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Augmenting the dispersion of a solute species and
fluidic mixing remains a challenging proposition in
electrically actuated microfluidic devices, primarily
due to an inherent plug-like nature of the velocity
profile under uniform surface charge conditions.
While a judicious patterning of surface charges
may obviate some of the concerning challenges, the
consequent improvement in solute dispersion may
turn out to be marginal. Here, we show that by
exploiting a unique coupling of patterned surface
charges with intrinsically induced thermal gradients,
it may be possible to realize giant augmentations
in solute dispersion in electro-osmotic flows. This
is effectively mediated by the phenomena of Joule
heating and surface heat dissipation, so as to induce
local variations in electrical properties. Combined
with the rheological premises of a viscoelastic fluid
that are typically reminiscent of common biofluids
handled in lab-on-a-chip-based micro-devices, our
results demonstrate that the consequent electro-
hydrodynamic forcing may open up favourable
windows for augmented hydrodynamic dispersion,
which has not yet been unveiled.

2019 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Miniaturization of fluidic devices has attracted significant research attention in recent years [1,2].
With further advancements in understanding the underlying science, newer control techniques
have been explored with a vision to achieve augmented mixing [3–8] or separation [9–11],
consistent with the demands of specific applications. Towards achieving quality mixing in
miniaturized devices, the phenomena of diffusion and dispersion stand as the two advantageous
mechanisms [12,13]. Hydrodynamic dispersion is a process in which band broadening of a
neutral solute occurs because of non-uniformity in the velocity distribution [14–18]. Controlling
hydrodynamic dispersion necessarily holds a key towards realizing optimal functionalities of
several microfluidic devices of contemporary relevance [19–25].

Typical miniaturized devices in the modern day lab-on-a-chip environment handle biological
fluids that tend to disobey Newton’s law of viscosity [26–31]. In particular, biofluids, like blood
plasma, saliva, synovial fluid and vitreous humour [32–36], exhibit viscoelasticity under certain
straining conditions. Hence, the use of viscoelastic models to predict their dynamical features
remains pertinent [37–42]. Accordingly, hydrodynamic dispersion characteristics of viscoelastic
fluids have emerged as an important research topic over the recent years.

Furthermore, hydrodynamic dispersion in electrokinetic transport turns out to be of significant
consequence, because of its wide spectrum of relevance ranging from medical diagnostics [43–
46] to power production and thermal management of micro-devices [2,47–51]. In sharp contrast
to pressure-driven flow, electro-osmotic flow (EOF) typically exhibits plug-type velocity profile
when the electrical double layer (EDL) thickness is small when compared with the channel
dimension, provided that the surface charge distribution is spatially uniform [52,53]. Despite
having many other advantages, this uniformity in the velocity profile of the EOF results in decline
of mixing performance and solute dispersion in comparison to pressure-driven flow. Thus, to
improve the extent of mixing, the usual approach is to bring non-uniformity in the channel
geometry or to alter the surface charge distribution [54,55], thereby bringing out circulatory
patterns in the flow field [56,57]. Such surface charge modulation, in principle, can be used in
conjunction with other effects such as electrothermal flow [58], thin film patterning [59], AC
electro-osmosis [60–63] and induced-charge electro-osmosis [64]. In parallel, electrokinetically
driven flows of viscoelastic fluids have also drawn special attention because of their emerging
applications ranging from species separation [65,66] to energy conversion in microfluidic
devices [67,68].

Previous research has established the fact that the interplay between the temperature and
concentration over small length scales may be exploited to further enhance solute dispersion
in a medium [69,70]. Temperature gradients may occur either due to intrinsic Joule heating
or via an external heat source [78–84]. The developed non-isothermal condition results in the
variation of the physical properties like viscosity, permittivity, electrical and thermal conductivity.
For instance, the variation in the fluid conductivity interacting with the electric field can be
used as a flow actuation mechanism, commonly termed as electro-convection. Such temperature
dependence of the physical properties may result in drastic alteration in the flow field. Besides,
the materials widely used for microchannel fabrication, like polymethylmethacrylate (PMMA)
and polydimethylsiloxane (PDMS), have lower specific heat capacities, and the lesser dissipation
of heat from these materials may further contribute to augment the local temperature gradients,
thus affecting the flow physics. While several studies have been directed towards the efficient
transportation of fluid using the temperature-dependent property variations, the contribution of
the electro-thermal perturbation to the coupled electro-hydrodynamic solute transport remains
unexplored. More specifically, the combined consequences of electro-thermal interaction and
fluid rheology, along with surface charge modulation, may give rise to interesting implications
in solute dispersion, which remains to be investigated. For amplification of the dispersion
coefficient, a number of research works have been devoted by introducing non-uniformity in the
flow domain, for example using variable electric field, non-uniform zeta potential distribution,
different types of electrolytes and axial variation in cross-section, several studies have been
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directed towards augmenting the hydrodynamic dispersion [19,20,75–79]. However, as discussed
earlier, the intrinsically induced temperature gradient in narrow confinement due to Joule heating
can play a pivotal role in governing the flow physics by inducing more pressure distribution
which, in turn, strongly influences the associated hydrodynamic dispersion.

