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Abstract. A sufficiently large class of generalised Dirichlet series is shown to have lots of
zeros in o>1/2. Some examples are (@) ¢@)—a (a any complex constant) (i)
a—L(s) I ((n+ \/i)“ —(n+1)"%) (where « is ‘any positive constant) and (iii)
a+ 22 (— 1y*(log n)*n "% (where 4 is any real constant > 1/2 and o any complex constant).
Here as is usual we have written s = ¢ + it.
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1. Introduction

In paper [1] of this series we considered zeros of G(s)=Z,a,n"° (under fairly
general conditions. We have changed the notation for F (s) to G(s) to avoid a clash
of notation later) in the rectangle

{e21-6, T<t<2T}, 1)

where & = 8(T)—0 as T— 0, and as usual s = o + it. The only restrictive condition
was something like Z|a,|* » x/logXx, (the sum being over all primes p subject to
x < p <2x) for all large x and what was irksome was the condition a; # 0. The main
object of the present paper is to relax the condition a; #0 to a; =0,...,4,, = 0 and
Ay, 41 70 where no(>0) is an integer constant. Of course we can (as we do) assume
n, = 1 since the case no=01s considered in the paper X! of this series. Also the
condition involving a, was designed. to include {(s); but if we strengthen the lower
bound to say E|a,|* » x(log x)* then we can prove that G(s) has atleast one zero in

{o>1, T<t<2T )

provided only that |G(s)| does not exceed a fixed power of T (assuming T to be
sufficiently large). Also by using ideas of this paper and those of [7] it is possible to
prove that Riemann hypothesis implies that if g = [«(loglog T)/2] (where ¢ >0 is a
constant) then

lim inf{—Hn\C(%+it)¥2"’dt} > exp(a™?). (3)

T~ T
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(We may also formulate a result for 1/H[T*#(...)dt where T> H »loglog T). The
first of these results follows from a routine application of the method of X (except
when a, = 0 in which case the method of the present paper succeeds) while the second
follows from the following observation. Consider G(s) where the a, are multiplicative
over square-free integers n. Then the coefficient of (p, ---p,)”*(py, -+, P, distinct primes)
in (G(s))'/? is the same as in

(1+ﬁa)”“(1+fﬁ)”"...(1@)”"
pi P P

ie. q"‘amap2 --+a,. We have then to use the Hardy-Ramanujan theorem as in [7].
We do not give further details of the proof of these results. Instead we define a
property P, of a Dirichlet series G(s) == b, where {b,} is any sequence of
complex numbers and {u,} is any sequence of real numbers with b, =pu, =1,
Uy < py<py<---and 1/C<pu, ., —p, < C where C(> 1) is an integer constant. We
assume that the series for G(s) converges absolutely for some complex number s.

DEFINITION

Let q(> 2) be an integer. We say that G(s) has the property P, if there exists a constant
6 >0 and a positive integer n* = n*(J) (n* not divisible by q) both depending on G(s)
such that G(s) can be continued analytically in

{o23+06, T<t<2T} (@)

and has » T zeros all of order n* in this rectangle.

Remarks. Also we consider functions like log {(s) — o where a is any complex constant.
These have singularities but continuable in ¢ > 1/2. We prove that log{(s) — « has
the property P, (if we allow analytic continuation except on horizontal lines which
contain singularities). In what follows n* may depend on T; but n* will be bounded
above by a constant depending only on 6.

Accordingly our theorems which illustrate our method are

Theorem 1. The function {'(s) — « has the property P, for every complex constant a.

Theorem 2. The function log {(s) — a has the property P, (in the sense explained in
the remark above) for every complex constant «.

Theorem 3. The function G(s)=a—Z" ,(n+ ﬁ)*s has the property P, for every
positive real constant .

Theorem 4. Let A(> 1/2) be any constant. Then G(s)=a + 22 (—1)y'(logn)*n~* has
the property P, for every complex constant .

Theorem 5. The function G(s) =« + ZZ_, ,1.(— 1)"(loglog n)**n = has the property P,
(for some integer q = q(d)) for every complex constant .

