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A relativistic electron beam propagating through plasma induces a return electron
current in the system. Such a system of interpenetrating forward and return electron
current is susceptible to a host of instabilities. The physics of such instabilities under-
lies the conversion of the flow kinetic energy to the electromagnetic field energy.
Keeping this in view, an energy principle analysis has been enunciated in this paper.
Such analyses have been widely utilized earlier in the context of conducting fluids
described by MHD model [I. B. Bernstein et al., Proceedings of the Royal Society
of London A: Mathematical, Physical and Engineering Sciences 244(1236), 17–40
(1958)]. Lately, such an approach has been employed for the electrostatic two stream
instability for the electron beam plasma system [C. N. Lashmore-Davies, Physics
of Plasmas 14(9), 092101 (2007)]. In contrast, it has been shown here that even
purely growing mode like Weibel/current filamentation instability for the electron
beam plasma system is amenable to such a treatment. The treatment provides an
understanding of the energetics associated with the growing mode. The growth
rate expression has also been obtained from it. Furthermore, it has been conclu-
sively demonstrated in this paper that for identical values of S4 =

∑
α n0α3

2
0α/n0γ0α,

the growth rate is higher when the counterstreaming beams are symmetric (i.e.
S3 =

∑
αn0α30α/n0γ0α = 0) compared to the case when the two beams are asym-

metric (i.e. when S3 is finite). Here, 30α, n0α and γ0α are the equilibrium velocity,
electron density and the relativistic factor for the electron species ‘α’ respectively and
n0 =

∑
αn0α is the total electron density. Particle - In - Cell simulations have been

employed to show that the saturated amplitude of the field energy is also higher
in the symmetric case. © 2018 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5008254

I. INTRODUCTION

An intense laser interacting with an overdense solid target generates highly energetic, relativistic
electrons carrying a very large electron current (∼MAmps) in the forward direction.1–3 In response to
this, the background plasma supplies a return electron current. The spatially overlapping forward and
return electron current flows are susceptible to several microinstabilities.4–11 The current filamentation
instability,12–15 which is often referred to as the Weibel instability,4 creates a current separation at the
length scale of an electron skin depth in the plasma, which leads to a generation of strong magnetic
field (∼MGauss).16 It is believed that the Weibel instability and its nonlinear evolution are largely
responsible for the development of strong magnetic fields in astrophysical contexts like the relativistic
shock formation in Gamma ray bursts (GRBs),17 the high energy cosmic rays,18,19 active galactic
nuclei (AGN)20 etc. In laser driven laboratory experiments also, Huntington et al.21 have observed
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the ion-Weibel instability in interpenetrating plasma flows. However, the experimental observation
of magnetic field generation by the Weibel instability at electron dynamics scale still remains a
challenge. In a typical beam plasma system, a fraction of the kinetic energy (δK) associated with
the flows get converted into the electromagnetic excitations. Such disturbances feed upon themselves
leading to the development of Weibel/current filamentation instabilities.

The energy principle often provides a succinct physical description of the excitations prevalent
in any system. It has been regularly adopted for studying the stability of hydrodynamic fluids in
a conservative system.22–27 In plasmas also, the ideal Magnetohydrodynamic (MHD) excitations
have often been interpreted using energy principle28–32 for both equilibria with and without flows.
The stability theory with energy principle for ideal magnetohydrodynamics has been employed to
study problems in a variety of contexts, e.g. magnetic fusion,33,34 astrophysics, solar and space
physics35,36 etc. For fast electron time scale phenomena (e.g. the case of beam plasma system)
Lashmore-Davis37 has shown the applicability of energy principle for the electrostatic excitations
leading to the two stream instability. Weibel mode is an instability having mixed electrostatic and
electromagnetic character. As the wavenumber gets more aligned transverse to the flow direction,
electromagnetic character predominates. When it is directed totally orthogonal to the direction of
flow, it is also referred to as the current filamentation instability. In this case, the mode has a purely
growing character. We have employed the energy principle for this particular configuration. The
origin of the positive and negative contributions to the total energy has been clearly identified. The
term providing a negative contribution to the energy is responsible for the growth of the mode. The
energy conservation, however, should ensure a balance between the positive and negative energy
contributions. This condition provides the expression for the growth rate, which is found to be in
good agreement with earlier derivations. We have discussed the flow configurations which are more
susceptible to the excitation of this mode. It is inferred that a symmetric flow configuration (i.e. when
both the beam and the background plasma electrons have identical densities with equal and opposite
flow velocities) has the optimal/fastest growth. This is in agreement with results obtained from the
linear stability analysis carried out in earlier studies.12,38

The manuscript has been organized as follows. Section II describes a model set of equations
and presents the derivation of the energetics involved in excitations which are generated in counter-
streaming electron currents by a transverse filamentation mode. In section III, the physics inferences
obtained from the energy principle have been highlighted. The asymmetry is characterized as the
difference between the beam and background electron densities for a charge and current balanced
equilibrium configuration. In section IV, the description of the PIC simulation set up has been pre-
sented for a comparative study of the symmetric and asymmetric flow configurations. Section V
contains the observations and inferences obtained from PIC simulations. Section VI contains the
summary.

