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We unveil new regimes of dispersion in miniaturized
fluidic devices, by considering fluid flow triggered by
a travelling temperature wave. When a temperature
wave travels along a channel wall, it alters the
density and viscosity of the adjacent fluid periodically.
Successive expansion–contraction of the fluid volume
through a spatio-temporally evolving viscosity field
generates a net fluidic current. Based on the
temporal evolution of the axial dispersion coefficient,
new regimes of dispersion—such as a short-time
‘oscillating regime’ and a large-time ‘stable regime’—
have been identified, which are absent in traditionally
addressed flows through miniaturized fluidic devices.
Our analysis reveals that the oscillation of axial
dispersion persists until the variance of species
concentration becomes equal to half of the square
of the wavelength of the thermal wave. The time
period of oscillation in the dispersion coefficient
turns out to be a unique function of the thermal
wavelength and net flow velocity induced by
thermoviscous pumping. The results of this study
are likely to contribute towards the improvement
of microscale systems that are subjected to periodic
temperature variations, including microreactors and
DNA amplification devices.

1. Introduction
Hydrodynamic dispersion implies natural spreading of
species molecules/particles along the flow direction, the
rationale for the spreading being related to the transverse
variation of velocity for internal flows [1–9]. The shape of

2019 The Author(s) Published by the Royal Society. All rights reserved.
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the velocity profile in a channel depends largely on the driving agent—could be pressure gradient,
electrokinetic force, motion of wall (shearing action) or some other means.

Thermoviscous expansion of a fluid along a travelling temperature wave employs a spatio-
temporally varying temperature field as the flow actuating mechanism [10–12]. When a
temperature wave travels along a channel wall, it alters the density and viscosity of the adjacent
fluid periodically. Successive expansion–contraction of the fluid volume through a spatio-
temporally evolving viscosity field generates a net fluidic current (known as mean flow) along
the wall, opposite to the motion of the temperature wave. When the channel height (h) and the
thermal penetration depth (δt) are of the same order, the mean or time-averaged flow yields a
steady parabolic profile [12]; the instantaneous flow field, however, remains oscillatory.

Studies on hydrodynamic dispersion in the presence of an oscillating flow field include the
classical works by Aris [13], Harris & Goren [14], Chatwin [15], Smith [16], Watson [17] and
Yasuda [18], while somewhat more contemporary developments are reported in Hazra et al.
[19], Bandyopadhyay & Mazumder [20], Ng [21] and Jansons [22]. Species dispersion under
the influence of flow oscillation has drawn significant attention from researchers because of its
wide range of applications, namely the spreading of tracers injected into pulsatile blood flow
in cardiovascular systems [23–25], estuary tidal flow [26,27], studies on the artificial ventilation
of the human lung [28–32] and transport of environmental contaminants [15,16,33,34]. In the
context of microfluidics, the dispersion phenomenon has been studied extensively owing to
its application in the area of micro-mixing, drug delivery, processing of biological samples,
separation science and detection of chemical components [8,9,25,35–37]. Most of the reported
studies on dispersion address isothermal flow actuated by conventional methods such as pressure
gradient (pulsating or steady), oscillating wall and electrokinetic force, with the major focus
on the prediction of the dispersion coefficient of the concerned species. Tripathi et al. [38]
have shown that a time-periodic temperature field can enhance the dispersion of genomic
DNA in a microfluidic polymerase chain reaction device to the extent of the dispersion caused
by the pressure-driven flow. The processing of small bioparticles in narrow conduits using
ultrasound acoustophoresis has numerous applications in medical science and in environmental
and food analysis [39–42]. Consequently, there is a need to develop tools for engineering acoustic
streaming patterns that allow for acoustic handling of small particles. Recent studies have shown
that temperature-induced thermoviscous effects can control the acoustic radiation force and
boundary-driven acoustic streaming in straight microchannels [43–45], leading to a significant
increase in the magnitude of the streaming velocity. The presence of a species/bioparticles inside
such channels is likely to cause dispersion.

