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In this paper a stochastic analysis of the quantization error in a stereo imaging system has been presented. Further the
probability density function of the range estimation error and the expected value of the range error magnitude are
derived in terms of various design parameters. Further the relative range error is proposed.
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1 INTRODUCTION

The ability to obtain the accurate three-dimensional position information in the presence of
limited sensor resolution is a crucial task in computer vision and other triangulation systems.
Sensors for computer processing applications produce sampled quantized data, whose spatial
resolution is determined by limits in device technology and bandwidth. In computer vision
and photogrammetry, normally stereo camera setups as shown in Figure 1 are used for
obtaining 3-D data.

In a stereo camera system the two viewing cameras are separated by a distance b along
same base line, which is normally taken along the positive x axis. With such a stereo-camera
system, two images namely, left image and right image are obtained of any 3-D point. The
three-dimensional coordinates of each image point is found by computing the disparities
between the corresponding left and right image points. This results in a scanty distribution
of reconstructed 3-D points.

Designing of any stereo-system is dependent on various parameters like focal lengths of
the viewing cameras, the distance of separation between the two viewing cameras, distance
of the cameras from the viewing point and interval of image sampling. The relationship
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FIGURE 1 Stereo imaging set-up

between the geometry of the stereo-setup and the accuracy in obtaining the actual 3-D posi-
tion has received scant attention, though it is of great practical importance.

Any stereo set-up need to be designed suitably, to have accurate feature matching and
accurate range estimation. Accurate feature matching is possible by choosing the product
of focal length and base line distance to be small. On the contrary this product of focal length
and base line distance need to be chosen as large as possible for accurate range estimation.
Thus these two design criteria of accurate feature matching and accurate range estimation
require conflicting requirements. By decreasing the sampling interval, it is also possible to
improve the accuracy of range estimation. But it also has its own physical limitations of
the imaging set up.

The above constraints necessitated the formulation of acceptable range estimation error of
a chosen stereo-imaging set up. Thus it is always possible to choose appropriate design para-
meters of a stereo-imaging set up, if the acceptable range estimation error is known a proiri.
Hence it is necessary to develop a methodology to predict the range estimation error in terms
of stereo system parameters. Blostein ef al. [3] have proposed a mathematical equation in
terms of disparity value at a given pixel, so that the probability of the percent range error
is less than a given level. But it has been found that use of the relative range error is
more advantageous to that of percent range error in formulating relevant mathematical equa-
tions for choosing appropriate stereo-imaging set-up. It is also better to derive the expected
value of relative range error, which is more useful than deriving the condition for probability
of this error being less than a given level. For practical design purposes it is absolutely neces-
sary to formulate the relevant mathematical equations in terms of design parameters of the
stereo-system, instead of disparity value at a particular pixel. Though Mcvey et al. [4],
Verri et al. [5] and Matthies et al. [6] have given detailed description of stereo quantization
error studies, none of them have neither made any stochastic analysis nor derived a closed
form expression of the expected range error.

Rodriguez et al. [7] have derived the probability density function of the range estimation
error and expected value of the range error magnitude in terms of design parameters of the
stereo set up. They have also given experimental results to support the accuracy of the theo-
retical model proposed by them. But Rodriguez et al. [7] have assumed that the quantizing
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errors in x and y coordinate values in the two image planes to be uniformly distributed in
order to simplify the calculations. This need not be true in all practical situations. In the
work described in this paper the quantizing errors in the respective image planes are assumed
to have unimodal distributions, and the depth value z is assumed to be distributed uniformly
between zyi, and zp,c. Under the above assumptions the various relevant functions are
derived and the marginal density of z coordinate is also calculated.

In order to predict the range estimation error in stereo-imaging to aid the design process, it
is useful to derive the expected value of the error. This has necessitated use of a stochastic
analysis to derive a closed-form expression for the expected range error. In this paper the
probability density function of the range estimation error and the expected value of the
range error magnitude are derived in terms of parameters of the stereo system. This paper
is an extension of the results of Rodriguez ef al. [7], for a unimodal distribution of the quan-
tization error in x and y coordinate values, in a stereo imaging system.