II. MODEL EQUATIONS AND ENERGETICS

We have considered an equilibrium configuration for a collection of the beam and background
plasma electrons flowing in opposite direction to each other against a background of stationary ions.
The charge neutrality and the current balance are ensured initially. The charge of the beam and the
plasma electron densities are neutralized by the background plasma ions. Thus we have

∑
αn0α = n0i,

where α is a dummy index which is 1 and 2 representing the beam and plasma electrons respectively.
Here, n0α represents the density of the two electron species and n0i is the background density of
ions. We will restrict to the 2-D geometry of x � y plane shown in Fig. 1 for our analysis. The beam
(depicted by red circles) and background plasma electrons (green circles) are chosen to flow in the
±x direction respectively. The equilibrium current balance is ensured by choosing

∑
α n0α~30α = 0,

where ~30α is the equilibrium flow velocity for species ‘α’. The system is considered to be of infinite
extent in both x and y directions. Such a system in the collisionless limit is in equilibrium with no
forces acting on the particles. The total energy of this system is in the form of electron kinetic energy
in the beam and the background electrons. Any electromagnetic instability in such a system would
develop only if the energy requirement for the growth of electromagnetic fields is compensated by
the reduction in the kinetic energy of the electrons.
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FIG. 1. Schematics of 2-D equilibrium geometry of the beam plasma system where the beam (red circles) and background
plasma electrons (green circles) are flowing in positive and negative x direction respectively.

The dynamical evolution of the system about this equilibrium is clearly governed by the coupled
set of Maxwell’s and electron fluid equations. The ions in this treatment are assumed to be heavy and
their response is considered to be negligible. The Maxwell’s equations lead to the following equation
for the evolution of field energy in the presence of plasma:

∂

∂t

(E2 + B2

8π

)
+

c
4π

~∇·(~E × ~B) + ~J ·~E = 0 (1)

This is the well known Poynting flux theorem for the electromagnetic energy in the plasma. In the
vacuum, ~J ·~E term is absent and the rate of change of electromagnetic energy is determined simply by
the Poynting flux. In plasma or any conducting media, the flow of currents leads to a finite value of
~J ·~E. This term represents the possibility of energy transfer from the kinetic energy of the particles to
the field energy and vice versa. For the infinite system considered by us, the Poynting flux would not
contribute to the electromagnetic field energy evolution. We would only have the~J ·~E term responsible
for any rearrangement between field and the kinetic energies. Integrating Eq. (1) over space we obtain:

∂

∂t

∫ (E2 + B2

8π

)
dxdy +

∫ (
~J ·~E

)
dxdy= 0 (2)

We now evaluate Eq. (1) for fluctuations excited about the homogeneous equilibrium. Thus, a
disturbance in any field is represented by the collection of Fourier modes having the form:

f (~r, t)∼ fkexp(i~k·~r − iωk t) + c.c (3)

where c.c indicates complex conjugate of the expression to preserve the reality of the left hand side.
We consider filamentation instability for which the wavenumber ~k is directed along ŷ. We represent
this component simply by k. For the perturbed current flow confined in 2-D x � y plane, the associated
magnetic field is directed along the ẑ direction and is denoted by B1z. The perturbed electric field
~E1 lies in the x-y plane. The variations being along ŷ, E1y is the electrostatic component of the field
and E1x, B1z correspond to electromagnetic excitation. These field perturbations are generated as a
result of the conversion of the kinetic energy associated with the beam and return electron currents of
the system into the electric and magnetic field energies. For the small amplitude linear disturbances,
only up to quadratic terms (associated with the perturbed fields) in the energy expression have to be
retained. We thus have:

∂

∂t

(E2 + B2

8π

)
=
∂

∂t

[ 1
8π

(E2
1x + E2

1y + B2
1z)

]
(4)