In this context, we delineate the effect of electro-thermal perturbations on the hydrodynamic
dispersion of a viscoelastic fluid flowing through a parallel plate microchannel having modulated
interfacial charges, under surface and volumetric heat transfer. We show that the physical
property variations owing to the prevailing temperature distribution, coupled with the surface
charge modulation, may result in giant augmentation of hydrodynamic dispersion, for typical
viscoelastic fluids considered in this work. These results may open up new paradigms of
massively augmented solute dispersion in lab-on-a-chip devices handling biological fluids, by
extending other relevant works in this field [61–63].

2. Problem formulation
Figure 1 depicts the schematic of a parallel plate microchannel subjected to a convective heat
loss, in conjunction with patterned surface charges (equivalently, patterned surface potential).
The half-width of the microchannel is denoted by h, which is much smaller when compared
with the length (l) of the microchannel, i.e. h � l. The longitudinal and transverse coordinates
are chosen along and perpendicular to the flow direction, respectively, with the centreline at
the inlet being the origin of the coordinate system, as depicted in the figure. To implement the
patterned surface condition, we have chosen the following axial variation of the zeta potential:
ζ = ζ ref{α1 +α2cos(ωtx)}, induced at the fluid–surface interface. Here, ζ ref is the reference zeta
potential, α1 and α2 are the axially invariant and patterned contributions of the modulated zeta
potential, while ωt is the patterning frequency. Both ends of the microchannel are maintained at
constant temperature (Tref) and pressure (patm). An external electric potential is considered to be
applied in the axial direction. The heat generated due to the Joule heating effect is dissipated to
the surrounding through surface convection. Before presenting the governing equations for the
above system, it is necessary to discuss all the assumptions required for this analysis.

In this study, we consider a symmetric binary electrolyte (z: z) being subjected to externally
applied electric potential and transverse equilibrium distribution of charges due to the EDL
phenomenon. The flow is assumed to be steady, laminar, incompressible and in the creeping
flow regime, i.e. Re � 1. The physical properties of the fluid like viscosity (μeff), thermal
conductivity (keff), electrical conductivity (σ eff), electrical permittivity (εeff) and relaxation time
(λeff) are considered to be temperature-dependent. We further assume that the free ionic species
within the EDL are point charges and they are in local equilibrium. Under this assumption, the
advection term in the Poisson–Nernst–Plank equation can be safely neglected and the Poisson–
Boltzmann description of the charge distribution remains valid [54,55] (rationale behind this
consideration is discussed in electronic supplementary material, section A1). For low values of
zeta potential (ζ ) (i.e. ζ < 25 mV), the well-known Debye–Hückel linearization approximation for
the potential distribution can be applied [55,57]. Finally, we assume that the weak electric field
(Eref) approximation is valid, i.e. Eref � ζref/λD, where λD is the Debye length, very small when
compared to the channel dimension (h) thus precluding any distortion of the EDL structure [1,56].
After taking into account the foregoing assumptions, the continuity, momentum and energy
equations take the following form:

∇ · v = 0

ρ(v · ∇)v = −∇p + ∇ · τ + Fb

ρ Cp(v · ∇ T) = ∇ · (keff∇ T) + Qgen + Qvd

⎫⎪⎪⎬
⎪⎪⎭ , (2.1)

where v is the velocity vector, τ is the stress tensor, p is the hydrodynamic pressure and T
is the temperature field. ρ and Cp are the density and specific heat capacities of the fluid,
respectively. keff is the thermal conductivity of the fluid obeying the following relationship
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Figure 1. Schematic depiction of the physical problem. (Online version in colour.)

keff = kref[1 + α3(T − Tref)], where kref is the reference thermal conductivity evaluated at reference
temperature Tref with α3 being the temperature sensitivity of thermal conductivity. In the
momentum equation, Fb is the electrokinetic body force defined by Fb = ρe E − |E|2∇εeff/2 +
∇{ρ(∂ε/∂ρ)T|E|2}, where ρe is the free charge density and E is the electric field written as E = −∇Φ
with Φ being the electric potential. The three terms in the body force are the Columbic force,
dielectrophoretic force and electrostriction forces. The Columbic force is induced due to the
presence of free space charges and the variation in the electrical permittivity gives rise to the
dielectrophoretic force, while the electrostriction force represents the compressibility of the fluid
medium and thus can be neglected for incompressible fluids. In the energy equation, Qgen is
the heat generated due to the Joule heating effect, Qgen = σ eff|E|2 and Qvd is the heat dissipation
due to viscous action. σ eff and εeff are the electrical conductivity and permittivity of the fluid,
respectively, which depend on temperature in the following way: σ eff = σ ref[1 + α4(T − Tref)] and
εeff = εref[1 −α5(T − Tref)]. Here, σ ref and εref are the reference values of electrical conductivity
and permittivity of fluid at Tref with α4 and α5 being their temperature sensitivities, respectively
[83]. To determine the electric field, we make use of the charge distribution equation along with
the current continuity equation given by the following equation:

∇ · (εeff∇Φ) = −ρe

∇ · i = ∇ · (σeffE + v q − D ∇q) = 0

}
. (2.2)

The charge distribution subjected to the assumption of the Poisson–Boltzmann description
yields ∇ · (εeff∇Φ) = −ρe = 2 n0 z e sinh{z eΦ/kB T}, where n0 is the number density of ions, kB
Boltzmann constant, z valence of ions, e electronic charge and T absolute temperature. In the
current continuity equation, q = −ρe and D is the diffusion coefficient. The current continuity
equation consists of three components: the first term represents the Ohmic contribution part
due to the conduction of charges, while the second and third terms are advective and diffusive
components, respectively. In this analysis, the advective and diffusive components are neglected
with respect to the Ohmic contribution. This is possible only under the assumption of a thin

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 J

an
ua

ry
 2

02
3 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180522

..........................................................

EDL [10,64,84], which implies that the region of electro-neutrality (i.e. the region of vanishing
charge density) is considerably larger when compared with the EDL region. Considering this, the
electric potential becomes essentially the sum of two potentials, one that prevails outside the EDL
(φ(x)), another one that is induced within the EDL ψ(x, y), i.e. Φ(x, y) =φ(x) + ψ(x, y). Using this
consideration, the Poisson–Boltzmann equation and the current continuity equation become

∂

∂x

{
εeff

(
dφ
dx

+ ∂ ψ

∂x

)}
+ ∂

∂y

{
εeff

(
∂ ψ

∂y

)}
= 2 n0 z e sinh

(
z eψ
kBT

)

∂

∂x

{
σeff

(
dφ
dx

+ ∂ ψ

∂x

)}
+ ∂

∂y

{
σeff

(
∂ ψ

∂y

)}
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (2.3)

Employing the Debye–Hückel linearization, we have sinh{z eψ/(kBT)}≈ z eψ/(kBT). Thus, the
Poisson–Boltzmann equation recasts as ∇ · (εeff∇Φ) = 2 n0 z2 e2ψ/(kB T). Next, we compare the
contribution of two components of the current continuity equation: ix ∼ σrefEref and iy ∼
σref ζref/2h, which gives ix/iy � 1, and the simplified equation is now integrated across the channel
dimension: ∫ h

−h

∂

∂x

{
σeff

(
dφ
dx

+ ∂ ψ

∂x

)}
dy = 0. (2.4)

In the energy equation, one can neglect the relative contribution of the viscous dissipation term
(Qvd) with respect to the conduction and heat generation (due to Joule heating) terms. This can
be done by performing a scaling analysis of the relative strength between these terms. To obtain
this, we here introduce a new variable Ω which is the ratio of the strength of viscous dissipation
to the heat generation due to Joule heating (this is analogous to the Brinkman number (Br), which
is basically the ratio of viscous dissipation to the imposed wall heat flux, typically used in forced
convective heat transfer problems). Here, choosing appropriate scales of the parameters, Ω is
found to beΩ ∼μrefuc

2/σrefE2h2, where the typical values of the parameters are as follows: μref ∼
10−3 Pa s, uc = uHS ∼ 10−3 m s−1, σref ∼ 10−2 − 10−1 S m−1 and Eref ∼ 103 − 104 V m−1. Here, the
channel height is chosen to be of the order of ∼10–100 µm, while in electrokinetic studies the
EDL thickness is usually of ∼1–10 nm and, hence, thin EDL assumption can be safely taken into
consideration. Hence, the maximum possible value ofΩ turns out to be ∼O(10−4 ). Thus, one can
neglect this effect while obtaining the temperature distribution. In this context, it also needs to
be mentioned that the flow physics here is governed by non-isothermal electro-osmosis where no
pressure gradient is externally imposed. Any kind of pressure gradient is induced only because
of the imbalance between the pertinent electrokinetic forces, and, thus, the resulting electro-
osmotic velocity is small enough to make the viscous dissipation effect insignificant. Using this,
the simplified form of the energy equation takes the following form:

ρ Cp

(
u
∂T
∂x

+ v
∂T
∂y

)
= ∂

∂x

{
keff

∂T
∂x

}
+ ∂

∂y

{
keff

∂T
∂y

}
+ σeff

{(
dφ
dx

+ ∂ψ

∂x

)2
+
(
∂ψ

∂y

)2
}

. (2.5)

Here, we introduce a new variable p̃ as p̃ = p − εref κ
2
0 ψ

2/2 [54,55] and rewrite the continuity and
momentum equations in the following way:

∂u
∂x

+ ∂v

∂y
= 0

0 = −∂ p̃
∂x

+ ∂τxx

∂x
+ ∂τyx

∂y
+ Fbx + εeffκ

2
0ψ

∂ψ

∂x

0 = −∂ p̃
∂y

+ ∂τxy

∂x
+ ∂τyy

∂y
+ Fby + εeffκ

2
0ψ

∂ψ

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.6)

In this study, we consider the simplified Phan–Thien Tanner (sPTT) model [85] to simulate
the viscoelastic fluid characteristics [37,39,40]. Therefore, in the above equation, the stress
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components of the sPTT fluid take the form

2μeff
∂u
∂x

= F τxx + λeff

(
u
∂τxx

∂x
+ v

∂τxx

∂y
− 2

∂u
∂x
τxx − 2

∂u
∂y
τyx

)

2μeff
∂v

∂y
= F τyy + λeff

(
u
∂τyy

∂x
+ v

∂τyy

∂y
− 2

∂v

∂x
τxy − 2

∂v

∂y
τyy

)

μeff

(
∂u
∂y

+ ∂v

∂x

)
= F τxy + λeff

(
u
∂τxy

∂x
+ v

∂τxy

∂y
− ∂u
∂y
τyy − ∂v

∂x
τxx

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.7)

where F is the stress coefficient defined by F = 1 + δ λeff(τ xx + τ yy)/μeff with δ representing
the extensibility of the viscoelastic fluid. In equation (2.7), μeff and λeff are the dynamic
viscosity and relaxation time of the viscoelastic fluid which obey the following relationship:
μeff =μrefexp[−α6(T − Tref)] and λeff = λrefexp[−α6(T − Tref)]. Here, μref and λref are the reference
values at Tref with α6 being the coefficient of temperature dependence [86]. For the physical
boundary conditions, we employ the classical no-slip condition at the channel walls, while
the ζ -potentials follow the axially modulated profiles depicted above. Isobaric and isothermal
conditions are maintained at the two ends of the microchannel. The symmetry condition prevails
at the channel centreline, while heat loss (qw) occurs from the channel walls to the surrounding
through natural convection, i.e. qw = hT(T − Tref), where hT is the convective heat transfer
coefficient. Following this, the boundary conditions are represented in the following way:

u(y = ±h) = 0, v(y = ±h) = 0; p(x = 0) = patm, p(x = l) = patm,

T(x = 0) = Tref, T(x = l) = Tref; keff

(
∂T
∂y

)∣∣∣∣
y=±h

= ∓hT (T − Tref),
(
∂T
∂y

)
y=0

= 0,

φ(x = 0) = Eref l = φref, φ(x = l) = 0; ψ(y = ±h) = ζ = ζref{α1 + α2 cos(ωt x)}. (2.8)

For solving the velocity, temperature and potential distribution, we non-dimensionalize the
equation using the following dimensionless variables:

x̄ = x
l

, ȳ = y
h

, ū = u
uHS

, v̄ = v l
(uHS h)

, p̄ = (p − patm) h2

(μref uHS l)
, T̄ = T − Tref

�T

τ̄xx = τxx h
μeff uHS

, τ̄yy = τyy h
μeff uHS

, τ̄yx = τyx h
μeff uHS

, φ̄ = φ/φref, ψ̄ = ψ

ζref

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (2.9)

where uHS = −εref ζ ref Eref/μref is the Helmholtz–Smoluchowski velocity, the characteristic
velocity scale for the EOF and �T is the characteristic temperature difference defined as �T ∼
σrefEref

2 h l/kref obtained by equating the conduction term to the heat generation term in the
energy equation. The dimensionless forms of the governing equations along with the solution
procedure are discussed in detail in electronic supplementary material, section A.