Motivated by the above applications, we investigate here the dispersion of sample plugs in
microchannels that are subjected to a travelling temperature wave. In this regard, it is necessary
to recall that the celebrated Taylor dispersion essentially refers to an increase in the effective
dispersion that arises from pressure-driven transport through a conduit in the so-called long-time
limit [1,2,7]. This long-time analysis is only valid for times much larger than the characteristic
diffusion time for the species (time scale for equilibration in the direction perpendicular to
the flow, td). In the realm of microfluidics, the study of dispersion for relatively short times
is even more important [8,46], as often the transport processes occur rapidly in microfluidic
devices (alternatively, the conduits are short). In this article, we categorically focus on the
short-time regime of dispersion, while the long-time limit is also investigated subsequently. We
also recognize that, for simple cases of isothermal, pressure-driven or electrokinetic transport,
analytical results for dispersion are available [8,9,47–52], while more complicated cases with
temperature-dependent fluid property variations require full-scale numerical analysis.

In this paper, we provide a quantitative description of hydrodynamic dispersion by estimating
the axial dispersivity or effective diffusivity (Deff) of a species in a two-dimensional microfluidic
channel in the presence of thermoviscous actuation. Unlike the pressure-driven oscillatory
flow in a channel, the instantaneous flow field induced by thermoviscous expansion is not
unidirectional. A fluctuating cross-stream velocity (v) exists. A non-zero transverse velocity (v)
in conjunction with spatio-temporally varying flow property is likely to influence the transverse
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(cross-stream) diffusion of a species, particularly in small observation time. To investigate the
effects of such inherent unsteadiness on the dispersion of a sample, the concentration field is
obtained by numerically solving the unsteady advection–diffusion equation for the species along
with the conservation equations for mass, momentum and energy. The temporal evolution of axial
dispersion coefficient (Deff) has been estimated for a wide range of Péclet numbers (Pe). Based on
the differences in the spreading behaviour of the sample, a short-time oscillating regime (when
Deff varies periodically with time) and a large-time stable regime (when Deff becomes constant)
are identified. The oscillating and the stable regimes are demarcated by a characteristic time based
on the wavelength (λ) of the temperature wave and the variance of the concentration distribution.
The time period of oscillation of Deff has been determined accurately. The large-time Deff data
obtained from our analysis are found to be in good agreement with the long-time solution of
Taylor dispersion for a flat plate channel.

2. Problem formulation and analysis
The problem geometry consists of a parallel plate microchannel having length L and thickness h,
as shown in figure 1. Fluidic transport inside the channel is actuated by periodic thermoviscous
expansion of the fluid, which is realized by virtue of identical temperature waves of amplitude
�T and wavelength λ, travelling along both the top and bottom plates in the same direction at
a constant speed c. The flow governing equations, i.e. the continuity, the Navier–Stokes equation
and the energy conservation, are expressed as

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0, (2.1)

ρ
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and ρCp

[
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

]
= βTT

Dp
Dt

+ ∇ · (k∇T) + Φ, (2.3)

where p is pressure, T is temperature and u and v are the x-component and y-component of flow
velocity, respectively. Symbols ρ, µ, k, Cp and βT represent density, viscosity, thermal conductivity,
constant pressure specific heat and thermal expansion coefficient of the fluid, respectively. Here,
Φ is the viscous dissipation function. No-slip, no-penetration boundary conditions are assumed at
the wall. No external pressure gradient is applied along the length of the channel. The travelling
temperature wave thermal boundary conditions at both of the walls are incorporated through the
following equation:

Twall = T0 + �T cos
{

2π

λ
(x + ct)

}
. (2.4)

The temperature oscillation causes successive expansion and contraction of the fluid, leading
to localized pressure pulsation along with fluctuations in both axial and transverse velocities. An
intricate interplay of temperature-dependent viscosity and density generates a net unidirectional
flow (in a time-averaged sense) in a direction opposite to the direction of wave motion. The
genesis of thermoviscous actuation and the length scales and the velocity scales associated with
such phenomena are discussed elsewhere [12,53]; they are not repeated here for the sake of
brevity. In order to study the dispersion phenomenon, a solute slug is introduced into the ‘steady’
mean flow induced by thermoviscous actuation.
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Figure 1. The parallel plate channel with a solute slug injected at time t= 0 into the ‘steady’ stream induced by thermoviscous
actuation. The travelling temperature wave imposed on the wall boundary is also shown.

