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Abstract

In this paper, a fully analytical solution technique is established for the solution of unidirectional,
conduction-dominated, alloy solidification problems. By devising appropriate averaging techniques for
temperature and phase-fraction gradients, governing equations inside the mushy region are made inherently
homogeneous. The above formulation enables one to obtain complete analytical solutions for solid, liquid
and mushy regions, without resorting to any numerical iterative procedure. Due considerations are given to
account for variable properties and different microscopic models of alloy solidification (namely, equilibrium
and non-equilibrium models) in the two-phase domain. The results are tested for the problem of solidifi-
cation of a NH4Cl–H2O solution, and compared with those from existing analytical models as well as with
the corresponding results from a fully numerical simulation. The effects of different microscopic models on
solidification behaviour are illustrated, and transients in temperature and heat flux distribution are also
analysed. A good agreement between the present solutions and results from computational simulation is
observed. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Fully analytical; Conduction dominated; Unidirectional solidification; Binary alloy; Mushy region

1. Introduction

Unidirectional solidification can occur in a rectangular cavity if it is cooled from the bottom.
Such a system is thermally stable if the Rayleigh number is low, and hence conduction can be the
dominating mode of heat transport. This situation is not only relevant in nature and in practical
applications such as materials processing and crystal growth, but also provides us with an
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opportunity for analytical treatment. Analytical solutions are important for accurate investigation
of solidification behaviour of a wide variety of materials, since experimental or numerical tech-
niques are often difficult and expensive in this field. Further, analytical solutions can give us a
deeper physical insight into the problem under investigation.

The family of closed-form solutions to melting–solidification problems is mainly associated
with the processes addressing the phase change of pure substances. In those materials, the phase
change takes place isothermally. However, most actual solidification processes involve alloys
rather than pure materials. The complexity of such problems with regard to temperature distri-

Nomenclature

a a constant based on ratio of thermophysical properties
b a constant based on ratio of thermophysical properties
C species concentration
c specific heat
F function
g volume fraction of concerned phase
k thermal conductivity
kP partition coefficient
L latent heat of fusion
q heat flux
r ratio of certain thermophysical properties (constant)
St Stefan number
T temperature
t time
x coordinate variable

Greek symbols
a thermal diffusivity
g similarity variable
q density
h dimensionless temperature

Subscripts
C cold surface
E eutectic
eq equivalent
i initial
L liquid phase
liq liquidus
M mushy
melt at melting point
S solid phase
sol solidus
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bution and the solidification rate is much greater than those involving pure materials. This is
primarily because of the phase change process occurring over a range of temperature and in-
volving a two-phase or mushy zone, where both liquid and solid phases coexist.

It is generally observed in the literature that most analytical solution techniques pertaining to
the solid and liquid regions are somewhat straightforward. However, in the mushy region, the
solutions are usually obtained after assuming different degrees of simplification. In the literature,
only a few fully analytical treatment of the mushy zone have been reported. For example, Tien
and Geiger [1] analysed the directional solidification of a system by assuming the solid fraction to
be linearly varying with distance within the freezing zone between the solidus and the liquidus
fronts. It was also assumed that the physical properties are independent of temperature and solid
fraction. An approximate method, namely the heat balance integral method, was employed for
solving the governing equations. Cho and Sunderland [2] presented an exact solution for the
temperature distribution and rate of phase change for a semi-infinite body where the phase change
occurred over a range of temperature. This solution assumed constant thermophysical properties
and a linear variation of solid fraction with distance from the liquidus front. Muehlbauer et al. [3]
performed an analysis of transient one-dimensional solidification of a superheated finite slab of
binary alloy. In this case, too, all physical properties were assumed to remain constant and the
governing equations were solved using a heat balance integral method. Ozisik and Uzzel [4]
obtained an exact solution for freezing in a cylindrically symmetric system with an extended
freezing temperature range. A constant property assumption was made, and the solid fraction was
assumed to vary linearly with length as well as temperature. Worster [5], however, assumed
variable property in the solution of a conduction-dominated directional alloy solidification
problem. Worster [5] formulated a mathematical model for the region of dendritic or cellular
growth, for the case of unidirectional solidification of an alloy from a plane wall. It was assumed
that transport of heat and solute is by diffusion alone, and the model was closed by a condition of
marginal equilibrium. However, regarding solution of the system of governing differential equa-
tions for the mushy region, a numerical solution technique, namely the ‘‘shooting method’’, was
employed. It can be noted that the analytical solution methods followed in the above studies are
essentially similarity transformation techniques [6,7] adopted to solve transient, unidirectional,
heat conduction problems. Such transformation, in fact, are quite similar to the Landau trans-
formation presented in [8]. Subsequently, numerical solutions have also been attempted in the
literature to solve similar problems, using iterative procedures for obtaining interface locations [9]
or well-known finite-difference methods [10] to obtain the temperature field. However, to the best
of our knowledge, no study has yet been reported that attempted to obtain the temperature profile
in the mushy zone in a closed form, with proper incorporation of metallurgically consistent phase
change considerations.

