayed in Figs. 9 and 10. In these figures, the results corresponding
to both structures A (main panel) and B (inset) are shown. The trends observed in the respective
dependence S0 and ηK on the softness index n are reversed as the short-range structure changes
from A to B.

Glass transition point ηg: In the present model the glass transition point ηg is defined to be
the density at which log10[τα/τ0] reaches a chosen value B—see Eq. (7) in Sect. 2. Using this
defining relation, we obtain a transcendental equation for ηg: Sc(ηg) = a0ηg . This equation is
solved graphically. For this, we first plot the Sc(η) vs. η curve using DFT. The graphical solution
of the equation corresponding to n = 25 and structure A is displayed in Fig. 11. Note that the
determination of both ηK and ηg involves extrapolation of the configurational entropy curve.

With the above-described procedure, we calculate ηK and ηg (and hence 
K) corresponding to both
the structures A and B depicted above. A key observation that emerges here is that 
K’s dependence
on the softness index n is very sensitive to the short-range structure of the metastable heterogeneous
state. Between the two structures A and B depicted above, the dependence of 
K on n is reversed.
This is displayed in the main panel and inset of Fig. 12. Using the relations given by Eqs. (6) and (7),
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Fig. 6. The packing fraction η̂ for the effective system of MWDA vs. the soft-sphere potential index n at
η = 0.597. The main figure and inset respectively show the dependence for case A and case B. The slight
difference in the short-range structures corresponding to A and B reverses the n dependence of η̂.

we obtain the following definition for thermodynamic fragility:

mT = 1

a0ηg

[
1 + a


K − 1

]
. (23)

For a chosen soft-sphere potential with a specific n, the calculation of the configurational entropy
Sc obtains the corresponding values for the exponent a, the density ηg, and the ratio 
K. Hence, the
thermodynamic entropy mT is obtained from the formula in Eq. (23). We plot the thermodynamic
fragility mT vs. the Poisson ratio ν calculated at η = ηg for both structures A and B. These results
are respectively shown in the main panel and inset of Fig. 13. A key feature of this figure is that on
changing from structure A to structure B the correlation between ν and mT changes in a qualitative
manner. For structure A, as n is increased the fragility mT increases, starting from a relatively low
value for small n. On the other hand, for structure B, in which a larger number of particles are present
in the first shell compared to structure A, the fragility mT is already high even at small n, and then
falls as the potential gets stiffer with increasing n. As a result, we observe qualitatively opposite
correlations between ν and mT for the two structures A and B. Finally, the dependence of mT on n
is displayed in Fig. 14. Here also, qualitatively opposite behaviors of the thermodynamic fragility
mT with respect to variations of the softness index n are observed for the two structures A and B. In
both cases, the same result for mT is obtained in the limit of large n, which represents a hard-sphere
potential.

13/23

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/7/073I02/5877293 by guest on 26 M

arch 2023



PTEP 2020, 073I02 A. Mondal and S. P. Das

00105
n

0.32

0.34

0.36

ν

50 100
n

0.32

0.34

ν

Fig. 7. The ratio ν vs. softness index n of the interaction potential for three values of the packing η equal
to 0.550 (solid), 0.580 (dotted), and 0.600 (dashed). The main panel (inset) shows the results for structure A
(structure B).

5. Discussion

In this paper we have studied how the fragility mT of a metastable soft-sphere liquid depends on the
softness index n of the interaction potential between its particles, as defined in Eq. (3). The approach
is based on estimating the configurational entropy Sc of the metastable liquid using the MWDA of
classical density functional theory. The calculation involves averaging over an ensemble of aperiodic
density distributions representing the metastable liquid state. This is implemented through the use of
a pair correlation function w(r, n) for the amorphous structure. We estimate w(r, n) using, as a basis,
the Bernal structure for a hard-sphere system and the corresponding pair correlation function gB(R).
Our choice of the Bernel function in this case is not unique, however. Alternatively, information from
computer simulations of glassy structures has also been used [64] to present the random lattice, with
similar results for the metastable free energy minimum. In some cases [65], the set {Ri} itself has
been treated as minimization parameters for the free energy.