Accordingly, a conservation equation for species concentration is considered in a two-
dimensional framework as

∂Cs

∂t
+ u

∂Cs

∂x
+ v

∂Cs

∂y
= ∂

∂x

(
D

∂Cs

∂x

)
+ ∂

∂y

(
D

∂Cs

∂y

)
, (2.5)

where Cs is the species concentration normalized with respect to the maximum concentration
(C∞) in the domain (so that 0 ≤ Cs ≤ 1); and D is the temperature-dependent diffusivity of
the species in the solvent fluid. Any appropriate temperature function D(T) may be used to
incorporate the diffusivity variation of the species. A familiar relationship for the molecular
diffusion coefficient D is prescribed by the Stokes–Einstein equation [54,55], as

D(T) = kBT
6πμRp

[m2s−1], (2.6)

where µ is the temperature-dependent viscosity of the fluid; kB and T are the Boltzmann constant
and absolute temperature, respectively; and Rp is the effective hydrated radius of the solute
particle (macromolecule). The above equation is valid when species molecules (solute particles)
are small and of spherical shape.

(a) Assumptions and boundary conditions for species transport
In order to achieve a realistic picture of the species transport and dispersion, it is important to
incorporate the effect of unsteadiness induced by wall temperature fluctuation, and, therefore, all
the relevant properties are treated as functions of temperature. The major assumptions involved
in the present analysis are as follows.

(i) The length-to-height ratio (L/h) of the capillary is large, so that a long-time assessment of
dispersion (Taylor-type analysis) is possible.

(ii) The solute slug is injected in a fully developed stream, i.e. the net (time averaged) flow
has already become periodically ‘steady’ at t = 0.

(iii) The solute particle size (Rp) is much smaller than the capillary size (h).
(iv) The solute is non-reacting.
(v) No wall interaction of the solute is allowed (no mass exchange, etc.).

The transport equation for species concentration (equation (2.5)) is therefore subject to the
following boundary conditions (t ≥ 0).
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(i) Symmetry on the centreline, i.e. ∂Cs/∂y = 0 at y = 0.
(ii) No flux of species at the wall, i.e. ∂Cs/∂y = 0 at y = ±h/2.

(iii) Zero concentration at the inlet and exit (far away), i.e. Cs = 0 at x = ±L/2.

In the region where the solute is injected (figure 1), normalized species concentration Cs = 1
initially (t = 0). In the rest of the domain, Cs = 0 at t = 0.

(b) Axial dispersion coefficient, Deff
The dispersion or spreading of a species in a channel is a combined consequence of stretching
of the species band (due to convection-induced shear) and molecular diffusion in both the axial
and transverse directions. In the analysis of hydrodynamic dispersion, traditionally, the mass
diffusion Peclet number (Pe) emerges as a key governing parameter. Based on the cross-sectional
average of net velocity U and channel height h, a mean Péclet number (Pe0) is customarily defined
as

Pe0 = Uh
D0

,

where D0 is the mean molecular diffusivity of the species evaluated at the mean temperature T0
(from equation (2.6)), and is given by

D0 = kBT0

6πμ0Rp
,

where µ0 is the viscosity at T0.
The Peclet number signifies the relative importance of convection to the molecular diffusion of

species. The transport of a species with diffusion coefficient D0 in the background fluid through
a channel of thickness h yields a characteristic time for cross-channel diffusion td = h2/D0. If
lC is the characteristic length over which there is an appreciable concentration change in the
axial direction, then the length-scale ratio h/lC characterizes the relative strength of transverse
diffusion to axial diffusion. In pressure-driven transport, there is a significant difference in the
spreading behaviour of the solute shortly after its injection and after several diffusion times (td)
have elapsed after its injection. Accordingly, based on the rate at which the solute spreads, two
separate regimes are defined—a short-time regime or ballistic regime (t � td), and a long-time
regime (t � td). The latter has been a traditional focus area outside the realm of microfluidics.
However, species transport in microfluidics can often be fast enough for the short-time regime
to be appropriate. Evidently, in the short-time regime, the cross-channel species diffusion is
incomplete and is yet to take the full-fledged effect.