~J ·~E =−
∑
α

[
en0α31αxE1x + en0α31αyE1y + en1α30αE1x

]
(5)
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The linearized Maxwell’s equations, electron continuity and momentum equations are then used to
express Eq. (1) entirely in terms of E1x. We have chosen to normalize time with the inverse of electron

plasma frequency, ωpe =

√
4πn0e2

m and length with the electron skin depth, de = c/ωpe (i.e., t·ω−1
pe → t

and y · de → y) to obtain the following expression:

1
8π

∂

∂t

[(
1 +

S2

Γ2
k

)
|E1xk |

2 +
(
1 +

S1

Γ2
k

) S2
3k2

Γ2
k (Γ4

k + 2S1Γ
2
k + S2

1)
|E1xk |

2 +
k2

Γ2
k

|E1xk |
2

−
S4

Γ4
k

k2 |E1xk |
2

]
=
∂

∂t

[
χk

]
= 0 (6)

Here,ωk =ωrk + ιΓk withωrk and Γk corresponding to the real and imaginary part ofωk respectively.
For the purely growing mode, ωk = ιΓk where Γk represents the growth rate. In addition, we have
used the following definitions:

S1 =
∑
α

n0α

n0γ0α
; S2 =

∑
α

n0α

n0γ
3
0α

; (7)

S3 =
∑
α

n0α30α

n0γ0α
; S4 =

∑
α

n0α3
2
0α

n0γ0α
; (8)

The relevant details of the derivation of Eq. (6) have been provided in the Appendix. The parameters
S1, S2 and S4 are always positive. It should be noted that though the parameter S3 can be either
positive or negative, it appears only as S2

3 in Eq. (6). Hence, the sign of S3 does not matter but its
magnitude |S3| is important. Furthermore, Eq. (6) shows that χk (the energy in the kth mode) should
remain conserved. This is because in the linear regime the modes do not interact. The system is in
a state of equilibrium initially with infinitesimal perturbations around it. Therefore, χk ≈ 0 for all k
initially and from Eq. (6), χk would continue to remain zero while the linear approximation remains
valid. We thus have:

χ =
1

8π

[(
1 +

S2

Γ2

)
|E1x |

2 +
(
1 +

S1

Γ2

) S2
3k2

Γ2(Γ4 + 2S1Γ
2 + S2

1)
|E1x |

2 +
k2

Γ2
|E1x |

2 −
S4

Γ4
k2 |E1x |

2
]
= 0 (9)

In writing Eq. (9), we have dropped the suffix k.

III. INFERENCES FROM ENERGY PRINCIPLE

The expression for χ in Eq. (9) has both positive and negative terms contributing to it which is
essential for the existence of any instability in the system. When the positive terms balance with the
negative terms to have χ = 0 at a finite value of Γ, the corresponding mode is unstable. The growth rate
is thus a function of S1, S2, S3 and S4, which in turn, are functions of the density and flow parameters
of the equilibrium configuration of the beam as well as the background plasma electrons. The first
three terms of the expression for χ are positive definite (S1 and S2 are positive and S3 which could be
negative, appears as a square). The positive terms require additional energy. The fourth term with a
negative sign (S4 and other factors being positive definite in this term) corresponds to a reduction in
energy of the perturbed configuration. The presence of this fourth term is thus energetically favorable
and is crucial for instability.

It should be noted here that ~J ·~E =
∑
α nα~3α·(−e~E). Here −e~E is the force due to the electric field

experienced by the electrons. Thus, the positive/negative terms in ~J ·~E represent the gain/loss rate
in the kinetic energy of electrons respectively. The negative terms are responsible for the growth of
Weibel instability at the expense of the kinetic energy of electrons. We now identify the terms in the
expression of ~J ·~E in Eq. (5) which provide a negative contribution to the total energy of the system.

Let us first consider the case of symmetric flow for which S3 is zero. For this case, it is evident
from Eq. (A10) (see Appendix) that E1y = 0. Thus, only the first and third term of Eq. (5) are finite
for this particular case. Let us now identify their contributions in Eq. (9). The first term of Eq. (9)
with the coefficient (1 + S2/Γ2) of |E1x |2 arises as follows. The coefficient unity clearly comes from
∂ |E2

