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Abstract

Starting from a microscopic model, the continuum field theoretic description of the dynamics

of a system of active ingredients or ”particles” is presented. The equations of motion for the re-

spective collective densities of mass and momentum follow exactly from that of a single element

in the flock. The single particle dynamics has noise and anomalous momentum dependence in its

frictional terms. The equations for the collective densities are averaged over a local equilibrium

distribution to obtain the corresponding coarse grained equations of fluctuating nonlinear hydro-

dynamics (FNH). The latter are the equations used frequently for describing active systems on

the basis of intuitive arguments. The transport coefficients which appear in the macroscopic FNH

equations are determined in terms of the parameters of the microscopic dynamics.
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I. INTRODUCTION

An active system consists of particles or individual elements which have the ability to

transduce extra free energy [1, 2]. Generic examples of active matter are, swimming mi-

crobes, schools of fish, swarms of birds etc. The active systems considered here are char-

acterized by short ranged interactions, i.e., each element in a flock is influenced by the

neighboring elements within a specific distance which is much smaller than the size of the

flock. With the interpretation that the velocity vector of the individual units of a flock is

like the magnetic spin, the collective system is analogous to the magnetic system studied in

theory of phase transitions in statistical mechanics. The formation of the ordered state is

like a dynamic analogue of the spontaneous breaking of the continuous symmetry in a spin

system. The ordered, coherently moving state of a flock survive the randomness, making a

uniformly moving, arbitrarily large flock possible. This is similar to the occurrence of the

ferromagnetic phase at finite temperature surviving thermal fluctuations. The occurrence

of the collective phenomena of a coherently moving flock is controlled by the inter particle

interaction, rather than the aligning effects of an external field causing it. The random-

ness of the directions of movements of the individual members of the system introduces the

stochastic element to the flocking problem in much the same way that thermal fluctuations

do at nonzero temperature in an equilibrium ferromagnet. The movement of the individ-

ual elements are therefore characterized by some degree of randomness which constitutes a

noise. The latter is assumed to have short ranged correlation over space and time.

Statistical mechanics traditionally deals with systems consisting of “passive” particles,

which move as result of interactions with their neighbors or with external fields. In an ac-

tive system on the other hand, the particles or the individual elements are self-driven. For

understanding how fluctuations around equilibrium decay in self driven systems, the gen-

eralized hydrodynamic approach [3, 4] using coarse grained densities of physical properties

constitutes a powerful tool. As a first step, the non-equilibrium steady state of a self-driven

system is treated by considering a small driving force acting on a thermal equilibrium state

[5]. An effective way of studying the long-distance, long-time properties of a system con-

sisting of a large number of active elements is to use the field theoretic approach. This

involves describing the time evolution of a set of coarse grained densities for the system, in

terms of stochastic partial differential equations. These equations of generalized hydrody-
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namics provide a powerful tool for studying a many particle system in equilibrium [6], as

well as in out of equilibrium [7] conditions. The same approach has been used in studying

how fluctuations around equilibrium decay in a self driven system like a flocking of active

ingredients or ”particles” [8]. In the spirit of weakly nonlinear analysis, well-controlled ex-

pansions in the vicinity of ordering transitions are performed. Analysis of the corresponding

equations of fluctuating nonlinear hydrodynamics (FNH)[9, 10] of the polar active particles

predict a non-equilibrium phase transition from a disordered state to a state of long-range

order in terms of the particle velocities. The present paper deals with description of the

dynamics of active systems in terms of continuum field theoretic models. It is known that

long-distance, long-time properties of various many particle systems in equilibrium [6], as

well as in out of equilibrium [7] states are correctly reproduced with similar models. The

dynamic behavior of a flocking system of active ingredients or ”particles” was proposed in

Ref. [8] using the same approach. Simulations of automata models of active systems, hav-

ing short ranged interactions, full rotation invariance, and nonzero fluctuations, show that

the possibility of having a coherently moving flock does exist. This is different from the

corresponding predictions from statistical mechanics for an equilibrated spin system. For

the latter case spontaneous breaking of the continuous symmetry in two or less dimensions

is not possible[11]. The nonequilibrium nature of the flock movement and hence dynamics

plays a key role for the occurrence of the state with long range order.