In the present work, a fully analytical technique for the solution of transient, conduction-
dominated, directional solidification problems of binary alloys is outlined. This is achieved by
using a purely analytical technique to incorporate the phase-diagram information, composition–
solid fraction coupling and variation of physical properties inside the mushy region. The objective
of the present formulation is to correlate the variation of solid-fraction assumption with the in-
formation obtained from a corresponding metallurgical phase diagram, and hence appropriately
represent the coupling between the temperature and solid fraction in the two-phase region,
without adhering to any kind of numerical technique. In order to do so, a weighted averaging
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technique for the determination of temperature and phase-fraction gradients inside the mushy
region is devised, that homogenises the system of governing equations. The results are tested for
the problem of solidification of a NH4Cl–H2O solution, and then compared with the corre-
sponding results from a numerical simulation.

2. Mathematical formulation and analysis

2.1. The governing equations

A schematic diagram of the physical model is depicted in Fig. 1, in which a binary mixture is
cooled to solidify in a direction perpendicular to an isothermal cold wall. The following are the
assumptions made in the analysis of the above solidification problem:

1. The physical properties within both the solid part and the freezing zone are independent of tem-
perature, but may be different in each zone.

2. The volume change during the entire solidification process is negligible. Moreover, liquid and
solid densities are assumed to be equal and constant. Hence, the volume fraction and mass frac-
tion of any phase are identical.

3. The temperature varies only along the x-direction.
4. Conduction is the only heat transfer mechanism within the system.
5. The temperature–composition coupling is according to a metallurgical phase diagram.

Fig. 1. A schematic diagram of the physical problem.
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6. The coupling between species composition and phase fraction can be according to an equilib-
rium rule (lever rule) or a non-equilibrium rule (Scheil’s equation), as outlined in [11].

7. Except for density, the other physical properties in the mushy region are interpolated as linear
functions of the average mass fraction of the solid.

8. Macroscopic species diffusion is negligible compared to thermal diffusion.

Using the above assumptions, the model equations describing the temperature distributions in
each region can be written as

1

aS

oTS
ot

¼ o2TS
ox2

for 0 < x < xS; ð1Þ

1

aM

oTM
ot

¼ o2TM
ox2

þ qL
kM

ogS
ot

for xS < x < xL; ð2Þ

1

aL

oTL
ot

¼ o2TL
ox2

for xL < x < 1: ð3Þ

In Eqs. (1)–(3), the subscripts S, L, and M refer to the solid, liquid and the mushy zones, re-
spectively, and g refers to the volume fraction. The second term on the right-hand side of Eq. (2)
accounts for the heat generated in the mushy region by the creation of the solid dendrites or other
crystalline structures constituting the solid matrix in the mushy zone. Using the chain rule,

ogS
ot

¼ ogS
oTM

oTM
ot

: ð4Þ

Using Eq. (4), Eq. (2) can be written as:

1

aM

�
� qL
kM

ogS
oTM

�
oTM
ot

¼ o2TM
ox2

for xS < x < xL: ð5Þ

2.2. Interface and boundary conditions

The matching conditions at the interfaces and the boundary conditions for the solution of
governing equations (1), (3) and (5) are as follows (refer to Fig. 1):

At x ¼ 0; TS ¼ TC; ð6Þ

At x ¼ xS; TS ¼ TM ¼ Tsol; ð7Þ

kS
oTS
ox

� �
x¼xS

� kM
oTM
ox

� �
x¼xS

¼ qLeqð1� gS;solÞ
dxS
dt

; where Leq ¼ ðcL � cSÞTsol þ L; ð8Þ

At x ¼ xL; TM ¼ TL ¼ Tliq; ð9Þ

kM
oTM
ox

� �
x¼xL

� kL
oTL
ox

� �
x¼xL

¼ qLeqgS;liq
dxL
dt

; ð10Þ
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At x ! 1; TL ¼ Ti: ð11Þ