1x |/∂t of Eq. (4). The term with the factor S2/Γ2 is the plasma dressing contribution arising
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from (�
∑
αen0α31αxE1x) (viz. the first term of Eq. (5)). This can be obtained by expressing E1x in

terms of 31xα from Eq. (A5) which leads to (−
∑
α en0α31αxE1x)=

∑
α n0αmγ3

0α |31αx |
2Γ. Clearly, this

is a positive definite and represents the rate of kinetic energy acquired by the electrons due to the
perturbed velocity along the x̂ direction (i.e. along the equilibrium flow direction). Let us now look
at the last term of Eq. (5) by substituting n1α and E1x in terms of the velocities. It is evident from
Eq. (A4) that the density perturbations are related to 31αy by the continuity equation. Since E1y is
absent for the symmetric flow configuration, 31αy gets generated by the ~3 × ~B force in the momentum
equation (Eq. (A3)). It should be noted that since the equilibrium flow is oppositely directed for the
two electron fluids, this force acts in the opposite directions for the two species and is responsible
for the separation of the two beams transverse to the equilibrium flow direction (i.e. along ŷ). This
causes the spatial separation of the forward and return currents leading to magnetic field generation
causing the system to be destabilized by Weibel instability. We substitute for n1α and E1x in terms
of 31x to write the last term of Eq. (5) as −

∑
α k232

0αmγ3
0α |31αx |

2/Γ which is negative and hence,
it represents the loss rate of electron kinetic energy. In Eq. (9), it can be traced as the term with
� S4k2/Γ4 coefficient.

For asymmetric flows with non zero values of S3, E1y is finite. A finite value of E1y contributes
to ~J ·~E through the second term in Eq. (5) and also through the dependence of n1α on 31αy (Eq. (A4)),
which in turn is influenced by the force �eE1y through the momentum equation (Eqs. (A3) and
(A6)). It should be noted that the force due to E1y acts on the two fluids along the same direction
and hence does not lead to any current separation required for the Weibel destabilization process.
The sum of both these terms can be seen to be positive definite and they are responsible for the
gain in electron kinetic energy acquired by the perturbed ŷ component of the velocity 31y. The
term with the coefficient S1/Γ2 in Eq. (9) represents the sum of both these contributions. The unity
in the bracket containing S1/Γ2 arises from ∂|E1y|2/∂t of Eq. (4). Furthermore, the term k2|E1x |2/Γ2

corresponds to the last term of Eq. (4). It also represents the rate of change of the magnetic field energy,
∂|B1z |2/∂t.

It is, therefore, clear that the negative term arises from the correlation between n1α and E1x,
which is the last term appearing in the expression of ~J ·~E (Eq. (5)). This can also be simply viewed
as a crucial term reducing the overall spatially averaged perturbed kinetic energy of the electrons as
demonstrated below. 〈

δK
〉
=

1
2

〈∑
α

[
(n0α + n1α)(~30α + ~31α)2 − n0α3

2
0α

]〉
(10)

=
1
2

〈∑
α

[
n0α~3

2
1α + 2n1α~30α·~31α

]〉
(11)

=
1
2

〈∑
α

[
n0α |31αx |

2 + n0α |31αy |
2 + 2n1α~30α·~31α

]〉
(12)

It should be noted that the terms linear in perturbation average out to zero and thus have been dropped.
The terms with third order in perturbation have been ignored. The first and second terms in Eq. (12)
are positive definite. However, the sign of the third term depends on the correlation between n1α and
31αx. Using Eq. (A5) and the fact that ω = ιΓ, we end up with the same correlation term as in the
expression for ~J ·~E which is responsible for decreasing the kinetic energy.

Now, we derive the expression for the growth rate of the unstable mode. Equating the coefficient
of |E1x |2 in Eq. (6) to zero, we obtain the following 6th order polynomial equation as the dispersion
relation from which the growth rate can be obtained.

(Γ2 + S1)[Γ4 + (S2 + k2)Γ2 − S4k2]=−S2
3k2 (13)

Equation (13) is in agreement with earlier derivation.38 For S3 = 0, the analytical expression for the
growth rate can be obtained as:

Γ=
1
√

2

[√
(S2 + k2)2 + 4S4k2 − (S2 + k2)

]1/2
(14)
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The other root of Γ2 = �S1 is the electron plasma oscillations. The analytical expression for the growth
rate can also be obtained in the asymptotic limit of small beam density, i.e. n01 � n02, 301 � 302 and
the beam velocity approaches the speed of light, i.e |301| ≈ 1. This implies that γ01 = γ0 � 1 and
γ02 ∼ 1. We can then expand the parameters S1, S2, S3 and S4 of Eq. (13) in powers of n01. Retaining
terms of n01 upto first order in the expression we obtain: S1 ≈ S2 ≈ 1, S3 ≈ n01301, S4 ≈ n01301(301/γ0

� 302). The expression for growth rate under this approximation is then given by

Γ=

[ k2n013
2
01

(1 + k2)γ0

]1/2
(15)

In the limit k � 1 the growth rate becomes,

Γ1 = (n013
2
01/γ0)1/2k (16)