Construction of the equations of generalized hydrodynamics starting from a microscopic

model of the active constituents is a key step in developing the field theoretic models of

such systems. The hydrodynamic equations for an active system have been written in

the past purely relying on considerations of the conservation laws and the symmetries of

the problem [8]. For an isotropic fluid rotational invariance, space and time translation

invariance, and Galilean invariance must be preserved. The corresponding conservation laws

are respectively for the number of particles, momentum, and energy of the whole system. The

basic conservation law for the active system, used here, is the number conservation signified

by the continuity equation for density ρ with momentum current g as flux. The individual

species do not reproduce or die in the flock. They follow Brownian dynamics, and momentum

conservation does not hold. For the flocks in which momentum conservation can be justified,

hydrodynamics[12, 13] is different. In this paper we construct the equation of motion for the

velocity field v(x, t) in the flock starting from the appropriate microscopic level description
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of the active system in terms of a Langevin equation. The velocity field equation obtained

here, using the full symmetry considerations, is similar to the corresponding equation used

in the analysis of Ref. [8]. It also has additional nonlinearities involving velocity and density

fields. The underlying universal behavior of such systems is controlled by symmetries and

conservation laws and not the microscopic details. We show how the various transport

coefficients appearing in the FNH equation are linked to respective dissipative constants

in the equation for the particle dynamics. For an active system this random noise can

arise from driving at widely different time scales or due to statistical fluctuations, rooted

in the randomness in the individual motions. The paper is organized as follows: In the

next section we introduce the microscopic equations of motion. Section III describes the

coarse graining of the microscopic equations and deduction of the continuum equations of

fluctuating nonlinear hydrodynamics for flocking system. We end the paper with a brief

discussion of the present work with reference to other attempts in the problem.

II. THE MICROSCOPIC EQUATIONS OF MOTION

In a complex fluid the equation of motion of a single particle is often assumed to be a

Langevin equation with noise. For describing the active system of polar particles we adopt a

similar approach. Using the concept of universality class introduced with respect to critical

phenomena and condensed matter physics, models having same general features are expected

to behave similarly. To demonstrate the micro-dynamic equations, it is therefore useful to

consider the simplest discrete model[14] for the motion of active elements of flocks in two

dimensions. Let θ̂i(t) be the direction of the i-th element at time t. The equation of motion

for this angular variable for an individual element of the flock is determined in terms the

θ̂’s for the neighboring elements within a circle of radius R0 around the i-th element. In

addition, the element i is also affected by random component ηi(t) which is assumed to

have short ranged correlations. The equation of motion of the i-th element of the flock is

schematically written as
˙̂
θi(t) = Γi[θ̂] + ηi(t) . (1)

Γi[θ̂] is a function describing the characteristic dynamics of the flock. For the two dimensional

model represented by Eqn. (1), the hydrodynamic equations have been obtained [15, 16]

starting from the corresponding Boltzmann equation description[17].
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A. Single particle dynamics

In a general context, the flock of N elements is described microscopically by the respective

position and momentum coordinates {xα,pα} of the α-th unit for α = 1, ...N . We will work

here with the time evolution for the momentum pα of the α-th element of the flock of N

elements as being given by the following Langevin equation:

dpiα(t)

dt
= −∇i

α

∑

ν

U(xα(t)− xν(t))−
∑

ν

ζ ijαν(pν)p
j
ν + ξiα(t) (2)

The Greek indices α, ν, etc. denoting the different elements of the flock range from 1 to

N . The Latin indices i, j denote the Cartesian coordinates and run over from 1 to the

dimensionality d. Thus, ∇i
α denotes the derivative with respect to i-th component of xα.

In Eqn. (2) and in rest of this paper we follow, the Einstein summation convention for the

repeated Latin (Cartesian coordinates) indices. The first two terms on the right hand side of

Eqn. (2) represent the deterministic part of the dynamics respectively signifying reversible

and irreversible components. A key new feature of this dynamics is that the dissipative

coefficient ζ ijαν(pν) is dependent on pα and the frictional drag on the α-th element depends

on its own velocity, as well as those of its neighbors. The stochastic or random part of the

dynamics of the particle α is the noise ξiα. Its correlation is defined in terms of the symmetric

matrix Γij
αν as

〈ξiα(t)ξ
j
ν(t

′)〉F = 2Γij
ανδ(t− t′) , (3)

where the subscript F on the angular bracket refers to the averaging over the fast degrees

of freedom in the dynamics.

B. Dynamics of collective modes

At the collective level, the flock of N elements is described microscopically by the re-

spective position and momentum coordinates {xα,pα} of the α-th unit for α = 1, ...N . For

the collective modes we focus on the microscopic mass and momentum densities ρ̂(x, t) and

ĝ(x, t) which are respectively defined as

ρ̂(x, t) =
N
∑

α=1

mδ(x− xα(t)) , (4)