2.3. Non-dimensionalisation

Using the following non-dimensional parameters:

hS ¼
TS � TC
Tsol � TC

; hM ¼ TM � Tsol
Tmelt � Tsol

; hL ¼ TL � Ti
Tliq � Ti

;

Eqs. (1), (3) and (5) can be non-dimensionalised as:

1

aS

ohS

ot
¼ o2hS

ox2
; ð12Þ

1

aM0

ohM

ot
¼ o2hM

ox2
; ð13Þ

where

1

aM0
¼ 1

aM

� qL
kM

ogS
oTM

; ð14Þ

1

aL

ohL

ot
¼ o2hL

ox2
: ð15Þ

2.4. Similarity transformation

A similarity transformation of the form g ¼ xgðtÞ, where gðtÞ ¼ 1=2
ffiffiffiffiffiffi
aSt

p
is applied, which

converts the system of partial differential equations (12)–(15) into a set of ordinary differential
equations as follows:

d2hS

dg2
þ 2g

dhS

dg
¼ 0 for 0 < g < gS; ð16Þ

d2hM

dg2
þ 2

aS

aM0
g
dhM

dg
¼ 0 for gS < g < gL; ð17Þ

where

aS

aM0
¼ cM � LðogS=oTMÞ

cSðkM=kSÞ
; ð18Þ

d2hL

dg2
þ 2kScL

kLcS
g
dhL

dg
¼ 0 for gL < g < 1: ð19Þ

The sequential steps for deriving Eqs. (16)–(19) from the governing partial differential equa-
tions (12)–(15), using similarity solution techniques, are detailed in Appendix A.
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The boundary conditions consistent with Eqs. (16)–(19) are as follows:

At g ¼ 0; hS ¼ 0; ð20Þ

At g ¼ gS; hS ¼ 1; ð21Þ

hM ¼ 0; ð22Þ

hE

dhS

dg
� rMS

dhM

dg
¼ 2gð1� gS;solÞ

St
; ð23Þ

where

hE ¼ Tsol � TC
Tmelt � Tsol

; ð24Þ

rMS ¼
kM
kS

; ð25Þ

St ¼ cSðTmelt � TsolÞ
Leq

: ð26Þ

At g ¼ gL; hM ¼ hliq ¼
Tliq � Tsol
Tmelt � Tsol

; ð27Þ

hL ¼ 1; ð28Þ

rMS

dhM

dg
� rLShi

dhL

dg
¼ 2gS;liqg

St
; ð29Þ

where

rLS ¼
kL
kS

; ð30Þ

and

hi ¼
Tliq � TS
Tmelt � Tsol

: ð31Þ

At g ! 1; hL ¼ 0: ð32Þ

2.5. Solution of the governing equations

The solution for the solid and liquid regions can be obtained in a straightforward manner, and
the results are as follows:

TS ¼ TC þ ðTsol � TCÞ
erfðgÞ
erfðgSÞ

for 0 < g < gS; ð33Þ
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TL ¼ Ti þ ðTliq � TiÞ
erfcð

ffiffiffi
b

p
gÞ

erfcð
ffiffiffi
b

p
gLÞ

for gL < g < 1; ð34Þ

where b ¼ kScL=kLcS and erfc ¼ 1� erf.
However, solution for the mushy region is not straightforward and requires further analysis. In

the known analytical studies found in the literature [1–4], a linear variation of solid fraction with
temperature (or length) is prescribed and/or a constant property assumption is imposed, in order
to obtain a closed-form expression for the temperature profile in the mushy region. However, such
assumptions may oversimplify the problem, and may yield inconsistent results, since the infor-
mation regarding the phase diagram and that of the composition–solid fraction coupling are not
incorporated. The main objective here is to represent the variation of solid fraction with tem-
perature inside the mushy region as consistently as possible with the metallurgy. The added ob-
jective here is to avoid any kind of numerical approximation for this matter, in order to retain the
analytical nature of the final solution. For that purpose, a general guideline is proposed, as de-
scribed below. For the purpose of illustration, a linearised phase diagram is considered (refer to
Fig. 2), for which the following equation can be written:

TM � Tmelt

Tsol � Tmelt

¼ CS

Ci

: ð35Þ

The next step is to incorporate the composition vs. melt-fraction coupling, which may be governed
by equilibrium solidification, based on lever rule [11], as