In the other asymptotic limit k � 1,

Γ2 = (n013
2
01/γ0)1/2 (17)

This is a highly asymmetric flow configuration in which the beam density is much lower than the
background plasma density but it has relativistic speeds. The value of |S3| for such configurations
would be very high. On the other hand, |S3| = 0 corresponds to a symmetric flow configuration. This
can be understood as follows. Using the condition of charge neutrality

∑
αn0α = n0 = 1 and zero

current
∑
αn0α30α = 0 for an equilibrium, we have n01 = 1 � n02 and 302 = �n01301/(1 � n01). All the

parameters S1, S2, S3 and S4, on which the growth rate depends, can then be cast entirely in terms of
the beam density and its equilibrium velocity. The parameter S3 takes the form:

S3 = n01301

(
1
γ01
−

1
γ02

)
(18)

Thus, S3 has a negligible role in non relativistic cases. In the relativistic case, it is zero only when
the flow configuration is symmetric. This corresponds to 301 = �302, which is possible only when
n01 = n02 = 0.5. We will refer to the case of n01 = 0.5 (corresponding to |S3| = 0) as the ‘symmetric’
flow configuration and for any other value of n01 for which |S3| is finite the flow configuration is
termed as ‘asymmetric’ henceforth. It is interesting to note from Eq. (A10) that the electrostatic field
E1y = 0 when |S3| = 0. Thus, for the symmetric flow configuration, no electrostatic field gets generated
and hence, it is favorable from the energetics point of view to excite the instability for this particular
configuration. In the expression for χ provided in Eq. (9) also, it can be seen that the second positive
term vanishes entirely when |S3| = 0. We have carried out a detailed investigation of the growth rate
evaluated from the dispersion relation of Eq. (13) in the parameter domain of n01 vs. 301 to show that
this inference drawn from the energy principle is indeed correct.

In Figs. 2(a) and 2(b), we have shown the constant contours of S4 in the n01 � 301 plane. When
the growth rate using the values of n01 and 301 on the points of any constant S4 contour is evaluated,
we observe that the growth rate is always highest for the symmetric case. We have employed Eq. (13)

FIG. 2. (a) Contours of S4 in the plane of n01 and 301: (b) zoomed section of contours of S4 where astricks denote two points
of symmetric and asymmetric flow configurations at the constant contour of S4 = 0.25.
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TABLE I. The maximum growth rate of current filamentation instability evaluated analytically on a contour of S4 = 0.25.

n01 301 |S3 | Γ(max.)

0.343 0.898 0.1365 0.3748
0.346 0.923 0.1558 0.3722
0.360 0.960 0.1941 0.3636
0.367 0.970 0.2078 0.3581
0.383 0.983 0.2291 0.3475
0.400 0.991 0.2445 0.3336
0.429 0.996 0.2453 0.3258
0.466 0.994 0.1798 0.3857
0.487 0.982 0.0827 0.4392
0.5 0.963 0 0.4519

FIG. 3. The equilibrium condition of charge neutrality and zero current requires that only two parameters out of the four n0α
and 30α can be chosen independently. For this figure n01 and 301 have been chosen independently to understand the variation
of the growth rate with respect to them. The figure shows the plot of growth rate as a function of 301. Each curve in the plot
corresponds to a distinct value of n01. It should be noted that the curve for n01 = 0.5 representing symmetric flow configuration,
has the highest value of growth rate for all values of 301.

to evaluate the growth rate numerically and used k = 1 where the growth rate maximizes.38 In Table I,
we have evaluated the growth rate for the constant contours of S4 = 0.25 for various values of n01

and 301. We observe that the growth rate is highest for |S3| = 0, as expected. In fact, the growth rate
decreases monotonically with increasing value of |S3|.

We have also shown the plot of growth rate for various values of n01 as a function of 301 in
Fig. 3 and observe that the growth rate maximizes when n01 = 0.5, i.e. for the symmetric flow
configuration. It is thus clear that the symmetric flow configuration has the maximum growth rate.
It would be interesting to know how the two flow configurations behave in the nonlinear regime. In
the next section, we have explored this by carrying out 2-D PIC simulations through OSIRIS for the
symmetric and asymmetric flow configurations corresponding to the two points depicted by asterisks
in Fig. 2(b). For these two points, both S4 and 301 are identical. Here, Case(A) is for the symmetric
flow with n01 = 0.5, whereas Case (B) is for asymmetric configuration with n01 = 0.36.