The MWDA obtains the free energy of a hard-core system quite accurately in terms of an equivalent
uniform low-density fluid. The MWDA approach used here is particularly suitable for hard-sphere
systems. Keeping up to second order in density fluctuations, this approximation describes quite
accurately hard-core systems in terms of an equivalent uniform low-density fluid. For purely hard-
core repulsive systems, no expansion for the Hamiltonian in terms of displacements from equilibrium
sites exists. The lattice dynamics is entirely controlled by collisions. Movements of the particles
between collisions lose coherence very rapidly. In the solid state, the hard spheres move freely
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Fig. 8. Configurational entropy Sc in units of kB vs. packing for soft-sphere potentials corresponding to n = 25
(circles), 30 (squares), and 60 (triangles). The lines show fits of the corresponding data to the formula given
in Eq. (5). The respective ηK values for the three curves, shown with arrows, are 0.623, 0.626, and 0.632 with
growing n. The variation of the fit parameters S0 and ηK with the softness index n are respectively shown in
Figs. 8 and 9. The inset shows the corresponding behavior of the extrapolated Sc curve for n = 25 in the close
vicinity of ηK. All the results for Sc correspond to structure A.

between collisions and their motion on the average is very much like the constituent particles in the
low-density fluid. This method is extended here for a soft-sphere system. However, with increasing
softness of the potentials this analogy of mapping to an equivalent liquid is weak. For the 1/rn-type
potential (where n → ∞ is the hard-sphere potential), as n approaches values more typical of short-
range interactions in real systems, the coherence in motion of the particles increases. Therefore, with
softer potentials the above similarity between the low-density liquid and the solid is absent, and as a
result the weighted density functional theories are less successful in understanding inhomogeneous
fluids with softer interactions. In addition, for the hard-sphere crystal the average domain of motion
of a particular sphere is constrained in space over a scale determined largely by the range of the direct
correlation function c(2)(r) at the corresponding density. Hence, the coarse-graining length scale of
the weighted density, over which the inhomogeneous density should be averaged, sharply increases
with decreasing n. It would therefore be appropriate to include higher-order correlations like c(3) in
the calculation of the weight function for the formulation of DFT for softer potentials. In our study
the results for the fragility of soft-sphere interactions with large values for index n approach the
corresponding value for a hard-sphere system.

In the DFT models described here, we demonstrate how the liquid’s structure influences its long-
time dynamics. There is a fundamental link between fragility and elasticity through the basic
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Fig. 9. Parameter S0 for the formula in Eq. (5) vs. the index n of the soft-sphere potential. The main figure
shows S0 vs. n corresponding to structure A (see text). The same results for structure B are shown in the inset.
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Fig. 10. Parameter ηK for the formula in Eq. (5) vs. the index n of the soft-sphere potential shown in the Main
panel for structure A (see text). The same results for structure B are shown in the inset.
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Fig. 11. Graphical solution of transcendental equation Sc(ηg) = a0ηg (see text) at n = 25 corresponding to
structure A (see text).
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Fig. 12. 
K (multiplied by a factor of 103) vs. the soft potential index n for structure A (see text). The inset
shows the same result for structure B.

interaction potential. Elastic response of a supercooled liquid approaching glass transition signi-
fies solid-like behavior. The fragility index, on the other hand, is related to the relaxation process
in the liquid state near the so-called glass transition point. Developing a common basis for both
elasticity and fragility at the microscopic level involves understanding the development of rigidity
in the ergodic liquid state. The success of basic theoretical models in understanding this rigidity
transformation of the metastable liquid into an amorphous solid-like state has only been partial until
now. The observed correlation between m and ν demonstrated in the present work is still at the level
of a hypothesis. It is also useful to note here that dynamic fragility is generally defined with the
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Fig. 13. Poisson’s ratio ν vs. the thermodynamic fragility index mT for structures A (main panel) and B
(inset). The points in the main panel (inset) with decreasing (increasing) values of mT correspond to interaction
potentials with softness index n equal to 120 (filled circle), 60 (open square), 45 (filled diamond), 35 (open
triangle up), 30 (filled triangle left), 25 (open triangle down), 20 (filled triangle right), 15 (cross), 10 (star), 8
(open circle), and 5 (filled square). The solid (dashed) line in the main panel (inset) are guides to the eye. The
variations of mT with respect to ν for the respective structures A and B show qualitatively opposite trends.

slope of the Angell plot at the temperature T = Tg. We have defined fragility here through density
dependence [7]. This newly defined fragility still correlates with changes in the high-frequency shear
modulus or the Poisson ratio.