CS

Ci

¼ 1

gS þ ð1� gSÞ=kP
ð36Þ

or, by non-equilibrium solidification, based on Scheil’s equation [11], as

CL

Ci

¼ ð1� gSÞðkP�1Þ: ð37Þ

Fig. 2. A typical linearised phase diagram.
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Combining Eqs. (35)–(37), the relationship between solid fraction and temperature can be
expressed as:
For equilibrium solidification:

ogS
oTM

¼ 1

1� 1=kP

ðTmelt � TsolidÞ
ðTM � TmeltÞ2

: ð38Þ

For non-equilibrium solidification:

ogS
oTM

¼ 1

ð1� kPÞkP
1

Tsolid � Tmelt

� �½1=ðkP�1Þ�

� TMð � TmeltÞ½ð2�kPÞ=ðkP�1Þ�: ð39Þ

Now, Eq. (17) can be analytically solved to yield a metallurgically consistent solution, only
when a proper estimation of a representative value of ogS=oTM is made in expression (18). It is
apparent from Eqs. (38) and (39) that the partial differentials appearing in these equations vary
with temperature throughout the solidification domain. Hence, prescription of a representative
value of ðogS=oTMÞ (represented as g0S) can be made by defining it as follows:

g0S ¼
Z Tliq

Tsol

ogS
oTM

dTM

�
DT

� �
; where DT ¼ Tliq � Tsol: ð40Þ

At this stage, it is important to explain the significance of such averaging of solid-fraction gra-
dients across the solidification interval. The main purpose of doing so is to conceptually obtain an
equivalent temperature of phase change, which is metallurgically consistent with the model
adopted (for instance, lever rule or Scheil’s model), so that an equivalent solid fraction can be
calculated, based on the respective rule. This leads to a situation in which analytical solution for
the mushy region can be achieved. It may be realised that no analytical solution can be obtained if
one uses an exact representation of variation of solid-fraction gradients within the mushy region.
As a practical alternative, we aim for a closed-form solution algorithm that inherently contains
metallurgical information of the concerned model, as consistently as possible. Even with this
simplified definition of equivalent solid fraction, one does not lose the information conveyed by
the corresponding model. This issue has not been specifically addressed in earlier literature per-
taining to closed-form solution of similar problems.

Eq. (40) can be applied to either of Eqs. (38) or (39). For the purpose of illustration, the case of
equilibrium solidification (based on the lever rule) is considered, for which case g0S turns out to be:

g0S ¼
1

ð1� 1=kPÞðTmelt � TliqÞ
: ð41Þ

Eq. (41) is exactly true for a representative temperature ðTeqÞ in the mushy region, which can be
obtained by simultaneously using Eqs. (38) and (41) as

Teq ¼ Tmelt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
melt � TmeltTliq � TmeltTsol þ TsolTliq

q
: ð42Þ

The representative value of gS, i.e., gS;eq, can now be calculated by combining Eqs. (35) and (36) as

gS;eq ¼
1

1� 1=kP

Tmelt � Tsol
Tmelt � Teq

�
� 1

kP

�
: ð43Þ
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Now, all the properties in the mushy region can effectively be represented by interpolating on
the basis of the expressions above. Thus, the whole procedure for consistent representation of
expression (18) can be summarised as follows:
Step 1: Express the phase diagram in a form TM ¼ F1ðCLÞ, where F1 represents a mathematical

function.
Step 2: Express CL as: CL ¼ F2ðgSÞ, using the governing rule of solidification (where F2 repre-

sents a mathematical function).
Step 3: Combine steps 1 and 2 to obtain TM ¼ F1F2ðgSÞ ¼ F3ðgSÞ, say, where F3 is a mathe-

matical function. The governing rule of solidification, for example, can be lever rule (Eq. (36)) or
Scheil’s equation (Eq. (37)).
Step 4: Calculate ogS=oTM from step 3.
Step 5: Using Eq. (40) and step 4, obtain a representative value g0S.
Step 6: Obtain representative values of T and gS (namely Teq and gS;eq, respectively) using step 5.
Step 7: Interpolate physical properties by using results from step 6.
A systematic execution of above steps leads to the solution within the mushy region as