ĝ(x, t) =

N
∑

α=1

pαδ(x− xα(t)) . (5)
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The velocity field v(x, t) is not a statistically defined quantity and as will be shown below,

is an auxiliary field in a local equilibrium description of a flock. A microscopic statistical

mechanical description of an equilibrium fluid involves a set of collective modes which signify

specific conservation laws or broken symmetries of the system. For simplicity, all elements

are taken to be equal mass m. The equation of motion for ρ̂ follows by taking a time

derivative of ρ̂ and is the continuity equation,

∂ρ̂

∂t
+∇j ĝj = 0, (6)

with ĝ as the flux mass for density. Similarly taking a time derivative of ĝi(x, t) we obtain

the corresponding equation of motion for the momentum density. Using Eqn. (2) for time

evolution of pi
α, we obtain the equation of motion for ĝi(x, t) as:

∂

∂t
ĝi(x, t) + V̂i(x, t) + F̂i(x, t) = θ̂i(x, t) . (7)

The deterministic part of the equation of motion (7) has reversible and irreversible terms,

arising from the corresponding contributions in the microscopic equation (2). The time

reversible part V̂i(x, t) has two terms arising from the time derivatives acting on δ(x− xα)

and pα. We obtain for the reversible and dissipative contributions of Eqn. (7)

V̂i = ∇j

[

∑

α

piαp
j
αδ(x− xα)

]

+ ρ̂(x, t)∇i

∫

dx′U(x− x′)ρ̂(x′, t) , (8)

F̂i =
∑

α,ν

ζ ijαν(pν)p
j
νδ(x− xα) . (9)

The random part in the right hand side of Eqn. (7) arises from the noise ξα of Eqn. (2),

and is obtained as

θ̂i(x, t) =
∑

α

ξiαδ(x− xα) . (10)

Correlation of the noise θ̂ is obtained using that for the white noise ξiα(t) and by applying

translational invariance.

〈θ̂i(x, t)θ̂j(x
′, t′)〉F = Γ(x− x′)ρ̂(x′)δijδ(t− t′) . (11)

For the isotropic system, we take Γij
αν≡Γ0δijδαν , where Γ0 is a constant obtaining a local

Γ(x) = Γ0δ(x) [8].
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III. COARSE GRAINED EQUATIONS

Having identified the dependence of Eqn. (7) on the microscopic set of coordinates

{ρ̂, ĝ}, we now focus on averaging this equation over a suitable non equilibrium ensemble.

The nonequilibrium averages of the microscopic densities define the corresponding coarse

grained fields, as

< ρ̂(x, t) >n.e = ρ(x, t) (12)

< ĝ(x, t) >n.e = g(x, t). (13)

The averaged equations therefore describe the time evolution of the coarse grained densities

ρ(x, t) and g(x, t). These stochastic partial differential equations with smooth spatial and

temporal variations form the basis of a macroscopic hydrodynamic description of the flocking

system.

A. Local equilibrium distribution

The averaging procedure mentioned above involves integrating over the phase space vari-

ables {xα,pα} with respect to a suitable probability distribution for the corresponding en-

semble. The latter is chosen here by assuming that system has reached a state of local

equilibrium in which root mean square of momentum is constant. To facilitate the analysis,

we will consider below the fluid from a co-moving frame (denoted by prime) which has the

local velocity v(r, t) in a continuum description. The position and momenta coordinates in

the co-moving frame are obtained by canonical transformation from the rest frame,

xα = x′

α, and pα = p′

α +mv(x′

α) . (14)

In the co-moving frame the fluid is locally at rest. Using the concept of Gibbsian ensemble,

the distribution function [18] for the local equilibrium state is obtained as

fle(Γ
′

N , t) = Q−1

l exp
[

− β
{

H ′ −

∫

dxµ(x, t)ρ̂′(x)
}]

≡Q−1

l exp
(

− βH̃ ′

)

, (15)

where Γ ′

N symbolizes the phase space coordinates and H ′ is Hamiltonian in the local rest

frame in terms of primed coordinates p′

α. The factor β in the right hand side of Eqn. (15)

is related to the average kinetic energy ǫ0 = d/(2β). The chemical potential in the local
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equilibrium ensemble is µ(x), while Ql is the normalization constant for the distribution fle.

Average over the local equilibrium distribution (15) will be denoted with angular brackets

〈....〉. Using the transformation rules (14), we relate[3] the local densities {ρ, g} in the two

frames as:

ρ̂(x) = ρ̂′(x), (16)

ĝ(x) = ĝ′(x) + ρ̂′(x)v(x) . (17)

By taking a local equilibrium average of these relations and using the p′,−p′ symmetry of

the distribution in the co-moving frame, we obtain

g = ρv. (18)

The local velocity field v(x, t) is thus obtained through a nonlinear relation involving the

conserved densities.