IV. SIMULATION SETUP

PIC simulations using OSIRIS39,40 have been carried out for a system of the forward electron
beam and a compensating return current by the background plasma. The equilibrium configuration
in Fig. 1 has been initialized in a 2-D simulation box. The simulation box size was chosen to be
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25c/ωpe × 25c/ωpe. The spatial resolution is taken to be 50 cells per c/ωpe with 64 particles per cell
which corresponds to a grid size of ∆x = 0.02c/ωpe and time step ∆t = 0.012ω−1

pe . A small noise in
terms of initial thermal velocity of 3th = 0.0001397c in each of the two electron species has been
introduced initially. In typical beam plasma experiments, one envisages the forward beam current to
have high velocities and low density. On the other hand, the background plasma electrons have high
density and move with slower speed. Thus the two flows would, in general, be highly asymmetric.
We investigate here both the cases of symmetric and asymmetric flows. For a proper comparison, we
have ensured in the choice of the equilibrium flow parameters to have identical values of S4 as well
as the beam velocity 301 for both the cases. For the symmetric flow (Case (A)), a forward moving
beam of density 0.50n0 moving with the velocity of 0.963c and a compensating return electron beam
with same density and speed moving in opposite direction has been chosen. For asymmetric flow
(Case (B)), a beam electron density of 0.36n0 moving along x̂ with a velocity of 0.960c in the forward
direction and a shielding current of background electrons along −x̂ with density 0.64n0 moving with
a velocity of 0.540c has been considered. We have tracked the spatio - temporal evolution of magnetic
field and particle density along with the evolution of total magnetic field energy in the system defined
by 1

8π ∫ B2(x, y)dxdy.

V. SIMULATION RESULTS

We have shown in Fig. 4, the evolution of the normalized magnetic field energy in the system for
Case (A) and (B) respectively. It can be observed from the semilog plot of Fig. 4 that the magnetic
field energy grows linearly in the beginning. However, the symmetric flow i.e, Case (A) shows a
higher growth rate than that of Case (B), as expected. The field energy in Case (A) also saturates
at a higher value. The 2-D color plots for the z component of the magnetic field (left column) and
the charge density (right column) for Case (A) and Case (B) have been shown in Figs. 5 and 6
respectively. The first subplot in both the figures [Figs. 5 and 6] corresponds to the linear regime.
After this, the system shows the onset of nonlinear effects. This can be clearly observed from the
plots in Fig. 4 where the lines start to curve. This happens for Case (A) and Case (B) at t = 15.24 and
t = 18.0 respectively. At the linear stage of instability (t = 15.24 in Fig. 5 and t = 18.0 in Fig. 6), the
formation of filaments in the magnetic field as well as in the electron charge density are observed.

FIG. 4. The calculation of growth rate of instability by its slope on temporal evolution of magnetic field energy for the
symmetric (S4 = 0.25, |S3 | = 0) (solid red color curve) and asymmetric flow (S4 = 0.25, |S3 | = 0.1941) (dotted blue curve)
which match very well with the theoretical growth rate.
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FIG. 5. Evolution of magnetic field (left column) and electron charge density of the beam (right column) for symmetric
flows (prepared by Vapor [J. Clyne et al., New Journal of Physics 9, 8 (2007); J. Clyne and M. Rast, Electronic Imaging,
284–295 (2005)]): The formation of filamentary structures in magnetic field as well as in electron charge density at the
order of an electron skin depth, de is shown just at the transition from linear to nonlinear stage (t=15.24). In the nonlinear
stage of instability, the tilted structure of filaments in the magnetic field as well as in electron charge density which is a
signature of oblique mode instability, can be seen. The magnetic field energy spectra in the linear regime peaking at de is
shown with in the top left corner of the figure. Further evolution of instability leads to the system in a turbulent regime
which is caused by the deflection of charge particles due to a high amplitude magnetic field generated by the instability in the
system.