(a) Dispersion coefficient
We have considered the dispersion occurring owing to an interaction between the electric field
and flow field combined with the charge modulated surface. From definition, the dispersion
coefficient (Deff) is related to the solute distribution in the following way [25]:

Deff = 1
2

d
dt
σ 2(t), (2.10)

where σ 2 is the variance in the solute displacement band which, in turn, is related to the plate
height (h̃) as

h̃ = d
dx̃
σ 2(x̃), (2.11)
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with x̃ being the centre of mass of the band. Thus, σ 2 and x̃ are the two parameters which are
associated with the band broadening phenomenon where the velocity of the centre of mass is

ũ = dx̃
dt

, (2.12)

Now, combining these two equations, one can rewrite the dispersion coefficient (Deff) as
follows:

Deff = ũ h̃
2

, (2.13)

where ũ also represents the cross-sectional averaged flow velocity through the microchannel and
the plate height h̃ is evaluated by

h̃ = 2 D
ũ

+
(

ũ h∗2

8 D

)
, (2.14)

where D is the molecular diffusivity coefficient and h* is the minimum plate height which is given
by the following equation [25]:

h∗ = 16
∫ h

0

∫ y

0

[{(u
ũ

)
− 1

}
dy
]2 dy

h
. (2.15)

Now, the dimensionless form of equation (2.13) becomes

D̄eff = 1 + (PeD
¯̃u h∗)

2

16
, (2.16)

where D̄eff is the dimensionless dispersion coefficient, PeD is the Peclet number for dispersion and
¯̃u is the dimensionless average velocity. As clear from the definition of D̄eff, it depends strongly
on the flow field. This flow field, in turn, is a function of the acting electrokinetic forces which are
modulated by the induced temperature gradient, thus establishing a strong dependence of D̄eff
with temperature.

3. Results and discussions
While we have performed simulations over a wide range of physically plausible problem data, we
have collapsed the results in terms of the pertinent non-dimensional numbers. Towards that, the
corresponding estimates of various dimensional parameters have been taken as h ∼ 10 − 102 µm,
l ∼ 1 − 10 mm, ρ ∼ 103 kg m−3, Cp = 4200 J kg−1 · K, Eref ∼ 103 − 104 V m−1, ζref ∼ 10−2V, μref ∼
10−3Pa s, σref ∼ 10−2 − 10−1S m−1, kref ∼ 0.613 W/(mK), εref ∼ 10−10 CV−1m−1, λref ∼ 10−3 −
10−1 s, Tref ∼ 298 K, D ∼ 10−9 m2s−1, �T ∼ 1 − 102 K, λD ∼ 1 − 100 nm, α3 ∼ 10−3 K−1, α4 ∼
10−2 K−1, α5 ∼ 10−3 K−1 and α6 ∼ 10−2 K−1.

Before presenting the results, we first show here how our present analysis emulates previous
experimental outcomes. We have compared our theoretical predictions of average velocity for
non-isothermal EOF with that of Venditti et al. [87]. As depicted in figure 1 of their work, EOF
velocity in PDMS-based microchannel using 10 mM KCl solution showed a linear dependence
with temperature from 313 to 333 K and beyond 333 K, nonlinear behaviour is observed attributed
to the highly pronounced Joule heating effect. In our present analysis, while demonstrating the
effect of thermal perturbation on the flow field, we have used ξ as a perturbation parameter where
the results are presented up to ξ = 0.3. From the definition of ξ , it is clear that ξ depends on two
factors, one is the temperature sensitivity parameter α6 (responsible for making viscosity and
relaxation time of fluid to be temperature-dependent) while another one being the temperature
difference (�T) induced within the flow domain. The maximum temperature difference (�T) up
to which linear thermal effect prevails is 20 K. This �T along with ξ = 0.3 results in the value of
the temperature sensitivity coefficient (α6) to be ∼0.015 K−1, typically observed in the physical
property variations in non-isothermal flows [88,89].

While comparing with Venditti et al. [87], we have presented our results of non-isothermal
EOF velocities at α1 = 1, α2 = 0, De = 0, χ = 0.01, PeT = 0.01, PeD = 5, ν= 0.006 and α4 = 0.01.
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Figure 2. Comparison between the present theoretical predictions with that of Venditti et al. [87]. Symbols represent the
experimental outcomes, whereas the dotted line corresponds to the present asymptotic solution. (Online version in colour.)

Using typical values of the parameters like h ∼ O(10) µm, l ∼ O(1) mm, Eref ∼ O(104)Vm−1, ρ ∼
O(103) kg m−3, Cp ∼ O(103) J kg−1 K−1, �T ∼ O(10)K, uHS ∼ O(10−3)m s−1, μref ∼ O(10−3) Pa s,
σref ∼ O(10−1) S m−1, kref ∼ O(1)W m−1 K−1, D ∼ O(10−9) m2 s−1 and hT ∼ O(102)W m−2 K−1, the
values of the dimensionless quantities are χ ∼ O(10−2), PeT ∼ O(10−2), PeD ∼ O(10) and ν ∼
O(10−3), respectively, which are in accordance with the values used for comparison. Also, α1 = 1
and α2 = 0 represent the EOF with uniform zeta potential (i.e. the axially varying component
remains absent), while De = 0 corresponds to Newtonian fluid. As evident from figure 2, our
asymptotic solution closely matches with the experimental data up to ξ = 0.3 and as we start
increasing ξ beyond 0.3, deviation with experimental results comes into prominence with ∼10%
underestimation in asymptotic solution being observed at ξ = 0.75. As our asymptotic solution is
only able to capture linear variation with temperature, one needs to employ a numerical solution
to incorporate this nonlinear thermal effect beyond ξ = 0.3. Considering this limitation in the
present analysis, we have presented our results up to ξ = 0.3.