B. Time reversible dynamics

The microscopic form of the continuity equation (6) linking ρ̂, ĝ on averaging obtains, in

terms of the coarse grained densities the equation

∂ρ(x, t)

∂t
+∇ · g(x, t) = 0. (19)

Next we focus on the equation of motion (7) for the momentum density g(x, t). The re-

versible part of the equation of motion for gi(x, t) is obtained by taking an average of V̂i,

defined in Eqn. (8), over the non equilibrium ensemble (15). Evaluation of Vi is same as was

done in the standard case [18] of non-active particles. For clarity we briefly review it in the

Appendix IV. The coarse grained expression for the reversible part obtained by averaging

over the phase space variables is

Vi≡〈V̂i〉 = ∇j

[

gi(x)gj(x)

ρ(x)

]

+ ρ(x)∇iµ(x) . (20)

The first term on the RHS of the defining expression for Vi is the well known convective

nonlinear term, essential for maintaining Galilean invariance in hydrodynamic equations.
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C. The dissipative dynamics

Next we focus on averaging the frictional term F̂i in the microscopic equation of motion

(7) for ĝi. F̂i consists of a self or diagonal part F̂ s
i (for α = ν) and a collective or non-

diagonal part F̂ i
c (α 6=ν). For an isotropic system the dissipative coefficient ζ ijαν(pν) in Eqn.

(9) is split in the schematic form

ζ ijαν(pν) = δij

[

δανζ0(pα) + (1− δαν)ζ̃αν(pν)
]

(21)

We will assume that the total drag of a specific element α on all of its neighbors vanish
∑

ν ζ̃να = 0. To proceed further we need the momentum dependence of the dissipative

coefficients ζ0 and ζ̃αν introduced in Eqn. (21). As a first step, we confine this momentum

dependence to quadratic order in the respective frictional coefficients

ζ0(pα) = ∆0a0 − blnp
l
αp

n
α, (22)

1

2
ζ̃αν(pν) = ∆0Aαν − Bln

ανp
l
νp

n
ν . (23)

The factor ∆0 =< piαp
j
α >= 2mǫ0/d. For the isotropic system the parameters {a0, bln}

for the ζ0(pα) are assumed to be independent of the particle label α. For the off diagonal

part ζ̃αν(pν), the parameters {Aαν , B
ln
αν} are introduced for each pair of particles {α, ν}

with α 6= ν. In a system for which translational invariance and isotropy hold, it will be

dependent only on the distance r (say) between the two points. In order to preserve the

p,−p symmetry, the linear terms have been left out in the above expressions. Using the

definition (21), together with the forms (22)-(23) in the expression (9) for the dissipative

part F̂i, we obtain respectively F̂ i
s and F̂ i

c. The resulting expressions for F̂ i
s is written in

terms of the primed variables of the co-moving frame using the transformation rules (14).

This is similar to the comparisons made above for averages of ρ̂ and ĝ in the lab frame and

the comoving frame. On averaging over the distribution (15) and applying the {p′,−p′}

symmetry of H ′, we obtain for the self part F i
s the result,

F i
s≡〈F̂ i

s〉 = ∆0ãikρ(x)vk(x)−m2blnvlvnρ(x)vi(x) (24)

where ãik = (a0− bll)δik−2bik. Using isotropy to write the matrix bik = δikb0, the expression

for F i
s further simplifies and reduces to,

F i
s =

{

α0 − β0|v(x, t)|
2
}

gi(x, t) . (25)
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The constants a0 and b0 are obtained as,

α0 = ∆0{a0 − (d+ 2)b0} , (26)

β0 = m2b0 , (27)

for d dimensions.

The averaging of the off diagonal contribution F̂ i
c to the dissipative part F̂i is somewhat

more complex. We express it in terms of a gradient expansion as,

F̂ i
c =

∑

αν

[

ζ̃αν(pν)x
l
να∇l +

1

2
ζ̃αν(pν)x

k
ναx

l
να∇k∇l + ...

]

piνδ(x− xν) . (28)

The sum over the index “αν” in Eqn. (28) for all pairs of particles {α, ν} with α 6= ν. The

ansatz (23) for ζ̃αν(pν) is used in Eqn. (28). On averaging F̂i over the local equilibrium

distribution, respective terms in the right hand side of Eqn. (28) contribute. The double

sums over the configurational coordinates {xα,xν} are evaluated in two steps. First, for a

fixed ν we sum over all values of xαν = xα − xν . Using translational invariance this sum

is taken to be independent of xν . The terms linear in xνα contribute zero on averaging

due to mutual cancellations in an isotropic environment. The average of the second order

terms in xνα is nonzero. Hence the local equilibrium average F i
c is expressed in terms of

tensors of rank two and four. The latter are defined in terms of parameters {Aαν , B
ij
αν}

introduced in Eqn. (23). For an isotropic system, these are respectively expressed in terms

of phenomenological constants A0, B0, and B′

0
as follows:

〈
∑

αν

Aανx
i
ναx

j
να〉c = A0δij (29)

〈
∑

αν

Bij
ανx

k
ναx

l
να〉c = B0δijδkl +

B′

0

2
(δikδjl + δilδjk) . (30)

The subscript c with the average indicates integration with respect to the spatial coordinates

only, the momentum variables being already integrated out. Using arguments similar to

given below Eqn. (28), it follows that the averages of the respective double sums in Eqns.