In classical Poiseuille flow, at large time, lC is considerably greater than the transverse
dimension, h [1,2]. When the Peclet number is very high ( Pe � lC/h), it turns out that the
species transport is governed primarily by advection, and this regime is appropriately called the
pure advection regime. A moderately high Peclet number (1 � Pe � lC/h) gives way to the so-
called Taylor–Aris regime, in which the species band (mixed zone) apparently grows in length,
and equation (2.5) may be approximated as a simple one-dimensional equation involving the
cross-sectional average of species concentration, Cs(x, t), as

∂Cs

∂t
+ U

∂Cs

∂x
= Deff

∂2Cs

∂x2 . (2.7)

Here, Deff is a ‘phenomenological coefficient’ characterizing the axial broadening of the mixed
zone, and is subsequently called the Taylor–Aris dispersion coefficient. Equation (2.7) shows that
the dispersion of a solute in a conduit may now be characterized by an unsteady diffusion process
with an effective diffusivity or axial dispersivity equalling Deff. The axial dispersivity is found to
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be a function of Peclet number (Pe) and molecular diffusivity (D) and is usually given by

Deff = D(1 + αPe2), (2.8)

where α is a parameter that depends on the geometry and flow boundary conditions. Long-time
solute dispersion in a parallel plate channel yields α = 1/210 [47]. It is imperative to mention here
that the Poiseuille flow is isothermal and strictly unidirectional (v = 0).

Aris [3] put Taylor’s theory [1,2] into a more general and rigorous theoretical framework, by
pointing out that the main quantity of interest (i.e. Deff) may be computed from the axial variance
of species concentration distribution, which is nothing but the second statistical moment of the
distribution about the axial coordinate around its centroid. The ‘zeroth moment’ is the fraction
of analyte at the instant, and the ‘first moment’ is the axial position of the centroid of the analyte
distribution. Accordingly, the variance of concentration distribution is estimated by

σ 2(t) = 〈x2〉(t) − 〈x〉2(t), (2.9)

where the quantity 〈xn〉(t) is a measure of the nth moment of the distribution and is quantified in
a two-dimensional framework as

〈xn〉(t) =
∫+∞

−∞ xn
{∫+h/2

−h/2 Cs(x, y, t)dy
}

dx
∫+∞

−∞
{∫+h/2

−h/2 Cs(x, y, t)dy
}

dx
. (2.10)

While the innermost integration in the above equation represents the cross-sectional average
of concentration, 〈x〉(t) essentially implies the x-coordinate location of the centroid of the
distribution. Thus, to obtain the variance, the zeroth and first-order local moments have to be
known first. Following Aris’s method of moments [3,9], the time-dependent effective dispersion
coefficient, Deff(t), is defined as

Deff(t) = 1
2

d
dt

[σ 2(t)], (2.11)

which tends to a constant value in the long-time limit.
In this paper, thermoviscous expansion of the fluid induces high-frequency property (ρ, µ,

u, v, p, etc.) fluctuations with typical time period (λ/c) in the range 10−3s to 10−5s, as dictated
by the frequency of the temperature wave. While an intricate interplay between such property
fluctuations yields a ‘steady’ unidirectional mean (time-averaged) flow, the effective dispersion
coefficient is likely to get altered by the spatio-temporal property variations. In a microchannel,
the extent of the fluid layer affected by periodic thermal fluctuations at the wall is characterized
by a length scale called the thermal penetration depth, δt (= √

α0λ/c, where α0 is the thermal
diffusivity at mean temperature T0) [12]. When the channel height and the thermal penetration
length scale are of the same order (h ∼ δt), thermal perturbation is felt throughout the cross-
section of the channel and the mean flow resembles the classical Poiseuille profile. However,
unlike traditional pressure-driven flow (both constant and oscillating pressure gradient), the
instantaneous flow field here is not unidirectional. A fluctuating transverse velocity v exists. It
is, therefore, important to examine how and to what extent the inherent unsteadiness of the
flow field—imposed by the thermal wave—affects the dispersion characteristics of the solute,
particularly in small observation time. Such a time scale is important in microfluidics as channel
lengths are typically small. To investigate the effect of thermoviscous expansion on dispersion,
thus, full-scale numerical solutions of the relevant transport equations are necessary.