TM ¼ Tsol þ Tliq
�

� Tsol
� erfð

ffiffiffi
a

p
gÞ � erfð

ffiffiffi
a

p
gLÞ

erfð ffiffiffi
a

p
gLÞ � erfð ffiffiffi

a
p

gSÞ
; where a ¼ aS

a0
M

; gS < g < gL: ð44Þ

Now, using Eqs. (33), (34) and (44), temperature variation within the solid, liquid and the mushy
region, respectively, can be obtained, provided values for gS and gL can be estimated. For that
purpose, the interface boundary conditions (23) and (29) can be utilised. Combining those con-
ditions with Eqs. (33), (34) and (44), one obtains:

hE expð�g2
SÞ

erfðgSÞ
�

ffiffiffi
a

p
rMShliq expð�ag2

SÞ
erfð

ffiffiffi
a

p
gLÞ � erfð

ffiffiffi
a

p
gSÞ

¼
ffiffiffi
p

p
gSð1� gS;solÞ

St
; ð45Þ

ffiffiffi
a

p
hliqrMS expð�ag2

LÞ
erfð ffiffiffi

a
p

gLÞ � erfð ffiffiffi
a

p
gSÞ

þ
ffiffiffi
b

p
rLShi expð�bg2

LÞ
erfcð

ffiffiffi
b

p
gLÞ

¼
ffiffiffi
p

p
gLgS;liq
St

: ð46Þ

Eqs. (45) and (46) can now be simultaneously solved to obtain values of gS and gL.

3. Results and discussion

For the assessment of the present solution, results are obtained from a numerical simulation of
the continuum energy conservation equation. The governing equation can be arrived at by
switching off the advective terms in the general energy conservation equation [12]. For numerical
solution of the above equation, the problem domain is discretised using a fixed grid enthalpy
based finite volume procedure [13]. Since the sole purpose of referring to the numerical solution is
to compare with the results from the full analytical solution, the computational method is not
described here in details for the sake of brevity. Details of the computational method can be found
in the literature [14]. The working medium for the model situation is chosen to be a NH4Cl–H2O
solution, with 70% initial concentration (mass fraction of water), the physical properties for which
are tabulated in [13]. It can be noted that our numerical code was first validated against typical
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solidification problems quoted in the literature [13], before using it for the solution of the present
problem.

Fig. 3 shows a comparison of the temperature distribution inside the problem domain between
the present results and those from other fully analytical studies reported in the literature with
different modelling assumptions [1–5]. The figure also includes a comparison between the present
analytical solution and the results from an established numerical model [12], and the agreement is
found to be excellent. From the same figure, it can also be observed that assumptions of constant
properties for the solid and the liquid can result in a significant deviation from the present so-
lution. In addition, the results are seen to deviate if one makes the assumption of linear variation
of solid fraction with length or temperature. Such a deviation is likely to be amplified if the initial
concentration ðCiÞ of the alloy is significantly different from the eutectic point concentration,
resulting in a considerable difference between Tliq and Tsol. With a linear variation of temperature
(or solid fraction) from liquidus to solidus, the transition from liquid state to solid state takes
place over a shorter distance, resulting in a thinner mushy region. In Fig. 3, the present analytical
and numerical results are produced using Scheil’s model [11] to model microscopic species dis-
tribution.

Fig. 3. Non-dimensional temperature distribution for various models. The vertical line showing the solidus positions is

common for all the models. The vertical lines showing the liquidus positions correspond to various models as shown in

the legend. The liquidus positions for the present solution and for the numerical solution coincide.
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The effect of microscopic species transport model is shown in Fig. 4, which shows the variation
of solid fraction with distance for the two microscopic models, namely the lever rule and Scheil’s
model, as defined in Eqs. (36) and (37), respectively. Here, it is observed that the two microscopic
models do not yield identical results. Although there is no appreciable difference in interface
locations for the two cases, there is a noticeable difference in variation of solid fraction. With the
model based on Scheil’s equation, the solid fraction seems to be less than that corresponding to
the one based on lever rule, especially near the solidus. This difference can be attributed to the
assumption of infinitely large solute diffusion coefficient in the solid state (microscopic) in the
lever rule model, as compared to a negligible value of the same assumed in the Scheil’s model.
Such variations could not be captured by the known previous analytical studies addressing the
same problem.

The growth of the solidified front and the liquid front is shown in Fig. 5. Since gL > gS and
aS > aL, the liquidus front is observed to grow faster than the solidus front. The temperature
distribution within the solidified portion is plotted in Fig. 6. Fig. 7 represents a plot showing the
rate of heat extraction from the system, which is evaluated as

jqx¼0j ¼
kSðTsol � TCÞ

ð ffiffiffiffiffiffiffiffiffi
paSt

p ÞerfðgSÞ
: ð47Þ

It is observed from Fig. 7 that as time progresses, the heat flux decreases asymptotically, indicating
a decaying effect of the initial transients. In fact, a considerably smaller rate of cooling is subse-

Fig. 4. Comparison of the two microscopic models with respect to solid-fraction distribution.
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quently needed to sustain a continuous growth of the solidification front, compared to that re-
quired to initiate the onset of solidification by creating stable nucleation sites.