/

R,




N

Generalised Dirichlet series 227

Remarks. More general results will be found in the later sections of this paper. It is
possible to deal with the zeros in {621-6,T<t<2T}in a somewhat general
setting. These questions will be taken up elsewhere. We would like to remark that
our results hold good for zeros of Dirichlet polynomials like X, 7@nk, $ and .
T, powd, iy (with conditions on {a,} of a fairly general nature and somewhat
restrictive conditions on {#,})-

The previous history of Theorems 1 and 2 is well-known and due to many authors.
(For references see [8]. Of great relevance here is the work of Bohr and Jessen [4,5]
But both our methods and results seem to be new).

L]
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2. A conjecture and its proof in special cases

We believe that the following conjecture is true (at least in a modified form). In [2]
we have proved it in some special cases and these will be used in the present paper.
(We stipulate that certain constants shall be integers only for a technical reason which
is not serious). We quote from the paper just cited.

Conjecture. Let 1=y, <, < -+ be any sequence of real numbers with 1/C < i,y —
u, < C where C(> 1) is an integer constant and n=1,2,3,---. Let us form the sequence
l=2 <A< of al possible (distinct) finite power products of 1= py, las with
non-negative integral exponents. Let s=o+it, H(>=10) a real parameter, and
{a,}(n=1,2,3,---)witha, = 1 be any sequence of complex numbers (possibly depending
on H) such that F(s)=2X2_ a,A; " is absolutely convergent at s=B where B(=>3) is
an integer constant. Suppose that F(s) can be continued analyticallyin (¢ 20,0 <t < H)
and that there exist T,, T, with0 < T, SH**, H —H 314 < T, < H such that for some
K (= 30), there holds

cz0

max (|F (o +iTy)|+|F(o +iTp)|) < K. (5)

Finally let E:‘;l\anl}.;’g < H* where A(>1) is an integer constant. Then there exists
a 8,(>0) (depending only on A, B, C) such that for all H > H,(4, B,C) there holds

1 (H 1
— | |F@t)*dt== a,l? (6)
HL |F(it)|"dt = 2/‘-;*‘" l
provided that H™* loglog K does not exceed a small positive constant.

Remark. We have used the symbol d, (in place of 8) so that it should not clash with
the & already introduced. Also we recall that 1/2 can be replaced by a quantity ~1
(as H— o0) and whenever we have succeeded in proving this conjecture we have
proved it in this stronger form. ‘ : ‘

We now quote the corollaries to the main theorem of [2].
COROLLARY 1.

Let p, =n. Then the conjecture is true.
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COROLLARY 2.
Let ny(> 2) be an integer constant, and Hn = (ng + n—1)/(n,). Then the conjecture is true.
COROLLARY 3.

Let >0 be an algebraic constant, and p, = ((n+ B)/(1+ B)). Then the conjecture is
true. (The conjecture is also true Jor the choice pu; =1, y, =n + B—1 forn>1).

Remark. 1t is possible to state a slightly more general corollary than Corollary 3.
But we do not state it since our ambition is to prove a sufficiently general result.

3. Two important observations

We record the observations as two lemmas.

Lemma 1. Let p,=(ng+n— 1)/(ny) and G(s)=Z; b,u"* be absolutely convergent
Jor some complex s. Then, we have, for any integer ¢ >0 and ¢ large enough,

©Ore= ¥ ai )

where the A, are formed as in the conjecture, a, = 1, and further whenever Ho+n—1
is prime |a,| =q~|b,|, and so the RHS of (6)is

> Y b, | (8)

1
2q2 n< HE

where the sum is restricted to those n for which n=1, and also to those n for which
- ho+n—1is prime.

Proof. 1t is sufficient to check that if pis a prime >n, + 1, the equality

£yl p

k
no no

where ¢y, ..., ¢, are integers > no + 1, is not possible except when k=1 and /, =p.
This is trivial since p has to divide at least one /; say #,. Now

4 .

ng t= ("1"> L2l 2 (o + 1)1
p

which is impossible unless k=1,

Lemma 2. Let G(s)=1— 2 bap® where b, are real and non-negative and the series

involved converges for some complex s. Then for any integer ¢(> 0) and o large enough,
we have,

Gs) =3 a5

n=1
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where the A, are as in the conjecture, a, =1 and further for nz2, a,<0 and
—a,>b,q" ! wherever A,= .