The scale length of these filaments are of the order of electron skin depth de. However, the magnitude
of the perturbed magnetic field in the asymmetric case is comparatively much weaker. It is evident
from Eq. (6) that finite value of |S3| (which is the case for asymmetric plasma flows) can stabilize the
growth of Weibel instability as compared to the system of symmetric plasma flows (|S3| = 0). The
slope corresponding to the numerically evaluated growth rate has been indicated by the short straight
lines alongside the two respective cases. They show a good match in the linear regime of numerical
simulation. The quantitative value of the growth rate calculated by PIC simulation is Γnum = 0.46
which is in good agreement with theoretical growth rate [Eq. (14)] Γth = 0.4519 (red solid color in
Fig. 4). In the case of asymmetric flow (|S3| = 0.1941), the growth rate obtained from simulation
is Γnum = 0.38 which also matches with the theoretical result [Eq. (13)] Γth = 0.3636 (dotted blue
color line) and confirms the theoretical prediction that non-zero value of |S3| reduces the growth
rate of Weibel instability. It should, however, be noted that analytical derivation corresponds to the
filamentation configuration with perturbation wave vector directed transverse to the flow direction.
However, the simulation shows variations along the flow direction as well, for both the cases. The
slight difference between analytical and simulation growth rate is reasonable as the oblique modes are
the ones which supposedly dominate the beam plasma instability. However, since the variations along
the flow direction are of much longer scales, they do not seem to influence the growth rate much. This is
the reason for a good agreement between the analytically evaluated growth rate and that obtained from
simulation.
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FIG. 6. Evolution of magnetic field (left column) and electron charge density (right column) of the beam for asymmetric flow
(prepared by Vapor [J. Clyne et al., New Journal of Physics 9, 8 (2007); J. Clyne and M. Rast, Electronic Imaging, 284–295
(2005)]): In the asymmetric flows, the term |S3 |,0 stabilizes the system, therefore the growth rate of instability reduces as
compared to symmetric flow. The nonlinear phase of the instability, therefore, has a slow onset.

It has also been found in our simulations that the nonlinear onset of Weibel instability occurs
sooner (just after t = 15.24) in Case (A) than in Case (B) (t = 18.0). The nonlinear saturation level in
Case (A) is also typically higher as compared to Case (B).

In the nonlinear regime, the perturbed magnetic field first keeps increasing at a slower rate (phase
1). The magnetic field structures during this time coalesce and form longer scale structures. Thus, a
cascade of power towards longer scales is distinctly observed. The energy evolution plots of Fig. 4,
also show a subsequent later regime (phase 2) in which the magnetic energy shows a steady decrease.
The color subplots of Fig. 5 at t = 27.24 and t = 39.24 for Case (A) correspond to these two distinct
nonlinear phases. For Fig. 6 the subplot at t = 30.0 and t = 42.0 depicts the two nonlinear phases
for Case (B). During the first phase of the nonlinear regime, the filamentary nature of the structures
continues to exist as can be seen from Figs. 5 and 6. Thus, variations along the propagation direction
continue to remain at longer spatial scales. In this regime, the coalescence of magnetic filaments
increases the transverse scale length. In the second phase of the nonlinear regime, the magnetic
structures start to isotropize as can be observed from the last two subplots of Figs. 5 and 6.

VI. SUMMARY

The energy principle utilizes the energy cost associated with the perturbed equilibria to ascertain
whether the growth of a particular mode is energetically favorable or not. This technique often
provides an interesting physical insight and has been extensively employed in the context of plasma
systems governed by Magnetohydrodynamics. Recently, it has been invoked for understanding the
electrostatic two stream instability.
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In this study, we have shown that an energy principle argument can be put forth for the elec-
tromagnetic Weibel mode in the context of beam plasma system. The perturbations in linear regime
provide both positive and negative energy contributions in the system. This is essential for the insta-
bility, as for conservative system the total energy of the system is constant. The system should allow
the possibility of the growth of perturbations without any additional cost of energy. This can happen
only when the perturbations merely transfer energy from one form to another. Thus causing one form
of energy to grow at the cost of another. For the beam filamentation instability, the electromagnetic
field energy in the perturbed state grows at the cost of kinetic energy of the equilibrium flow. We have

identified S4 =
∑
α

n0α3
2
0α

n0γ0α
as the coefficient of the negative energy contributing term and is crucial for

the instability. We have also shown that a finite value of S3 =
∑
α

n0α30α
n0γ0α

is responsible for generating
the electric field transverse to the flow profile and in fact, costs energy. It is clear that S3 is finite only
in the relativistic case and for the case when the flow profile is asymmetric (beam and background
plasma have different densities). The finite value of S3 suppresses the filamentation mode. This has
been verified by comparing the growth rates for various cases in this manuscript. For instance, it has
been shown that for a constant value of S4 the growth rate is maximum for |S3| = 0 and reduces mono-
tonically with increasing value of |S3|. We have also carried out 2-D PIC simulations to illustrate
the difference between symmetric and asymmetric flow configurations. We have chosen two flow
parameters for which S4 is same. The value of S3 is zero for one case and is finite for the other case
corresponding to symmetric and asymmetric configurations respectively. We have observed that even
in the presence of 2-D perturbations (permitted by the 2-D PIC simulations carried out by us) the
symmetric case has higher growth rate. Furthermore, the nonlinear saturation level of the perturbed
magnetic field is also observed to be higher for the symmetric flow configuration.