2 STEREO IMAGING SETUP

The stereo imaging set-up using two cameras is shown in Figure 1. Let /;, and I be the left
and right image planes of the pair of cameras C; and Cy respectively which share a 3-D
feature. Let the position and orientation of one camera be known with respect to another
and both cameras have a common field of view. Let OXYZ be the rectangular cartesian
frame of reference with its origin O at the centre of projection of one of the cameras, say
left camera C;. A point W in 3D-space with its coordinates (x,,, )y, z,) With respect to
this frame of reference at C is viewed by the two cameras C; and Cg. Let the centre of
the right camera Cy be at a point O'(b, 0, 0) with respect to the first camera C; and is sepa-
rated by a distance b along a base line which is taken along positive OX axis. Let O, X, Y be
the rectangular cartesian system in the left image plane with its origin at (0, 0, /) with respect
to OXYZ system. Similarly let Or Xz Yy be the rectangular cartesian system in the right image
plane with its axes parallel to O X, Y, system and its origin at (b, 0, f) with respect OXYZ
system. Let the coordinate of the corresponding coordinates of a 3D point W(x,,, Y, Zw)
in the left image plane be P (X, Y;) with respect to Oy X, Y, system and in the right
image plane be Pr(Xg, Yg) with respect to OrXg Y system.

By projecting radially each point in the field of view, through respective focal points on to
the left and right image planes, the corresponding left and right image points of any 3D point
W (xy, Yw» Zw) can be obtained. By using collinearity equations [1] and [2],

X =f;l (1)
Xz 2@ 2)
Y =Yz Zé;wj (3)

These three equations can be inverted to obtain the 3-D coordinate values of x,,, y,, and z,,.
Let the disparity d be defined as the difference in coordinate values

d =X, — Xz “4)
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The corresponding values of x, y and z are given by the inverse perspective projection equa-
tions as

b
(Xws Vs 2 = 2) = g(XL, Y., f) (%)

Using equation (5) it is possible to compute the three dimensional structure from its stereo
images. Throughout the work described in this paper, symbol z, is replaced by z for conve-
nience in calculations.

3 QUANTIZATION ERROR

Since the imaging set up is discrete in nature, the image coordinates of each pixel can be
assumed to suffer from quantization errors of up to :I:% pixel. Choosing the image sampling
interval as J, the corresponding quantization error in each of x and y coordinates of the left
image (Xz, Y;) and right image (X, Yz) become +4/2. Hence the error in the disparity
d = X}, — Xg reduces to +0. Let the quantized disparity be defined as d, and disparity
error as Ad = d — d, where —9 < Ad < 9, Rodriguez et al. [7].

The error in estimating z dominates over estimated errors in the values of x and y which
also suffer quantization errors. In this paper the behaviour of the range estimation error Az is
analysed in terms of system parameters. Let z.,i, and zp,x be the minimum and maximum
range values in the field of view. On assuming 0 < zyiy < z < zmax < bf /0, it follows that
bf 4+ zAd > 0. Let the quantized disparity in z be denoted by Z, then the range estimation
error Az becomes

Az=2—z
bf

=%-—z
d
__ b
T d+Ad
__ b
T Of/o+Ad -
B —22Ad
~ bf +zAd

z

(6)

If the value of the product bf in the denominator of equation (6) is increased, the value of
range estimation error Az can be reduced. Since zy,j, < z < Zpax, using (6), the bound for the
range estimation error becomes

_Z2max(S <Az < Zrznax(S
bf + Zmax0 T b — Zmax 0 (7)
- N bf — Zmax0

Equation (6) implies that the range error increases in magnitude, as the range increases.
Let a relative range error be defined as Az/z. This relative range error also increases in
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magnitude as the range increases. Therefore, stereo range estimation is more accurate for
nearby objects than for distant ones.

4 PROBABILITY DENSITY FUNCTION OF Az

It is possible to examine stochastically the range estimation error Az which is a function of
random variables Ad and z. The probability density function of Az can be formulated by
examining the geometrical relationships between the variable Az and other variables upon
which Az depends. However, such a formulation is a tedious process. To avoid this it is
assumed that the quantization errors AX; and AXy in X; and Xy are independent of each
other, and z. Rodriguez et al. [7] have assumed the quantization errors in X; and Xy to be
uniformly distributed. These disparities in coordinate values are not usually small. Blostein
et al. [3] have shown the quantization errors to be very accurate in the case of large dispa-
rities. But in the work described in this paper, AX; and AXy are assumed to have unimodal
distributions between —J/2 and /2 as shown in Figures 2 and 3, whereas z is assumed to be
distributed uniformly between zpi, and zy.x. Under these assumptions the probability density
function of Ad can be derived easily as follows.