4. Proof of theorems 1,3,4 and 5

We sketch the proof in a general setting. Note that after an easy normalisation the
functions in question look like G(s) = Z;_ bou*, where by =1, {u,} as in any of the
Corollaries 1,2 or 3 (of §2), which converges absolutely for some complex number s
and is analytically continuable in o > 1/2. It is easy to see that, for o= 1/2+9,

2T ¢
—l’fj |G(o + if)Pdt < Y, |b,|?n~ 172 = V(20), say. (9)
T n=1 ’

From this and the fact that the absolute value of an analytic function at the centre
of a circle is majorised by its mean-value over the disc enclosed by it, it follows that

max  |G(s)P«d" V()T (10)

I} = H se({(1/2)+8,») %)

where I runs over all disjoint intervals of length H into which [T,2T] can be divided
with a suitable meaning at the end points. We assume that H < TY? and that H is
a large enough function of 6. From (10) it follows that

#{I:|1| = H,max|G(s)> > 67* V() H} « ST/H. (11)

Let g > 2 be an integer. In order to obtain the lower bound

lj|G(s)|2/4dz s T laPnmt, (s=i+o+il, (12)
H I : In<Hé .

S

we have to check the condition that H™'loglog K shall not exceed a small positive
constant. In (12) {a,} are defined by

F(9)=(GE)= ¥, anhy™.

n=1

If we assume that in [3+6,00] x I, F (s) is regular (ie. G(s) has no zeros of order not
divisible by g) then (12) holds if H exceeds a large constant depending on d since we
can take K = 6~ 2 V(8)H provided we omit the intervals counted in (11). Also

#{1.-%‘[116(9\2«;;1“1 V(zé)}«%, (s=%+8&+1), (13)

where 5> 0 is a small constant.
Hence we have » TH™! intervals I (with [I| = H) for which (12) holds and also

B J |G(s)[2dt < n~ ! V(20). (14)
H)J, . ‘

We now show that each of the rectangles [2+0,00]x1I (for these I) must contain
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a zero of G(s) of order not divisible by ¢ (if we impose a suitable condition on V(26)
and V(9)). Otherwise from (12) and (14) we must have

D, «, 125! ) |
(—; 2 b, [Pn 2") <Dy V(29) (15)

q nsH“;

where D, >0, D, >0, and n are independent of T, H, g and 8. Also the accent restricts
the sum as in (8). If the {y,} are as in Corollary 3 we end up with

D q
(—-5 ) lbnlzn“l‘”) < D11 V(25). (16)

q nSH‘s[

Since we are interested in finding some H = H(5) contradicting (15) and (16) we can
as well contradict

D, = q
(ﬂi > Ibnlzn'l'“) <D,n™' V(24) (17)
q” n=1 )
for proving Theorems 1,4 and 5. To prove Theorem 3 we have to contradict
Dl 3 2,-1-24 f -1
pe LA <D,n~ ' V(29) (18)
n=1

It is a trivial matter to check that (17) and (18) are false for the particular cases in
question. This completes the proofs of Theorems 1,3,4 and 5 except for the remark
concerning n* (for this see § 7).

5. Some generalisations

It is plain that we can prove analogues of Theorem 1 (also Theorem 2 as will be
seen) to {"(s), {"'(s), ---, derivatives of L-functions and also to derivatives of the zeta
and L-functions of any quadratic field. We can also prove the analogues of Theorems
3,4 and 5 to more general Dirichlet series. We are particularly interested in (stating
the analogue for) a class of functions in which we were interested in [3]. We proceed
to recall their definition.

Let y(n)(n=1,2,3,--)be a periodic sequence of complex numbers not all zero (if
the period is k we require that there is at least one integer n with (n,k)=1 and
%(n) # 0) such that the sum Z y(n) extended over a period is zero. Let f(x) be a positive
real valued function of x defined for x > 1 such that for every fixed ¢ >0, f(x)x* is
increasing and f(x)x ¢ is decreasing for all x > xo(e). Let {d,} (n=1,2,3,--) be a

sequence of complex numbers satisfying f(n) « |d, |« f(n) and for all X > 1 we should
have

Z [dn+1_dnl<<f(X)'

X<ng2X

The functions that we wish to consider are

G(s) = ;fl 1) d,n=.
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Let us suppose that the expression

-1

0 1/2 o0
E(é)-——( ) (f(n))zn‘l‘”) ( 2. f(log(n + 1))—1n-1-”) (19)
tends to zero as 6 — 0. Then, we have

Theorem 6. The function G(s) — « has the property P, for every complex constant .