The axial variation of the dimensionless electrothermal force (i.e. the force that originates due
to variations in electrical properties with temperature) is shown in figure 3a. Under isothermal
condition (ξ = 0), the electric field remains unaffected along the microchannel. As we increase
the value of ξ , the temperature field is induced which strongly influences the electrothermal
force in the axial direction. As the electric field in the non-isothermal condition depends on
the temperature distribution, it gets distorted with increasing ξ . When the channel surface is
maintained at constant zeta potential (i.e. α2 = 0), the electrothermal force (F̄x) remains constant
for the isothermal condition, i.e. ξ = 0. In a non-isothermal scenario, F̄x starts to deviate from
its constant value and gets amplified in the region where steep temperature gradients occur.
The interaction between the temperature gradient and the surface potential gives rise to an
enhancement of the electrothermal force up to two times at the channel ends (at ξ = 0.3), as clearly
seen from figure 3a. In the absence of any thermal perturbation, the axially modulated potentials
result in a harmonic distribution of the electrokinetic force, with the minima shifted from x̄ =
0.65 to x̄ = 0.5. Nevertheless, as we increase the value of ξ , non-trivial interaction between the
modulated wall potential and the Joule heating effect affects the imposed temperature gradients
at both ends, thereby resulting in an irregular distribution of F̄x.

The pressure distribution along the x-direction is demonstrated in figure 3b. For constant
zeta potential, the pressure distribution remains identical for a Newtonian fluid and its
viscoelastic counterparts. With increasing ξ , the interaction between the thermal gradients and
the electrokinetic force leads to an imbalance in the pressure distribution, creating over pressure
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Figure 3. (a) The axial variation of the electrothermal force for different values of ξ . (i,iii) Viscoelastic fluid De= 0.5. (ii,iv)
Newtonian fluid De= 0. Also, (i,ii) represent constant zeta potential α2 = 0, while (iii,iv) represent axially modulated zeta
potentialα2 = 1. (b) Distribution of pressure in the x-direction for differentα2. For (i,ii),α2 = 0; for (iii,iv),α2 = 1. Also (i,iii)
account for viscoelastic fluids, while (ii,iv) show its Newtonian counterpart. (Online version in colour.)

towards the inlet and low pressure at the outlets which, in turn, affects the electrothermal
force. Irrespective of the value of ξ , the interacting forces balance each other at x̄ ∼ 0.6 (thus
x̄ ∼ 0.6 becomes the region of the onset of imbalance between the counteracting forces), thus
resulting in zero-induced pressure. By contrast, the interaction between the thermal gradients
and the modulated zeta potential strongly influences the pressure distribution which is further
strengthened in viscoelastic fluids, as can be seen from figure 3b.

The increment in the volumetric flow rate is manifested in figure 4a, where Q̄ is plotted as a
function of the patterning frequency. The net throughput basically depends on the interaction
between the modulated electrokinetic forces and the temperature gradients. This interaction
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Figure 4. (a) (i) The variation of the volumetric flow rate as a function of patterning frequency for De= 0.5. (Inset corresponds
to the Newtonian fluid.) (ii) Dependence of Q̄ on Deborah number (De) evaluated atα2 = 3 (inset forα2 = 0). The predictions
in the thin EDL limit are shown by dash-dot lines. (b) The axial variation of the pressure gradient for different patterning
frequencies. (i,ii) correspond toω= 2π , while (iii,iv) are forω= 3π . Also, (i,iii) account for viscoelastic fluids, while (ii,iv)
show its Newtonian counterpart. (Online version in colour.)

makes the distribution of the flow rate periodic in nature where the degree of periodicity
depends on the direction of the electrothermal force and the temperature gradients, dictated
by the patterning frequency of modulation. Figure 4a also includes the variation of Q̄ with the
increasing Deborah number (De). Increasing the value of De is associated with the pronounced
shear-thinning behaviour which leads to significant augmentation in the flow rate. It increases
linearly up to a certain value of Deborah number, De ∼ 0.05. Then, it changes its linearity
and increases abruptly following an exponential behaviour. Now, the imposed non-isothermal
condition induces electrothermal interaction and results in the reduction of the viscosity of the
fluid thus leading to the increment of the flow rate as a consequence. In case of a thin EDL limit,
the nonlinear behaviour is observed earlier (i.e. at low values of De).