Let the quantization error in X; and Xz be AX; and AXy respectively. Since d = X; — Xz
the disparity error becomes

Ad = AX; — AXy (8)

flAXL)

@3

(-4,0) 0 G0  Ax,

FIGURE 2 Unimodal distribution of error AX;

f(AXR)

%

(-%:0) Y (£,0) AXpg

FIGURE 3 Unimodal distribution of error AXp.
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Hence the corresponding probability density functions are

Jax, (AXp) =

Jax, (AXg) =

202AX; + 9
%, ~3/2 < AX; <0
—2(2AX;, — 3)
572L, 0 <AX; <9/2
202AX + 6
%, —3/2 < AXz <0
—2(2AXg —
%, 0<AX <9/2

©)

(10)

These probability density functions are assumed to be zero outside the specified intervals in
the entire work described in this paper. The probability density functions of Ad can be formu-

lated as follows. Let

Therefore

f(Ad,y) = f(AXL, AXR)

J(Ad,y) =

4Q2AX; + 6)(2AXg + J)

y=AXg

AX; :y+Ad
AXR :y

A(AXL, AXR)
a(Ad, y)

1
= f(AXy, AXR) 0

=f(AX;, AXR)
= fax, (AX7) - fax,(AXR)

54

—4Q2AX; + 8)(2AXg — J)

54

 —4Q2AX, — )QAXg +0)

54

_ 4Q2AXp — 0)(2AXR —0)

54

. —8/2<AX; <0,-8/2 <AXz <0
. —3/2 <AX; <0,0 <AXz < 3/2
, 0<AX, <3/2,—8/2 <AXg <0

, 0<AX; <6/2,0 < AXg <9/2

(11)

(12)
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Using (11) and (12) the above equations reduce to

f(Ad,y) =%(2y+2Ad+5)(2y+5), —0/2<y+Ad <0,-6/2<y=<0

:;—j(Zy—i—ZAd—}—é)(Zy—é), —0/2 <y+Ad<0,0<y<J/2

_—4

= 2y +2Ad —6)2y+9), 0<y+Ad <d/2,-0/2<y=<0

4
:§(2y+2Ad5)(2y—5), 0<y+Ad <6/2,0<y<9/2

The probability density function of Ad is given by,

3
faa(Ad) = % [2§ +20°Ad + 26Ad* + imﬂ}, —d<Ad< —g
2 3 2 3 0
=—(20" — 120Ad" — 12Ad"), —=<Ad<0
39 2
5 5 (13)
3 2 3
= g(za — 120Ad~ + 12Ad°), 0<Ad=< 3
:_Q(Ad—é), F=Ad=0
The detailed derivation of the above equation is shown in appendix.
From equation (6) it is clear that Az is a monotonic function of Ad. Therefore,
d(Ad)
A = faa(Ad)| ——=
Sa(Az] 2) = faa( d)‘ d(A)
bf 8 3 0
=——— —(0+Ad), —0<Ad <—=
(Z+Az)2354( +Aad) -T2
4
= LZ% 30 39Md—6ond® —Ad).  ~C<ad<0 (14)
(z+ Az)” 36 4 2
_ W2 05 _155Ad> +9AdY).  0<Ad <’
(z+ Az)” 36 2
— 0
W Baisp, C<nd<s
(z+ Az)” 39 2
From the equation (6) it is clear that
—Azb
_ _—Adf (15)

T2z 4 A2)
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Therefore from the equations (14) the following four cases arise,

Case I:

and

Case II:

and

Case III:

and

Case IV:

and

725 225 0

20 <A< then —o<Ad<-2
Qb —z0) = S ey M TOSA= Ty

d(Ad
(A2 ]2) =fM(Ad)\ ﬁ

Ak (5_ Azbf )3
C (z+ Az |36* 2(z + Az)
b 8 [5z(z+Az)—Azbf]3
2+ A2’ 35*

z

If2275>Az>0 thn—§<Ad<0
(be_Zé)_ -7 € 2— =
2,2 2 3,3 3
fAz<Az|z>=L2{i4 (253 IO O Y e 3)}
e+ 427 (30 2+ TPe+A
228