(29) and (30) are determined by the likelihood of two elements of the flock to be at a given

distance r from each other. Hence {A0, B0, B
′

0
} are related to equal time pair correlation

function [19] for the system and are calculated using standard procedure[20] for specific

model choices. In the continuum field theoretic description, the average F i
c is finally obtained

as a nonlinear functional of the gradients of coarse grained fields g(x, t) and v(x, t). The
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details of the calculation are presented in the Appendix IV obtaining the leading order result

in gradients of the coarse grained fields as

−F i
c = DL∇

2gi +D1∇i∇.g +D2∇
2
[

|v|2gi
]

+D′

2
∇k∇l

[

vkvlgi
]

. (31)

The dissipative coefficients appearing in the right hand side of Eqn. (31) are as given in

Eqns. (25) and (26) in the Appendix IV.

The coarse grained noise in the g-equation is θ(x, t)≡〈θ̂(x, t)〉. By averaging Eqn. (11)

over the same local equilibrium distribution, we obtain the correlation of θ(x, t) in the

simplest form as

〈θi(x, t)θj(x
′, t′)〉

F
= Γ0ρ(x

′)δijδ(x− x′)δ(t− t′) . (32)

D. Hydrodynamic Equations

The equations of hydrodynamics are the equations for the mass and momentum densities

with smooth space time variation. The continuity equation (19) is the equation for the

density. Thy coarse grained version of equation (7) for momentum density is constructed

by adding Eqns. (20), (24), and (31). We obtain the following nonlinear partial differential

equation for the momentum current field g(x, t) with multiplicative noise θi.

∂gi
∂t

+∇j

[gigj
ρ

]

+ ρ∇iµ+
{

α0 − β0|v|
2
}

gi + Lijgj + L̃kl

[

vkvlgi

]

= θi . (33)

In the last two terms on the left hand side of Eqn. (33), the operators Lij and L̃ij are

obtained in the common form,

−L1δij∇
2 − L2∇i∇j . (34)

The dissipative coefficients {L1, L2} in the expression (34) are identified as {DL, D1} and

{D2, D
′

2} respectively for Lij and L̃ij . The hydrodynamic equation for flocking is often

written [8] in terms of the local velocity field v(x, t) which is related to g field through the

nonlinear relation (18). From (33) we obtain,

∂vi
∂t

+ v.∇vi = −∇iµ−
{

α0 − β0|v|
2
}

vi +DL∇
2vi +D1∇i∇.v

+ D2∇
2
[

|v|2vi
]

+D′

2∇k∇l

[

vkvlvi
]

+ fi (35)
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In reaching Eqn. (35), we assume that terms containing factors of (∇ρ)/ρ [21] are small

compared to those proportional to δρ(x, t) or v(x, t). The chemical potential µ(x) in the

local equilibrium ensemble is expressed as a power series in fluctuation of the density over

its mean value ρ0,

µ(x) =

∞
∑

n=0

σn(ρ− ρ0)
n , (36)

where σn are the expansion coefficients. Eqn. (35) has the same form as Eqn. (1) in Ref.

[8]. The correlation for the noise fi in the velocity equation (35), is inversely dependent on

the density ρ.

IV. DISCUSSION

There have been previous efforts[22–25] to obtain the equations of generalized hydro-

dynamics starting from the microscopic description of the flocking system. These works

primarily dealt with director type models in two dimensions. Generally kinetic-theory mod-

els using the so called Boltzmann-Ginzburg-Landau framework can be pursued to compute

hydrodynamic transport coefficients for the system. In particular, the deterministic mean-

field theory obtained using Kinetic theory methods has been treated for the case of active

nematics. Ref. [22] considered a specific nematic particles model for which the hydrody-

namic equations were obtained starting from a Boltzmann equation for the time evolution

of the one particle distribution function f(r, t). The nonlinear couplings of hydrodynamic

fields in the corresponding dynamic equations for active matter are also calculated using

the same approach. With the Langevin approach a multiplicative noise [22] in the FNH

equation is included. However the noise was obtained from only the collision-less dynamics.

The present work, on the other hand, is based on a generic polar particle model and is

not restricted to two dimensions. In the continuum hydrodynamic description we obtain the

equation of motion for the velocity field v(x, t) in a form similar to the one analyzed in Ref.