The distribution of the pressure gradient is illustrated in figure 4b. No pressure gradient is
induced in the x-direction when the channel walls are subjected to uniform wall potential and the
corresponding velocity profile is plug flow type, typically observed in purely EOFs. Conversely,
increasing the value of α2 strongly influences the hydrodynamics of the flow by creating adverse
pressure gradient at both ends and favourable pressure gradient in the middle. In the presence of
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Figure 5. (a) The dependence of the dispersion coefficient in the x-direction for different values ofα2. In (i,ii),α2 = 0, (iii,iv)
α2 = 0.1, (v,vi)α2 = 0.5, (vii,viii)α2 = 1. Also, (i,iii,v) account for viscoelastic fluid De= 0.5, (ii,iv,vi) for Newtonian fluid. (b)
The effect of patterning frequency on the axial variation of the dispersion coefficient. Results are shown for two different values
of ξ . (i,iii,v,vii) viscoelastic fluid (De= 0.5) and (ii,iv,vi,viii) Newtonian fluid (De= 0). (c) The parametric variation (α1 andα2)
of the dispersion coefficient in the presence of thermal perturbation. (i,iii,v) Viscoelastic fluid (De= 0.5) and (ii,iv,vi) Newtonian
fluid (De= 0). (d) The enhancement in the dispersion coefficient for different values of β4. Inset (i) shows the effect of both
PeD and κ̄0 with increasingβ4, while (ii) corresponds to decreasingβ4 (evaluated atω= 2π ). (Online version in colour.)

adverse pressure gradient, the flow field is distorted which becomes more pronounced at higher
values of α2. But, favourable pressure gradient results in a convex type of velocity profile and the
degree of convexity increases with higher potential modulation (α2). For the patterning frequency
ω= 2π , the modulated electrokinetic force at the two ends is in the same direction (both positive)
while changing the patterning frequency from ω= 2π to ω= 3π makes the forces opposite in the
two ends (positive at the inlet and negative at the exit). Also, the region of favourable pressure
gradient occurs much earlier due to the imbalance between the forces, as evident from figure 4b
where the minima is shifted to x̄ = 0.35 from x̄ = 0.5 (for the previous case) and the maxima occurs
at x̄ = 0.67, much earlier than the channel exit (which is the location of maxima for ω= 2π ).

In this context, it needs to be mentioned that the results are reported herein for De up to
∼0.5. For small values of De, the pressure distribution for viscoelastic fluid and its Newtonian
counterpart shows similar behaviour [86]. However, increasing De beyond 0.5 would lead to more
pressure induction due to a highly pronounced shear-thinning effect. Also, we have chosen the
linear sPTT model to describe the rheological behaviour of a viscoelastic fluid, which is essentially
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Figure 5. (Continued.)

an approximation of the exponential sPTT model. This approximation holds well only for small
values of De [40] and hence, the upper limit of De has been chosen accordingly.

The axial variation of the solute dispersion coefficient is depicted in figure 5a where the effect of
the varying zeta potential is shown for a fixed patterning frequency (ω= 2π ). In the absence of any
modulation in zeta potential (i.e. α2 = 0), the corresponding dispersion coefficient is very close to
unity which is enhanced slightly in the case of a viscoelastic fluid (De = 0.5). As we start increasing
the value of α2, the modulated zeta potential alters the velocity distribution significantly and
it no longer remains uniform in the axial direction, which influences strongly the distribution
of the dispersion coefficient along the channel. As adverse pressure gradient prevails up to x̄ = 0.2,
the velocity profile is distorted and follows a concave shape which results in the reduction of
the dispersion coefficient and the reduction becomes more prominent at higher modulation (α2)
of surface potential (for α2 ≥ 0.5). Increasing α2 induces more non-uniformity in the flow field,
thereby influencing the velocity gradient strongly. Similarly, a favourable pressure gradient is
prevalent at the middle of the channel which results in an extra contribution in dispersion in
addition to the purely diffusional dispersion. As a result, the dispersion coefficient is enhanced
significantly with the maximum increment of ∼10.5 % observed at x̄ = 0.5.

Besides, the effect of viscoelasticity on the dispersion coefficient is also reflected in figure 5a.
Increasing De augments the shear-thinning behaviour of the fluid resulting in an enhancement
of D̄eff up to ∼18 %, as clear from figure 5a(v). It is important to mention that the effect of
viscoelasticity is notable only in the favourable pressure gradient region and less significant in
the adverse pressure gradient region. Now, the introduction of the non-isothermal condition
induces an electrothermal force which affects the flow field strongly. The presence of temperature
gradients at both ends makes the electrothermal force maximum at those locations, while at the
middle, it becomes minimum. Accordingly, the maximum enhancement of D̄eff is observed at
x̄ = 0.5. Also, increasing the degree of non-uniformity in zeta potential results in the reduction
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Figure 5. (Continued.)

of the electrothermal force and D̄eff is increased up to ∼25% by changing the value of α2 from
0.1 to 1.