4. Conclusions

In the present study, a fully analytical technique is established for the solution of transient, one-
dimensional, conduction-dominated alloy solidification problems. Suitable averaging techniques
for the calculation of temperature and phase-fraction gradients are devised to obtain completely
analytical solutions, not only for the solid and liquid zones, but also for the mushy zone, without
resorting to any sort of numerical technique. The results so obtained are compared with those
from a benchmark numerical model, and an excellent agreement is observed. Insights are de-
veloped on the effect of different microscopic models on the solidification process. Variations of
temperature and boundary heat flux are also analysed.

Appendix A. Derivation of similarity transformations leading to Eqs. (16)–(19) [15]

Using the similarity transformation g ¼ xgðtÞ, we have:

ohS

ot
¼ x

dg
dt

dhS

dg
; ðA:1Þ

Fig. 5. Variation of location of liquidus and solidus interfaces with time.
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o2hS

ox2
¼ g2

d2hS

dg2
: ðA:2Þ

Substituting Eqs. (A.1) and (A.2) in Eq. (12), one gets

1

aS

x
dg
dt

dhS

dg
¼ g2

d2hS

dg2
: ðA:3Þ

Substituting x ¼ g=g in Eq. (A.3), one obtains

1

aS

g
dhS

dg
¼ g3

dg=dt
d2hS

dg2
: ðA:4Þ

Since

g ¼ 1

2
ffiffiffiffiffiffi
aSt

p ; one can write
g3

dg=dt
¼ � 1

2aS

: ðA:5Þ

Substituting Eq. (A.5) in Eq. (A.4),

d2hS

dg2
þ 2g

dhS

dg
¼ 0 for 0 < g < gS: ð16Þ

Fig. 6. Temperature distribution within the solid.
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Regarding temperature distribution in the mushy region governed by Eqs. (13) and (14), the
partial derivatives are transformed into ordinary derivatives of the similarity variable g as:

ohM

ot
¼ x

dg
dt

dhM

dg
; ðA:6Þ

o2hM

ox2
¼ g2

d2hM

dg2
: ðA:7Þ

Substituting Eqs. (A.6) and (A.7) in Eq. (13), one gets

1

a0
M

x
dg
dt

dhM

dg
¼ g2

d2hM

dg2
: ðA:8Þ

Substituting x ¼ g=g in Eq. (A.8), one obtains

1

a0
M

g
dhM

dg
¼ g3

dg=dt
d2hS

dg2
: ðA:9Þ

Using Eq. (A.5) in Eq. (A.9), one obtains

d2hM

dg2
þ 2

aS

aM0
g
dhM

dg
¼ 0 for gS < g < gL; ð17Þ

Fig. 7. Variation of boundary heat flux (x ¼ 0) with time.
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where aS=a0
M can be simplified using Eq. (14) and a ¼ k=ðqcÞ as

aS

a0
M

¼ kSqMcM
kMqScS

� qLkS
qScSkM

ogS
oTM

: ðA:10Þ

Now, from the assumption made regarding the constancy of densities, qS ¼ qL ¼ qM ¼ q (say),
which leads to the following simplified form of Eq. (A.10):

aS

aM0
¼ cM � LðogS=oTMÞ

cSðkMkSÞ
: ð18Þ

Regarding temperature distribution in the liquid phase (Eq. (15)), the same similarity transfor-
mation as above yields

ohL

ot
¼ x

dg
dt

dhL

dg
; ðA:11Þ

o2hL

ox2
¼ g2

d2hL

dg2
: ðA:12Þ

Substituting Eqs. (A.11) and (A.12) in Eq. (15), one gets

1

aL

x
dg
dt

dhL

dg
¼ g2

d2hL

dg2
: ðA:13Þ

Substituting x ¼ g=g in Eq. (A.13), one obtains

1

aL

g
dhL

dg
¼ g3

dg=dt
d2hL

dg2
: ðA:14Þ

Using Eq. (A.5) in Eq. (A.14), one obtains

d2hL

dg2
þ 2

aS

aL

g
dhL

dg
¼ 0 for gS < g < gL: ð19Þ

Since qS ¼ qL, aS=aL in Eq. (19) can be simplified as

aS

aL

¼ kScL
kLcS

: ðA:15Þ
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