[8]. The complete field equation for time evolution of v(x, t) including the multiplicative

noise follows here from coarse graining the microscopic level Langevin type equation for the

single element of the flock. The velocity field is obtained here as a conjugate thermodynamic

field to the total momentum within a local equilibrium description of the system. Thus our

analysis is based on in a natural way on the local equilibrium description of the active

system. The latter forms the very foundations on which equations of hydrodynamics are
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based on. So it is natural that these basic ingredients has to be included in the microscopic

approach that we present here to obtain the Toner-Tu equations of fluctuating nonlinear

hydrodynamics. The dynamics of the non equilibrium system is described here in terms

linear constitutive relations involving gradient of the local velocity field v(x, t) and hence

our deduction of the Equations of hydrodynamics involve the same gradient expansion of

the local thermodynamic variables like current field.

Some comments specific to particular terms in the fluctuating nonlinear hydrodynamic

equation for the v(x, t) is useful to note here.

1. The ”drag” between two active elements of the flock is adjusted by their momentum

and this effect persists up to a characteristic length around each element and this

results in creating the corresponding equations at the hydrodynamic level. The Toner-

Tu equation follows on coarse graining the micro-dynamic equation within standard

approximations of hydrodynamics

2. The non derivative, dissipative term, i.e., (α0−β0|v|
2)vi in Eqn. (7) implies a nonzero

average velocity in the steady state. We have demonstrated here that the nonlinear

coupling of momentum fluctuations in the drag term of Eqn. (2) for the microscopic

dynamics, is essential in generating this dissipative term in the hydrodynamic equation.

This term is not Galilean invariant and breaks momentum conservation.

3. The standard convective nonlinearity term v.∇vi in the velocity equation [6] in the

present form is kept unchanged. In Ref. [8] active matter hydrodynamics this term

is changed with multiplicative factor(s) to break the Galilean invariance. In the

present calculation an ad hoc factor can be generated in the advective term to break

the Galilean invariance by changing the transformation rules between the co-moving

frames. However this will be simply shifting the issue (of breaking Galilean invariance)

to the microscopic level.

4. The multiplicative noise fi in Eqn. (35) naturally follows from the coarse graining

process. For studying the effects of large fluctuations, the equations of FNH are the

starting point. In the present calculation the noise turns out to be multiplicative as a

consequence of coarse graining process. General analysis of these equations has been

done in the literature starting from the pioneering work of Ref. [8].
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5. The present deduction of the equations of fluctuating nonlinear hydrodynamics shows

that additional nonlinearities [26] at the order O(v3) can occur within allowed sym-

metries of the problem. Those extra cubic nonlinearity in the velocity field appearing

in the hydrodynamic equation can be analyzed using dynamic Renormalization group

along the lines of Toner and Tu. This will be an entirely new problem.

We present here new approach to obtaining the hydrodynamic equations for the flocking

system. Our calculation shows here how the different transport coefficients and the param-

eters α0, β0 in the macro-dynamic equations link with the phenomenological parameters

of the microscopic dynamics. Ref. [8] made the crucial observation that the long range

ordering is not destroyed in d = 2 due to nonlinearity in the dynamics. New simulations

of the microscopic equations can be useful for investigating the roles of model dependent

constants on the nature of the phase transition and the dynamics. The present calculation

reaches the basic formulas of the transport coefficients in terms of statistical averages over a

suitable ensemble. Those can be expressed in terms of pair correlation functions in a similar

manner as in the theory of normal fluids [27]. The equal time correlations implied here are

the ones averaged over different initial conditions for the flock. Once again simulations with

phenomenological models would provide the needed input in this.
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[24] A. Peshkov, S. Ngo, E. Bertin, H. Chaté and F. Ginelli, Phys. Rev. Lett. 109 098101 (2012).

[25] A. Peshkov, I.S. Aranson, E. Bertin, H. Chaté and F. Ginelli, Phys. Rev. Lett. 109 268701

(2012).

[26] J. Toner, Phys. Rev. E 86, 031918 (2012).

[27] Résibois, P. and M. de Leener, Classical Kinetic Theory of Fluids, Wiley Interscience Publ.

1977.

14



Appendix

The coarse grained momentum density is defined as

gi(x, t) =< ĝi(x, t) > . (1)

Here 〈...〉 denotes average over the local equilibrium distribution defined in Eqn. (15). This

averaging involves integrating out the microscopic or phase space variables of position and

momenta for the N particles. The equation of motion for the coarse grained density gi(x, t)

is obtained as,
∂

∂t
gi(x, t) + Vi + Fi = θi(x, t) , (2)

where we have denoted as Vi = 〈V̂i〉, Fi = 〈F̂i〉 and θi = 〈θ̂i(x, t)〉 respectively as the local

equilibrium averages of the reversible, dissipative and random parts of equation (2). In the

following we present how the local equilibrium averages are obtained in each case.