Az <0, then0<Ad <

N

f ——— <
(2bf +z0) —

A { 2 (253 — 126 DS Ay +12 by (A’ )}

Ja(Azlz) = m 364 2(z+ Az)’ Bz + Az’

z28 Pl
f —— <Az < ——~ ———|
(bf + z0) (2bf + 0z2)

by |8 Azbf
fa(Az|z) = 7(2 A {354 (5 +27(z n Az)) }

thenngdgé

8 [52(2 + Az) + Azbf]3
(4 A2’ 35*

z
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Further the probability density function of Az is given by,
(o.¢]
fulte) = [ it (16)
—00

It is assumed that z is uniformly distributed between zy;, and zgm.x. So  for
0 < Az < 225/2bf — 0z,

2h [ 953 1200 12(Az)> 126373 (Az)}
fitae) =2 | [ 1200774y 1267 Z}gl(z)dz
36" (Zmax — Zmin) =y Lz + AZ) Z22(z + Az) 23(z + Az)
where
0z>
1, forAz<—0
a@ =4 T ur s (17)

0, otherwise

It is easily shown that g|(z) = 1, iff z > z*, where

4 (—0Az + /0*Az% + 8bf 5Az)
- 20

(18)

So for, Az > 0,

Ja(Az) =

2bf J[ 25° 120073 (A2) 12b3f3(Az)3] 5
36*(Zmax — Zmin) z+A2?  2z+A) B+ A2’

n
2y

B 2bf 280 oo 4 ( g)
fAZ(AZ)_w“(zmax—zmm){ Tt A 200 [(Azf fog{ 1+

1 3 1 1
M) G+ A)A) AP+ AP 3(A) e+ Azf}

iarde3ans| 13 z > 1 19
8700 | Srvoe( ) * s t e T

3 1 1 Zimax
T A A B A AB G+ Az)4] } (1

where z{ = max{zmin, z"}
225 225
— <Az <——,
2bf —z0 — T bf — Oz
8 e [92(z 4+ Az) — Azbf ) g2(2)
= | [ ( f} &),
30 (Zmax - Zmin) z (Z + AZ)

Similarly when

Zmin
where

225 o2
L= <A< E
gz(z):[ BTy e v =
0

, otherwise

It is clear that g5(z) = 1, iff z > z™, where

e _ (0Az+ VO?AZ2 + 4bfSAz)
- 26

(20)
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Hence in this case,

8bf J [52(2 +Az) — Azbf]3 dz
me)

S ) = S e z (z+ A2’

21

where z§t = max{zmin, 2}

B 8bf 5 5 z
e A T —— {_z+Az_3‘S (Bt [(Azf °g( +Az>
1 1 20200 2 Az
T et Ay +2Az(z+Az>2] 300 17(42) [(Az)S 1°g<1 * >
_ 1 B 3 _ 1 B 1 i|
(02 CHANAD (APt A HAPEt A
ey 15 z s 1 10
by [(Azf g( +Az) T 242 T (A A
3 + ! + ! :| }Z"‘*‘X (22)

+ A2’z + A2)*  (AD)*(z+ A2 4(A2)’(z + A2)*
2

Similarly for, — ﬁ <Az<0

2y J[ 28° 1200%2(Az)® . 120313 (Az)?
Zmln)

Az) = _
L vy NI [y Ty v Ly S

i| g3(2)dz

where

1, for Az > —i
@)= " T 2bf+0z (23)

0, otherwise

Clearly g3(z) = 1, iff z > z~, where

_ (—0Az+ VO A2 — 8bfAz)
z =

26

(24)

3
fuAz) = 2bf { 26

- — 126b*f(Az 2[
354(Zmax _Zmin) z+ AZ f ( ) (

? tog(1+2
Ay E z

1 3 1 1
A+ M)A (A G+ A 3(A+ Az)J

i [ 15 - 5 1 10
+ 126’3 (Az) |:(Az) lOg(z—i—Az) +z(AZ)6 222 +(AZ)6(2+AZ)