It is interesting to note that the parameters (e.g. S3 and S4) responsible for the growth rate of
the Weibel/current filamentation instability in the infinite system considered here, change their roles
for destabilizing a beam plasma system when the beam has a finite transverse extent. In this case,
Poynting flux becomes relevant and contributes to the negative energy excitations. This has been
shown in a recent submission.41

APPENDIX:

We provide here the important steps in the derivation of Eq. (6). The linearized continuity equation
for the species α can be written as:

∂n1α

∂t
+
∂

∂y
(n0α31αy)= 0 (A1)

Similarly, linearizing the x and y components of momentum equation for the species α we have:

∂

∂t
(mγ3

0α31αx)=−eE1x; (A2)

∂

∂t
(mγ0α31αy)=−eE1y + e30αB1z; (A3)

where ‘e’ is the magnitude of the electronic charge and ‘m’ is the rest mass of an electron. Employing
the Fourier representation of Eq. (3) for the linearized fields (density, velocity, electric and magnetic
field), we can cast the Eqs. (A1)–(A3) to obtain:

n1α =
k
ω

n0α31αy (A4)

31αx =−
ιe

mγ3
0αω

E1x (A5)

31αy =−
ιe

mγ0αω
E1y −

ιe

mγ0αω2
k30αE1x (A6)

Here, we have omitted the suffix k from the Fourier representation of the fields. The Faraday’s law
gives the following relationship between the ẑ component of magnetic field and the x̂ component of
electric field:

B1z =−
k
ω

E1x (A7)
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The Poisson’s equation can be written as:

∂E1y

∂y
=−

∑
α

4πen1α (A8)

Using Eqs. (A4)–(A6), we can express the Poisson equation as:

ιkE1y =−
∑
α

4πe
k
ω

n0α

[
−

ιe
mγ0αω

E1y −
ιe

mγ0αω2
k30αE1x

]
(A9)

Rearranging terms in Eq. (A9) along with the definition of S1 and S3 provided in Eqs. (7) and (8),
we can cast E1y in terms of E1x as:

E1y =
ω2

peS3

(1 −
ω2

pe

ω2 S1)ω3
E1x (A10)

It should be noted that when S3 = 0, we have E1y = 0. Thus a symmetric flow configuration for which
S3 vanishes does not generate any electrostatic field and hence, the energy cost in this case for the
development of Weibel mode is less. We eliminate all the other fields in terms of E1x and use the
normalized variables, i.e. ω

/
ωpe → ω and kc

/
ωpe → k to obtain:

~J ·~E =
ι

8π

[
S2

{
1
ω
−

1
ω∗

}]
|E1x |

2

+
ι

8π



S2
3S1k2

|ω |6(1 − 1
ω2 S1)(1 − 1

ω2
∗

S1)

{
1
ω
−

1
ω∗

}
+

S2
3k2

|ω |4




1

ω∗(1 − 1
ω2
∗

S1)
−

1

ω(1 − 1
ω2 S1)





|E1x |

2

+
ι

8π


S2

3k2



1

ω5(1 − 1
ω2 S1)

−
1

ω5
∗(1 −

1
ω2
∗

S1)




+ S4k2
{

1

ω3
−

1

ω3
∗

}
|E1x |

2 (A11)

The above expression can be simplified to write:

~J ·~E =
2Γ
8π



S2

Γ2
+

S1S2
3k2

Γ4(Γ4 + 2S1Γ
2 + S2

1)
−

S4

Γ4


|E1x |

2 (A12)

=
1

8π
∂

∂t



S2

Γ2
+

S1S2
3k2

Γ4(Γ4 + 2S1Γ
2 + S2

1)
−

S4

Γ4


|E1x |

2 (A13)

It should be noted that we have replaced 2Γ by ∂/∂t because E1x = E1xk exp(iky � iωt). Thus |E1x |2

∼ exp(2Γt). Here, Γ is the imaginary part of the frequency ω. Similarly, we have:

∂

∂t

(E2 + B2

8π

)
=

1
8π

∂

∂t






1 +
k2S2

3

|ω |6(1 − 1
ω2 S1)(1 − 1

ω2
∗

S1)
+

k2

|ω |2





|E1x |

2

=
1

8π
∂

∂t






1 +
S2

3k2

Γ2(Γ4 + 2S1Γ
2 + S2

1)
+

k2

Γ2





|E1x |

2

(A14)

Since the Poynting flux for the homogeneous infinite periodic system is zero, we can express Eq. (1)
by summing Eqs. (A13) and (A14), to obtain Eq. (6).
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