3. Numerical simulation
In an effort to provide a proper quantitative description of the time-evolving concentration
field, comprehensive computational fluid dynamic (CFD) simulations of the physical problem
under consideration have been carried out by employing a control volume-based finite difference
method [56]. The computational domain consists of a rectangular region (L × h), the top and
bottom sides of which represent the walls of the channel (figure 1). The length of the domain is
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Table 1. Diffusivities of various species in water [60].

particle (tracer) characteristic diffusivity (m2 s−1)

solute ion 2× 10–9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

small protein 4× 10–11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

virus 2× 10–12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

much larger than the channel height and the wavelength of the thermal wave (i.e. L � h, λ). At the
outset, only flow governing equations (equations (2.1–2.3)) are solved numerically until the net
flow becomes ‘steady’ and fully developed (net velocity does not vary with t and x any longer).
The solute slug is injected in the channel at this moment (set this instant as t = 0) and an unsteady-
state solution of the species transport equation (equation (2.5)) is started in conjunction with the
mass, momentum and energy equations (equations (2.1–2.3)). Both the top and bottom walls
are subjected to the travelling temperature wave thermal boundary condition as per equation
(2.4). The discretized system of linear algebraic equations is solved by employing a point-implicit
(Gauss–Seidel) solver. A coupling between pressure and velocity is accomplished by using the
Pressure Implicit with Splitting of Operators (PISO) algorithm [57]. To get rid of ‘false diffusion’,
the advection term in the species transport equation (equation (2.5)) is discretized using the higher
order Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme [57]. Time
integration is performed by incorporating a fully implicit scheme which is also unconditionally
stable irrespective of time-step size. Nevertheless, the time-step size is chosen on the basis of the
periodic time scale (λ/c) of the thermal wave as that is the smallest time scale involved.

The species diffusivity D is modelled by employing equation (2.6). In order to achieve a
realistic picture of species transport and dispersion, temperature-dependent density (ρ), viscosity
(μ) and thermal conductivity (k) are evaluated using appropriate empirical relations (assuming
the solvent to be water) [58,59]

ρ = 1000 − 0.0178|T◦C − 4◦C| 1.7[kg m−3], (3.1a)

μ = 2.761 × 10−6 exp
(

1713
T + 273

)
[Pa s] (3.1b)

and k = 0.61 + 0.0012(T − 25◦C)[W m−1 K−1]. (3.1c)

It must be noted that temperature T in equations (3.1a–c) are expressed in °C. Equation (3.1a) is
valid in the range 0°C ≤ T ≤ 100°C, with ± 0.2 % error. With the appropriate choice of wavelength
λ and wave speed c, the stipulated height to thermal penetration depth ratio (say, h/δt close to 1) is
maintained. The mean Peclet number (Pe0) is altered by varying the channel height h, wave speed
c, amplitude �T (c and �T are two parameters on which the net velocity scale is dependent [12])
and mean species diffusivity D0. Typical diffusion coefficients of various species in water at room
temperature (table 1) are considered as the input values of mean diffusivity. The time evolution
of Deff has been estimated from the numerically obtained concentration field using equations
(2.9–2.11) for a wide range of Pe0.