3 1 1 e
" + I es)
3

+ (A2)’(z+ Az)*  (A2)*(z+ A2’ 4(A2)°(z+ A2)*

where z; = max{zmin, 2"}
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2 2
—z0 < As < —z°0 ,
bf +Az0 =7 T 2bf + 0z
8bf J [52(2 + Az) + AzbfT 24(2)
me)

Similarly when

Ja(Az) =

354(Zmax - Zmin z (Z + AZ)S
where
2 52
g4(2) = bf + zo 2bf + 0z
0, otherwise

It is clear that g4(z) = 1, iff z > z= ~, where

_ (—0Az+ {5 A2 — 4bf5Az)
- 20

(26)
Hence in this case,
B 8bf o [§z(z + Az) + Azbf P dz
T —— zmm)J [ z ] (z + A2 @D
where z; = = max{zmin, 27 }.
Hence
_ 8bf R 2 A2 [ ( )
S = S e — 2o { A POV | e s
1 242 of 4 A_Z
+(z+Az)(Az)2 +2Az(z+ Az)z] + 30b7f“(Az) |:(Az)5 log<1 + B )
B 1 B 3 B 1 B 1 i|
2A2)* @+ A)A2) (A2P(z+ A2 3(A2)’(z + A2)’
3.3 5[ 15 z 5 B 1 10
oA [(A ) log (z + Az) + 2(A2)°®  2(Az)°Z2 * (A2)°(z + Az)
3 1 1 Fmax
T A+ T At A AB e+ Az)“} } 29
where z; = = maxXmp, 2~} and
2 p)
— —0Az + \/5 (Az2)” — 40bf Az (29)
20
Finally, for Az =0,
B 2bf Zmax g
fAZ(O) B 354(Zmax - me) Lnin 2 e
4bf (30)

- 3’(S(Zminzmax)
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5 RELATIVE RANGE ERROR

For practical applications like object recognition, where the objects normally occupy only a
small fraction of the total range, the relative range error becomes a more of descriptive quan-
tity. However relative range error & = [|Az|/Zmax — Zmin], 1S mostly used to measure the accu-
racy of a stereo imaging system. The range resolution is described better by this relative
range error as compared to percent error (|Az|/z).

The expected value of the relative range error can be computed only after deriving the
expected value of the range error. The derivation is based on equations (6) and (13) as
described below.

The Expected value of the range error is given by,

o0}

E(Az/2) = J Taa(Ad) d(Ad)

—00

_JM _ZAd (2)(253_125(Ad)2+12(Ad)3)d(Ad)

“Jo Bf +2Ad \36*

) 2Ad

+| 224 Ad — d)*d(Ad

a/zbf+ZAd<354)( Pad)

)

“2 Z2Ad 8
—— (= )6 +Ad)dAd

s bf+zAd<3($4>( A dAD

’ ﬂ(l

_sp bf +2zAd \36*

On integration, the final expression reduces to

)(253 — 126(Ad)* — 12(Ad)*)d(Ad) (31)

b2 2 8 b 4 bf"—*
2y —— bf — —
4 : 2
29
b\’ 6B 8bf (5B, DS ——-
Za )T TR0 ) Bl —as
8b2 2
_ 525 (32)
Assuming again z to be uniformly distributed between zy;, and zyay, yields
B(Az) = | s/
_ 1 Zmax (5222 6b2f2) 4bf b2f2
Zmax — Zmin Jz; 5 Z 2252
bzfz _=9
4
z0
FENCANN Koy IR N AN
2B\ 6 bf — 2_5 2\ 5 o
2
252
b*f? — 29 242
8bf A% 1 8b%f
+§ (5 ——) log YRy 5, dz (33)
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The above integral can be evaluated using the following power series expansion and the

condition z < (bf /0) < (2bf/9),
log(1 +x)=>_ (—1)”+1x—, for —1<x<1
n=1 n

Substituting the above power series expansion in equation (33) and integrating term by
term reduces to:

1
E(|Az|) = ————Up1 +Ip2 + Ips + Ipa + Igs + Ipe)

max — Zmin

In the above equation the expressions for Ig;’s,i =1,2,...,6 are
5 5 6b Zmi
Igp = — W (Zmin — Zmax)4 + W (Zmin — Zmax)2 + Tf log (Z::(>
I = 8<bf)4{5<zmax — Zmin) + 522 . log <Zmax(2bf + Zmin5)>
0 bf ZmaxZmin 2b f Zmin(zbf + Zmaxé)