1. Reversible part

The time reversible part Vi of the same equation is obtained as a sum of two terms I1

and I2 defined in terms of local equilibrium averages[18] as follows:

Vi = I1 + I2 , (3)

I1 = ∇j

〈

piαp
j
α

m
δ(x− xα)

〉

, (4)

I2 =

∫

dx′(∇iU(x− x′))〈ρ̂(x, t)ρ̂(x′, t)〉 . (5)

To evaluate the local equilibrium averages on the right hand side of Eqns. (4)-(5), we make

use of the transformation rules (14), between the position and momentum coordinates of

the laboratory and the co-moving frames. The integral I1 defined in Eqn. (4) is obtained in

terms of the primed variables as,

I1 = m−1∇j

〈

{p′α
i
+mvi(x

′

α)}{p
′

α

j
+mvj(x

′

α)}δ(x− x′

α

〉

= m−1∇j

〈

p′α
i
p′α

j
δ(x− x′

α)
〉

+∇j [vi(x)vj(x)ρ(x)]

We use in the above equations the local equilibrium distribution function defined in (15).

The phase space variables are collectively denoted as {x′

1
,p′

1
...x′

N
,p′

N
}≡Γ ′. The distribution
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fle is symmetric in p′

α. By writing p′jα = ∂H̃ ′/∂p′jα in the the first integral on the right hand

side and integrating by parts w.r.t. p′jα, the integral I1 reduces to δijm
−1∆0ρ(x). Hence we

obtain

I1 =
∆0

m
∇iρ(x) +∇j

[

gi(x)gj(x)

ρ(x)

]

(6)

To calculate the integral I2, defined in the right hand side of Eqn. (5), we use for the N

particle system the operator Ô defined as,

iÔ =
[ ∂H

∂pα

·
∂

∂xα

−
∂H

∂xα

·
∂

∂pα

]

, (7)

where the H is the Hamiltonian. Note that for a Newtonian system, Ô is the Liouville

operator. Using the above definition of Ô it is straightforward to show[18] by acting the

latter on ρ̂ that

iÔρ̂ = −∇ · ĝ . (8)

The local equilibrium average of the quantity iÔĝ′i(x) is obtained as,

〈iÔĝ′i(x)〉 = Q−1

l

∫

dΓ ′

[∂H ′

∂p′jα

∂ĝ′i(x)

∂x′j
α

−
∂H ′

∂x′j
α

∂ĝ′i(x)

∂p′jα

]

e−βH̃′

. (9)

The averaging in the grand canonical ensemble is done with respect to the exp[−βH̃ ′] defined

in Eqn. (15). Using the standard form for Hamiltonian H ′(x′,p′), the right hand side of

Eqn. (9) reduces to,

〈iÔĝ′i(x)〉 =
∆0

m
∇iρ(x) +

∫

dx′{∇iU(x− x′)}〈ρ̂(x, t)ρ̂(x′, t)〉. (10)

Making use of the derivative form of the operator Ô, defined in Eqn. (7), it is straightforward

to obtain < iÔĝ′i(x) > as,

〈−iÔĝ′i(x)〉 = −
m

∆0

∫

dx′µ(x′)
∑

j

∇′

j〈ĝ
′

i(x)ĝ
′

j(x
′)〉 = −ρ(x)∇iµ(x) , (11)

where µ(x, t) is the chemical potential in the local equilibrium ensemble. In reaching the

first equality in (11) we have used the relation (8). For the last equality, the correlation

of momentum density fields 〈ĝ′i(x)ĝ
′

j(x
′)〉 is obtained as (∆0/m)δijρ(x)δ(x − x′). The last

result follows using the average momentum correlation < piαp
j
α >=∆0δij . Combining the

results (10) and (11), we obtain

I2 = −
∆0

m
∇iρ(x) + ρ(x)∇iµ(x) . (12)
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By adding the results from (6) and (12) we obtain for the reversible part of the flux in the

momentum density equation as,

〈V̂i〉 = ∇j [ρvi(x)vj(x)] + ρ(x)∇iµ(x) . (13)

2. Dissipative part

We now focus on coarse graining of the dissipative term F̂i on the left hand side of Eqn.