4. Results and discussions
In order to capture both short time-scale and large time-scale features of dispersion, numerical
simulations are carried out for adequate flow time. The variance of concentration distribution (σ 2)
and the effective axial dispersion coefficient (Deff) have been computed from equations (2.9–2.11)
by employing a Matlab program, in which the numerically obtained concentration, Cs(x, y, t), is
used as input data. The temporal evolution of Deff, normalized by the mean diffusivity D0, has
been plotted for three distinct values of Pe0 in figure 2. The channel height to thermal penetration
depth ratio is kept close to 1 (h/δt = 0.82). There is considerable difference in the dispersion
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Figure 2. Time evolution of the axial dispersion coefficient (Deff ) for flow induced by thermoviscous actuation in amicrochannel
with h= 10 µm and h/δt = 0.82. Case (a): Pe0 = 1.1, λ = 100 µm, c= 0.1 m s−1; case (b): Pe0 = 10.5, λ = 100 µm,
c= 0.1 m s−1; and case (c): Pe0 = 210, λ = 200 µm, c= 0.2 m s−1 (the oscillating and stable regimes are identified from
figure 3).

characteristics of the species shortly after its injection and after a long time has elapsed after
its injection. Nevertheless, some universal trends are observed, regardless of the Pe0 variation.

First, the Deff oscillates periodically over a short time scale; however, as time elapses,
it gradually subsides and becomes constant. For moderately high Peclet numbers (say,
1 < Pe0 < 100), the oscillation in the value of Deff is observed until t equals several diffusion time
scales (t ≈ 10 td or more), as shown in figure 2b. When the Pe0 is very high (say, Pe0 ≥ 100), the
dispersivity oscillation dies away within a fraction of the diffusion time scale td, which is evident
from figure 2c. Such a quick settlement of oscillation of Deff may be attributed to the overall
dominance of advection over diffusive transport at large Peclet number. Nevertheless, there are
two distinct regimes irrespective of the Pe0 value—a short-time oscillating regime and a large-
time stable regime. The demarcation between these two regimes is not dictated by the diffusion
time scale, td, though.
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Figure 3. Variance versus time plot for case (c) in figure 2. The line demarcating the oscillating and the stable regimes is
identified as t= 0.46 td (for case (c)).

Second, numerical investigation confirms that the oscillation in Deff of a species continues until
the variance of concentration distribution (which grows over time) and the square of thermal
wavelength are of the same order (σ 2 ∼ λ2). Thereafter Deff becomes steady regardless of Pe0. For
all practical purposes, hence, we recognize that Deff becomes flat at an instant when the variance
equals half of the square of the thermal wavelength, i.e. σ 2 = λ2/2. This is demonstrated in
figure 3, which corresponds to the case in figure 2c. The above demarcation between the oscillating
and the stable regimes are obtained by synthesizing a large number of simulation results over a
wide range of Pe.

Another important aspect of the dispersion phenomena studied here is the prediction of the
time period of dispersivity oscillation. From figure 2, it is evident that the dimensionless time
period (t*) of oscillation of Deff decreases as Pe0 increases. Extensive numerical investigations are
carried out to estimate the variation of t* and the result is presented in figure 4. Physical parameter
values for different cases presented in figure 4 are shown in table 2. All the cases in figure 4 adhere
to h ∼ δt, that is, the channel height is of the same order as the thermal penetration depth. It turns
out that the time period t* varies inversely with the product of Pe0 and the length-scale ratio, h/λ.
Remarkably, the slope of the straight line joining the data points in figure 4 is exactly (–1) in the
moderate Peclet number regime (1 < Pe0 < 100). This result essentially means that the time period
of oscillation of Deff is prescribed by

τo = td t∗ = λ

U
,

where λ is the wavelength of the imposed temperature wave and U is the cross-sectional average
of the net flow velocity. The characteristic time scale of the periodic variation of Deff (i.e. τo = λ/U)
turns out to be much larger than the time period (tu = λ/c) of the thermal wave. An appropriate
scale for the net velocity (U) in the microchannel has been derived in our previous work [12] as

Us ∼ βTηT(�T)2c,

where βT is the volumetric thermal expansion coefficient = −(1/ρ0)(dρ/dT), ηT is the thermal
viscosity coefficient of the fluid = −(1/μ0)(dμ/dT), and �T and c are the amplitude and speed
of the thermal wave, respectively. Here, βT, ηT, ρ0 and μ0 are evaluated at the mean temperature
T0.
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Figure 4. Time period of oscillation of axial dispersivity in themoderate Peclet number regime, i.e. O(1)< Pe0 < O(100); input
parameter values for cases A–I are provided in table 2. The Pe0 values have been calculated from the numerically obtained U.
(Online version in colour.)