The key link between the fragility and the structural properties of the metastable liquid relies on
the role of configurational entropy in driving a slow dynamics in the supercooled state. Identification
of mT as the thermodynamic analogue of fragility in the present context follows from the commonly
accepted norm that for a supercooled liquid the fast-growing relaxation time is driven by the fall in
its configurational entropy Sc. This links two important basic properties of glassy systems, dynamics
and thermodynamics. We have shown here that, depending on the short-length-scale structure, both
increase and decrease of fragility mT with increasing softness index n is possible. Such opposing
trends have also been observed in experimental data on molecular glasses [44–52], as well as in
computer models of glassy systems [53,54]. In Ref. [55] it was shown that a change in the composition
of bulk metallic glasses result in a correlation between fragility index and Poisson’s ratio opposite
from the typical result. Reference [55] reports that a change of composition from Cu50Zr50 to
(Cu50Zr50)96Al4 and to (Cu50Zr50)90Al7Gd3 leads to a change of m from 62 to 40 and 30 respectively,
while Poisson’s ratio (ν) increases from 0.359 to 0.369 and 0.373. The present work provides the
explanation for such a reversal in the correlation between fragility index and Poisson’s ratio starting
from a microscopic approach for a model system in which the associated time scales of slow dynamics
are not as large as molecular glasses.

18/23

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/7/073I02/5877293 by guest on 26 M

arch 2023



PTEP 2020, 073I02 A. Mondal and S. P. Das

40 80 120
n

175

200

225

m
T

Fig. 14. Thermodynamic fragilty index mT vs. soft-sphere potential index n, shown with filled circles for
structure A (structure B), with a solid (dashed line) shown as a guide to the eye. For the hard-sphere system,
the dependence corresponding to the respective structures A and B are qualitatively opposite in trend, both
finally converging to a common limit as n becomes large.
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Appendix A. Density functional method

We use the MWDA [30] for calculating the free energy of the inhomogeneous liquid in the metastable
state. This is an effective medium type approach in which the non-uniform system is mapped to an
equivalent homogeneous liquid of lower density. The free energy functional F[ρ] of the liquid is
obtained as a sum of two parts,

F[ρ] = Fid[ρ] + Fex[ρ], (A.1)

where Fid and Fex respectively denote the ideal gas and the interaction contributions. Fid and Fex

per particle in units of β(= 1/kBT ) are respectively denoted as fid and fex. These two free energies
are calculated as a functional of the density. For the ideal gas contribution we obtain

fid[ρ(r)] = N−1
∫

drρ(r)
(
ln[ρ(r)�3] − 1

)
. (A.2)

Here, � is the thermal De Broglie [32] wavelength arising from the momentum integration in the
partition function. For large α, corresponding to very localized density distributions, the summation
over all lattice sites in ρ(r) is approximated in terms of the contribution from the nearest site, and
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Eq. (A.2) reduces to

fid(α)≈ − 5

2
+ 3 ln

(√
α

π
�

)
. (A.3)

In the following, � and α are scaled in terms of the basic length scale σ (hard-sphere diameter) for
the fluid. We denote �̃ = �/σ and α∗ = ασ 2. We keep �̃ = 1.0 throughout this paper, in line with
previous works [28,56].

The MWDA is used to calculate the excess part, fex. The key equation of MWDA [16,57,58]
is a self-consistent integral equation [30] involving the weighted density ρ̂ or, equivalently, the
corresponding packing fraction η̂ = πρ̂σ 3/6, in terms of the suitably chosen free energy function
fex(η̂),

η̂ = I(η̂, α)

2f ′
ex(η̂) + ηf ′′

ex(η̂)
, (A.4)

where the integral I is

I = N−1
∫

dx
∫

dx′ρ(x)ρ(x′)c(|x − x′|; η̂). (A.5)

The single and double primes on fex(x) in Eq. (A.4) respectively denote the first and second derivatives
of the function with respect to its argument x. To solve Eq. (A.4), the functional form of the free
energy fex(η) is taken from the standard expression of excess free energy of a hard-sphere system
[32],

fex(η) = 3

2

[
2η − η2

(1 − η)2

]
− ln(1 − η). (A.6)

The direct correlation function c(r) is obtained in terms of the corresponding Percus–Yevick solution
for an equivalent hard-sphere system for the repulsive hard-core potential.