_ ﬁ < (Zmax - Zmin) ) }
2bf (be +Zmax5)(2bf + Zminé)

B\l 1 1
Iz =16{=) | ———
= ( 0 ) |:Z%nax szin]

6 b f Jznuax

Ipy = —-

5
6bf

= T (Zmax - Zmin)

Z

Zmin

Igs =

—8bf [Fmax b 3 P2 252
202 2 Y
(#r-5)

= r +Jp +Je3 +Jes + Jes +Jgs + g7 + Js),

Zmin

where

8 (1 (2bf — Zmaxd)(2bf + Zmind) _
Jg = by <?) [2bf 10g|: b 2mnd) 2 T 2 5)} + 2(zmax — zmm)é}

8bf (2bf21max0)(2bf 4+ Azppind)
s [bf log[(%f )2+ Ard)

L2yt loe 22 + Zmax0)(28f — Zmaxd)
B 55 |: 08 (2bf + Zminé)(zbf - Zminé)jl

120%f2 40— 2.8
= log
5 4p2f2 — 22, 5

min

i| + (Zmax - Zmin)éil

Je2
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Jegz =

6b2f2 | (2bf + zmax0)(2bf — Zmind)
5 |:0 (2bf+zmin5)(2bf_zmax5)i|

2%/ | zmax 1, [4DPf2 =200
Jps=—"5—|1 Slog| ————min_
£ (32 o8 Zmin * 2 o8 4b2f2 z2 (32

24bf (Zmax — Zmin) LB (26 — zmaxd
5 {4(2bf o) 2bf — zmnd) | 4 G ) + Rl Gy

22 (Zmax - Zmin)5 2bf Zmax
Jrs = =366F {252 {"‘bf [(2bf )2 — Zmin5):| o <2bf Zoind ) }
1 (Zmin - Zmax)5 be + Zmax
o {be [(be 2 d)2Bf + zmm(»} + log<2bf n zmmé) }

4b2 2 _ 2 52
2]

Jes =

Jor = 18b3f3 (Zmax — Zmin) + (Zmin - Zmax)
7775 1B = znax®)(2hf — zmind)  (2bf + Znax®) 2hf + Zinind)
1 o (2bf — zmin0)(2bf + Zmaxd)
beé (2bf - Zmaxé)(be + Zminé)
1h343 Zmax i 4p*f? — 2.
Jgg = —12b°f {be gzmm +2bf (4b2f2 —Zrznax
Zmax — Zmin Zmax — Zmin (34)
(2bf — Zmax9)(2bf — Zyind) (2bf 4 Zmax0)(2bf + Zmind)
and
8b2 2 (Zmax 1
IE6 = ——5{ J ‘ —dz
2 2
8b°f
1 Zmax
3 og(z) [
8b2f2 Zmax
- 52 log Zmin
8b2f2 Zmin
=5 log —

In all the above expressions the higher order terms are neglected. Finally the expected
value of the relative range error is given by

E(|Az])

Zmax — Zmin

Eld = (35)

It is found that the expected value of the relative range error is a function of only the stereo
system design parameters namely b, f', 8, Zmax and zp,. It is also found that only the relative
variations in these parameters will have any affect on the expected relative range error.
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6 CONCLUSIONS

A methodology to calculate the marginal density of Az has been evolved by evaluating all
other relevant probability density functions fax, (AX7), fax,(AXg), fad(Ad), fa-(Az|z) and
fa-(Az). As the relative range error is most useful in assessing the accuracy of a stereo-
imaging system, the expected value of the range error magnitude also has been derived.
By deriving the expected value of the relative range error which is expressed as a function
of stereo system design parameters, namely distance of separation between the centers of
the two cameras, focal lengths and image sampling interval, it is possible to study the effect
of variation of these design parameters on the expected value of the relative range error. Thus
the evaluation of the expected value of the relative range error provides an useful tool in the
design of a stereo imaging system which is established by the study in this paper.

7 APPENDIX

The Probability density function of Ad as shown in (13) is derived and its values are shown
in four different cases.
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Thus the above four cases finally can be written as:
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