Table 2. Physical parameter values used for the computation of results in figure 4.

case h (µm) λ (µm) D0 (m2 s−1) �T (K) c (m s−1) Pe0
A 10 100 10–9 20 0.1 1.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 10 200 10–11 5 0.2 12.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 10 100 10–10 20 0.1 10.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 8 150 10–11 7 0.234 22.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E 10 200 10–11 8.5 0.2 38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F 10 200 10–11 10 0.2 54
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G 12.5 165 4×10–12 10 0.1 80.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H 10 100 10–11 20 0.1 105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I 10 200 10–11 20 0.2 210
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At sufficiently large time (i.e. when σ 2 ≥ λ2/2), as the oscillation of Deff dies down irrespective
of the Pe0 value, we achieve the so-called stable regime. The numerically obtained Deff in
the stable regime agrees well with the theoretically obtained Taylor–Aris dispersivity (refer to
equation (2.8)), as shown in figure 5. Such a result is truly a confirmation of the parabolic shape
of the net velocity profile for flow induced by thermoviscous actuation in a microchannel having
h ∼ δt. The agreement of data presented in figure 5 serves as an essential validation of the present
work as it is primarily a numerical study.

Careful inspection of figure 2 reveals that, over a very short time scale (say, 0 < t ≤ 0.1 td), Deff
steeply increases. This is particularly evident from figure 2c, as the convective stretching of the
species band at high Pe0 propels a quick rise of the variance (σ 2) of the averaged concentration
Cs. It is obvious from the same figure that the oscillation of Deff may simultaneously begin within
this sharp-rise stage. Over a short time scale, suspended species particles cannot diffuse across
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Figure 5. Comparison of long-time axial dispersion coefficients (normalized) between travelling temperature wave-induced
flow in a microchannel having h/δt = 0.82 (circular data points) and plane Poiseuille flow (solid continuous line, equation
(2.8) withα = 1/210).

the entire transverse dimension of the channel, and, thus, the dispersion is controlled by the local
features of the velocity fluctuations in the channel. It was mentioned earlier that the frequency of
temperature–density–pressure pulsation in flow induced by thermoviscous actuation is extremely
high (time period, λ/c ∼ 10−3s−10−5s), and any concentration change in that time scale, which is
also the smallest time scale involved in this problem, is of little or no practical interest.

5. Conclusion
We have evaluated the axial dispersion coefficient (Deff) of a species for flow induced by
thermoviscous pumping in a two-dimensional microchannel, for a wide range of the mean Peclet
numbers (Pe0). As the thermoviscous actuation is governed by a spatio-temporally periodic
temperature field, all the fluid properties are treated as functions of temperature. Based on the
differences in spreading behaviour of the species, new temporal regimes—a small-time oscillating
regime and a large-time stable regime—are defined. When the channel height is of the order
of the thermal penetration depth (h ∼ δt), a strong periodic variation in the evolution of Deff is
observed during the oscillating regime irrespective of the Pe0 value. At sufficiently large time,
i.e. when the variance of concentration distribution grows beyond the square of the thermal
wavelength (precisely, σ 2 ≥ λ2/2), the oscillation of axial dispersivity (Deff) subsides to a constant
value (the so-called stable regime). As the mean Peclet number (Pe0) increases, it takes less
dimensionless time (t/td) for the oscillation in dispersion to gradually settle down to the stable
regime value. Our analysis corroborates that the time period of oscillation in the dispersion
coefficient is expressed by the time scale λ/U, where U is the cross-sectional average of the net
velocity induced by thermoviscous expansion. The results of the present study may contribute
towards an improvement in microscale systems such as microreactors and DNA amplification
devices, by the judicious employment of travelling temperature waves. It may also open up a new
direction in mixing control over reduced length scales, without sacrificing the net throughput.
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