To solve Eq. (A.4) we need to evaluate the integral I defined in Eq. (A.5), and this requires choosing
the set of points {Ri} at which the Gaussian density profiles for ρ(x) are centered. For the free energy
evaluation, we average over different choices of this amorphous lattice; the final result is expressed
in terms of a pair correlation function w(r) representing the lattice points around which the Gaussian
density profiles are centered:

I = −
∫

dr1

∫
dr2

∫
dRc(|r1 − r2|; η̂)φ(r1 − R)φ(r2)[δ(R) + 6η

π
w(R)]. (A.7)

Note that w(r) is also dependent on the softness index n.
For a fixed value of η, the total free energy is calculated over a range of values of the width parameter

α by solving the MWDA equation in each specific case. Metastable amorphous states, distinct from
the uniform liquid state, are identified by locating the intermediate minima of the corresponding
free energy with respect to the mass localization parameter α at α = αmin for different values of
the average packing fraction η. The optimum value αmin determines the free energy as well as the
optimum density distributions for the equilibrium state. The total free energy f (α) is calculated as a
function of the width parameter α. The minimum at α = αmin signifies a metastable state, and αmin

is generally an increasing function of η. The quantity � = 1/
√

αmin is the localization parameter
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scaled with respect to σ . With increasing η, the particles get more localized and hence the amplitudes
of vibration of the particles around their respective mean position fall.

Appendix B. Configurational entropy of the metastable liquid

The configurational entropy Sc of the amorphous metastable state is obtained here as the difference
between the total entropy Stot and the corresponding vibrational entropy Svib. For η > ηF, where ηF

is the freezing point,

Sc = Stot − Svib. (B.1)

In particular, we focus here on a metastable fluid interaction through a hard-sphere potential. For a
hard-sphere fluid [59] the total entropy expressed in units of kB is

Stot = 3

2
− f , (B.2)

where f is the total free energy. The latter is obtained here by evaluating a functional Taylor expression
for the free energy in terms of the density as an order parameter. The vibrational entropy Svib of
the amorphous state is obtained in terms of localized density profiles in a manner similar to the
inhomogeneous crystalline state.

The inhomogeneous density ρ(x) is treated as an order parameter for describing the various phases
of the liquid [24,41,60]. The density ρ(x) is expressed in terms of localized Gaussian profiles [61]
respectively peaked around a set of random points {Ri} constituting an amorphous lattice [62] for
the disordered system [25,28,38,63,65]:

ρ(r) =
N∑

i=1

(α

π

) 3
2
e−α|r−Ri|2≡

N∑
i=1

φ(r − Ri). (B.3)

Here, α is the width parameter of the Gaussian function φ(r). The α → 0 limit corresponds to a
uniform liquid, while a large α represents strongly localized density profiles in the inhomogeneous
solid. We assume here that the parameter α is the same for every lattice point {Ri} and avoid
fluctuations over different sites [66]. The inhomogeneous state with localized density profiles is a
solid-like state with elastic behavior [67] and transverse sound modes [68]. The localization of the
density profiles gives rise to vibrational modes [69–71]. The crystalline (liquid) state is the most
stable state having lowest free energy above (below) the freezing density. For average densities,
higher than that corresponding to the freezing point, the free energy functional has local minima
for inhomogeneous density functions. These represent states metastable between the liquid and
crystalline phases. The strongly heterogeneous states are characterized with amorphous density
ρ(r) without any long-range order. To calculate the vibrational entropy Svib the density profiles are
interpreted in a particle analogue. Here, we note that in the DFT model the individual Gaussian
density profiles are interpreted as particles vibrating around the respective lattice points Ri. The
entropy is reduced due to localization of the particle, as compared to the homogeneous liquid state.

The free energy f involves an ideal gas contribution, which corresponds to a non-interacting system
and is written as

Sid(α) = 3

2
− fid(α). (B.4)
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The ideal gas part of the free energy, fid(α), is obtained for the inhomogeneous system with sharply
localized density profiles [61,72]. Let the ideal gas entropies of a non-interacting system in the
localized solid-like state and the uniform density liquid state be respectively denoted as Sid(α) and
S0

id. The vibrational contribution to the entropy for the amorphous state is obtained as

Svib(α) = Sid(α) − S0
id. (B.5)

Using S0
id = 3/2−f 0

id, where f 0
id is the ideal gas free energy of the uniform fluid, the vibrational entropy

Svib(α) is estimated. The above definition of vibrational entropy implies that there is no vibrational
contribution to the entropy in the homogeneous state. Using Eqs. (B.2) and (B.5) we obtain that the
configurational entropy of the amorphous state corresponding to the mass localization parameter α

is

Sc(η) = Stot(η) − Svib(η) = −(fex + ln η) + C0, (B.6)

where C0 = 5/2 + ln(π/6). To calculate Sc, we need to evaluate the excess free energy fex. This is
done here using classical density functional theory. For the inhomogeneous state the free energy is
computed using ρ(r) as an order parameter. For large values of the width parameter α, accord-
ing to Eq. (B.3), the density consists of strongly inhomogeneous profiles. Using Eq. (B.6) we
calculate Sc.
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