Proof. This follows from the arguments of § 5 and § 7. We have only to observe that
fx) « f(2x) « f(x) and that 7(x) = x/log x.

Remark. We can also state a similar theorem for the property P, (g = g(5)).

6. Proof of theorem 2

The ‘proof is not very much different from the one sketched in §4. Note that we have
the density theorem that N (s, T) defined by

#{p:0(p)=0 Rep>0,|Imp| < T}

is O(T** ~?(log T)®) where v = 3/(2 — o) due to Ingham [6] (see also page 236 of [8]).
The O-constant is independent of ¢ and T. In view of this theorem the number of
t-intervals I of constant length H = H(S), satisfying T<t<2T such that
[1+6/2,00) x I is zero free is ~ T/H. This and the remark in §7 are enough for
the proof of Theorem 2. ‘

Remark 1. We may also remark that the analogue of Theorem 2 is true for the
logarithm of a finite power product (with complex exponents not all zero) of ordinary
L-functions or L-functions of a fixed quadratic field since for these L-functions the
function N(a, T) is O(T**~?(log T)°) where v' = 4/(3 — 20) and C, is an absolute
constant. The O-constant depends on the modulii of the characters.

Remark 2. Starting from Theorem 2 one may deduce easily the following.

Theorem 7. The function {(s) —e* has the property P, for every complex constant o.

7. Completion of proofs

We have proved that for the functions in question the number of distinct zeros in
{o21+6, T<t<2T} whose orders are not divisible by g is > T. But by a slight
variant of the considerations of the proof we can secure that the » T H~! intervals
I selected for the contradiction have the property that in the rectangles
[3+6/2,00] x I the functions are bounded by a function of . By Jensen’s theorem
it follows that the number of zeros (in these rectangles) counted with multiplicity is
bounded. Thus the orders of the » T zeros as proved already in §4, § 5 and §6 are
bounded by a function of  alone. Hence (by classifying these zeros according to their
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~orders) we see that > T zeros (in at least one class) have the same order (a fixed
integer not divisible by g). This completes the proof of all our assertions.
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POST-SCRIPT. The condition E(§)—»0asd—0 s.ec ((9)) can be proved under various

choices of f (n). For example let (log n)* < f (n) < exp((logn)°'!). Then E(5)— 0 as § — 0.
To see this we begin with a

Lemma. Let f(n)(n=1,2,3,.--) be any sequence of positive real numbers such that
(log f(n))(logn)~! =0 as n— co. For any 6 >0 put

0= (P, 0y . (/)P logn+ 1) n 7,

and

Qs= Y (fm)*n™'7%

1<erp(@it) |
If 0 — Q3 <30, and 0, > (1/e, 0<e <), then 0, « 2.
Proof. We have

0> Y (f(m)(log(n+1)"'n~172

1 <exp(@ir)

» Q7 *Q, (with an implied absolute constant, since Q; >1Q;)

ie. 02> 0%2%(1/e)Q, since Q, > (1/e)%
This completes the proof of the lemma.

COROLLARY.
Let (logn)* < f(n) < exp((logn)°'). Then E(8)—0 as 5 —0.
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Proof. In this case @, ==, (logn)*n” 1-262 575 > (1/¢)? if 6 is sufficiently small.

We have only to prove that Q,—Q3< 10,. Let d be any positive
constant. We will show that Qu = . . 0 5-129(f (n))*n~1~2? tends to zero as § —0.
For n>exp(dd~12%), we have

n26 nZé

>
(f(m)?~ exp(2(logn)®™)

> exp{(logn)®* (25(logn)*”® — 2)}

> exp{(logm)® 1 (28(d°°)(1/8)"1** — 2}

> (logn)?(for all n exceeding an absolute constant if 6 is small
enough).

> exp {26 logn —2(logn)®*}

Thus Q, —0 as §—0. This proves the corollary completely since X, n(log n)~?
is convergent. (For the validity of E(5)—0 clearly we can impose (logn)®' < f(n) <
exp((logn)®?) where R, (> 3/2) and R,(<1—4(2R; + 1)~ 1) are constants).