(2). This term involves the dissipative coefficient ζ ijαν introduced in Eqns. (21)-(23). The

contributions are respectively coming from the diagonal or self component ζ0 and the off

diagonal part ζ̃αν . The momentum dependence of these dissipative constants are assumed

as stated in Eqns. (22)-(23). It may be noted in our notation the repeated Greek indices

α and ν in defining Eqns. for the friction coefficients ζ0(pα) and ζ̃αν(pν) are not summed

over. The constant ∆0 is related to the average energy ǫ0 of a particle as: ∆0 = 2mǫ0/d

in d dimensions. As stated in the main text, we made by choice all the phenomenological

coefficients {a0, bln}, and {Aαν , B
ln
αν} of same dimension. Substituting the above forms, F̂i

reduces to

F̂i = [∆0a0 − bmnp
m
α p

n
α] p

i
αδ(x− xα) (14)

+ ∇k∇l

{

∆0Aαν − Bmn
αν p

m
ν p

n
ν

}

xk
ναx

l
ναp

i
νδ(x− xα)

≡ F i
s + F i

c

First we consider the self contribution by averaging over the local equilibrium ensemble the

part F̂ i
s which is the contribution of the first term on the right hand side of Eqn. (14) above.

To compute this term we transform to the co-moving frame and obtain

F̂ i
s =

[

a0∆0 − bln(p
′l

α +mvl(x
′

α))(p
′n

α +mvn(x
′

α))
]

(p′
i

α +mvi(x
′

α))δ(x− xα) . (15)

By averaging over the distribution (15) and using the {p′,−p′} symmetry of the correspond-

ing Hamiltonian, we obtain

F i
s = ∆0 [(a0 − bll)δik − 2bik] ρ(x)vk(x)−m2blnvlvnρ(x)vi(x) . (16)

The above expression is further simplified using isotropy to write the matrix bij = δijb0.

Thus the self part F i
s of the dissipative term Fi, as defined in Eqn. (14), is obtained as

F i
s = {α0 − β0|v(x, t)|

2}gi(x, t) . (17)
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In d dimensions the constants α0 and β0 are respectively obtained as

α0 = ∆0(a0 − (d+ 2)b0), (18)

β0 = m2b0 . (19)

Next, we consider the contribution F̂ i
c of the dissipative part coming from the non-

diagonal part of ζαν and is defined in Eqn. (14). Similar to the case of the self component,

we transform the corresponding microscopic quantity F̂ i
c in this case to the co-moving frame

and take an average over only the momentum coordinates of the phase space variables Γ′ to

obtain

F i
c = ∇k∇l

〈

[

∆0Aανvi(xν)− Bmn
αν

{

∆0(δmnvi(xν) + δimvn(xν)

+ δinvm(xν)) +m2vm(xν)vn(xν)vi(xν)
}]

mδ(x− xν)x
k
ναx

l
να

〉

C

(20)

The subscript C with the average indicates integration with respect to the spatial coordinates

only, the momentum variables being already integrated out. To evaluate the double sums

over the configurational coordinates {xα,xν} in the right hand side of Eqn. (20) we use

translational invariance for the averaged quantity. Thus the summation over two particle

indices {α, ν}, is calculated in two steps. First we sum over all values of rαν = xα − xν , for

a fixed ν and assume that the sum is independent of the origin ν.

F i
c = ∇k∇l

〈

∆0

{

Aανx
k
ναx

l
να

}

ρ̂(x)vi(x)−
{

Bmn
αν x

k
ναx

l
να

}

(21)

×
[

∆0

(

δmnvi(x) + δimvn(x) + δinvm(x)
)

+m2vm(x)vn(x)vi(x)
]

ρ̂(x)
〉

C

The quantities within the big curly brackets on the right hand side of Eqn. (21) are sum-

mations of functions which depend on the separation between the particles α and ν, being

summed for all pairs. We approximate the local equilibrium averages of the corresponding

quantities for an isotropic system in terms of expressions for the dissipative coefficients in-

volving the pair correlation function of the system. For an isotropic system, the two tensors

of rank 2 and 4 are respectively described in terms of parameters A0 and {B0, B
′

0}:

〈

Aανx
k
ναx

l
να

〉

C

= A0δkl (22)
〈

Bpn
ανx

k
ναx

l
να

〉

C

= B0δpnδkl +
1

2
B′

0
(δpkδnl + δplδnk) . (23)
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Using the definitions (22)-(23), and some trivial algebra, the local equilibrium average of

F̂ i
c is approximated in terms of the coarse grained density ρ = 〈ρ̂〉 and the coupled velocity

fields v(x, t). We obtain the result

−F i
c = DL∇

2gi +D1∇i∇.g +D2∇
2
[

|v|2gi
]

+D′

2∇k∇l

[

vkvlgi
]

. (24)

We have defined the dissipative constants in terms of three phenomenological constants, A0,

B0, and B′

0
the following coefficients,

DL = ∆0{(d+ 2)B0 +B′

0
−A0} (25)

D1 = 2∆0B
′

0
, D2 = B0m

2, D′

2
= B′

0
m2 . (26)

Computation of the expressions for the transport coefficient will require the knowledge or

construction of the model for the microscopic level dissipation coefficients for the system as

stated in Eqn. (22)-(23) in terms of various phenomenological constants.
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