The effect of patterning frequency on the dispersion coefficient is highlighted in figure 5b.
ω= 0 means that the axially varying component of the electrokinetic force is absent and the
dispersion coefficient remains constant which is further enhanced on imposition of a non-
isothermal condition (ξ = 0.3). One interesting thing to observe here is that the distribution of
D̄eff is altered drastically as we change the patterning frequency from ω=π to ω= 2π and ω= 2π
to ω= 3π . Contrary to ω= 2π , the electrokinetic force is modulated in the opposite way for
ω=π and ω= 3π . For ω=π , adverse pressure gradient is induced up to the channel centreline,
thus diminishing the extent of dispersion. Increasing ω induces both pressure gradients with
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the region of occurrence depending on the patterning frequency. As a result, two regions of
favourable pressure gradients are induced (shown earlier in figure 4b) and two peaks are observed
in ω= 3π instead of one (ω= 2π ) in the distribution of the dispersion coefficient. For the sake of
brevity, the corresponding results in the thin EDL limit are presented and discussed in electronic
supplementary material, section G.

We now proceed to depict in figure 5c the relative contribution of the potential modulation
parameters in the presence of thermal perturbation (i.e. α1 and α2), where α1 and α2 are the
axially invariant and variant components. For lower values of α2 (i.e. α2 = 0.1), increasing α1
results in Gaussian-type distribution of the dispersion coefficient. When these two components
are comparable to each other, it results in a reduction of D̄eff (figure 5c (i,ii)). As the invariant
component becomes dominant, it plays a decisive role in determining the mode of dispersion,
as observed in figure 5c (i,ii). It is interesting to note that, at α2 = 1, most of the trends are similar
except for higher α1 where the effect of fluid viscoelasticity prevails over the invariant component,
as observed in figure 5c(iii). Finally, for higher α2, the effect of axial modulation becomes so
dominant over the invariant one that even fluid viscoelasticity remains overshadowed (shown
in figure 5c(v)).

The enhancement in the dispersion coefficient along the axial direction is illustrated in figure 5d
where D̄eff is the effective dispersion coefficient, while D̄effN corresponds to that of the Newtonian
fluid in the absence of any thermal perturbation. Introducing thermal perturbation gives rise
to concomitant augmentation in the dispersion coefficient which is further amplified near the
two ends of the microchannel as we increase the value of β4. β4 =α4/α6 is essentially the
ratio of the temperature coefficients of the electrical conductivity and dynamic viscosities of
the fluid, i.e. their relative temperature sensitivity. Increasing the value of β4 implicates that
the electrical conductivity is more susceptible to any change in temperature when compared
with viscosity. This results in significant enhancement in the modulated electrokinetic forces thus
creating more favourable pressure gradient with massive increment at the channel ends, which
is clearly reflected at the respective dispersion coefficients. For the patterning frequency ω= 2π ,
the electrokinetic forces act in the same direction and when this is coupled with the temperature
sensitivity parameter, one can observe a massive augmentation in the dispersion coefficient up to
approximately six times, as can be seen from figure 5d. Conversely, if we decrease the value of β4,
the reduction in viscosity with temperature becomes more prominent which results in lowering
the pressure gradient thereby yielding reduced dispersion coefficient (shown in the inset (ii) of
figure 5d), although the effect is inappreciable (the ratio becomes ∼3.6 from ∼4). Figure 5d also
shows the prediction of the dispersion coefficient at higher values of PeD; the higher the value of
PeD means a larger diffusional dispersion. Such a dispersion is in conjunction with the additional
effects rising from the interaction between thermal and electrokinetic forces, thus giving rise to
further augmentation up to ∼8 times with respect to the Newtonian fluid. Additionally, if we
increase the value of κ̄0, the region of excess charge distribution becomes less and the respective
dispersion coefficient is further enhanced up to ∼12 times as can be clearly seen from the inset of
figure 5d.

4. Conclusion
In this study, we have brought out a unique coupling between modulated surface charges and
local temperature gradients towards realizing giant augmentations in dispersion coefficients for
electro-osmotic flow of viscoelastic fluids. As the classical EOF results in a uniform velocity
profile, it attenuates the dispersion and mixing. In this context, the present study reveals that,
by exploiting an intricate interplay between the fluid rheology and the coupled modulation
of electrical and thermal fields, one may achieve massive augmentation in the hydrodynamic
dispersion without compromising the volumetric flow rate. Such significantly augmented
dispersion characteristics may be of utilitarian importance in improved design of microfluidic
devices demanding augmented dispersion and mixing performance without sacrificing the net
throughput.
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