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Selective heating of a microparticle surface had been observed to cause its autonomous
movement in a fluid medium due to self-generated temperature gradients. Here, we
theoretically investigate the response of such an auto-thermophoretic particle near an
isothermal planar wall. We derive an exact solution of the energy equation and employ the
Lorentz reciprocal theorem to obtain the translational and rotational swimming velocities
in the creeping-flow limit. We report fixed points for vertical movement of the micromotor
for its specific orientations relative to the wall. The critical wall gap for fixed points shows
unique non-monotonic dependence on the metallic coating coverage on the particle. Also,
the micromotor trajectories can be switched either from wall-bound sliding or stationary
state to escape from the near-wall zone by tuning the particle and the surrounding fluid pair
thermal conductivity contrast. The scenario holds several exclusive distinguishing features
from the otherwise extensively studied self-diffusiophoresis phenomenon near an inert
wall, despite obvious analogies in the respective constitutive laws relating the fluxes with
the gradients of the concerned forcing parameters. The most contrasting locomotion is the
ability of a self-thermophoretic micromotor with a large heated cap to migrate towards
the wall even if it is initially directed away from the wall. During the stationary states of
swimming, the cold portion on the micromotor surface faces away from the wall under all
conditions. Such unique aspects hold the potential of being harnessed in practice towards
achieving intricate control over the autonomous motion of microparticles in thermally
regulated fluidic environments.

Key words: micro-/nano-fluid dynamics

1. Introduction
The exclusiveness of artificial microswimmers in harnessing energy from the surrounding
fluid and converting it to useful mechanical energy for propulsion has made them suitable
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for a wide range of potential applications that include, but are not limited to, targeted
drug delivery (Wang & Gao 2012), disease diagnosis (Chałupniak, Morales-Narváez &
Merkoçi 2015), environmental remediation (Li et al. 2014) and photothermal therapy (Choi
et al. 2018). These microswimmers often take the form of micron-sized colloidal particles,
widely known as Janus particles, which have asymmetric properties of their two faces.
This asymmetric distribution of transport characteristics essentially triggers self-generated
chemical, electrical, optical or thermal gradients (Paxton et al. 2006; Howse et al. 2007;
Qian et al. 2013; Jiang, Yoshinaga & Sano 2010; Lozano et al. 2016), leading to intriguing
propulsion characteristics despite the absence of any external forcing.

Among the different propulsion mechanisms, the chemical decomposition of hydrogen
peroxide as a fuel source has been extensively studied in the literature (Paxton et al. 2004,
2006; Gibbs & Zhao 2009; Wang et al. 2015; Poddar, Bandopadhyay & Chakraborty
2019a). However, its use in biomedical applications is limited due to its toxicity and the
requirement of continuous supply of the same in the environment. Fuel-free locomotion
can, however, be realized by localized heating of a metallic cap engendering a temperature
gradient, which causes a directed self-thermophoretic locomotion (Jiang et al. 2010). The
heating can be accomplished by different external stimuli such as illumination by laser
beams (Jiang et al. 2010; Qian et al. 2013; Bregulla, Yang & Cichos 2014; Ilic et al.
2016) or employing an alternating magnetic field (Baraban et al. 2013). Opto-thermal
steering of the micromotor can also be performed by layering the two faces with
different light-absorbing materials (Ilic et al. 2016). This coating pattern renders the local
temperature gradient bidirectional, and selective lighting can result in a greater degree
of control over the autonomous movement. Recently, a rotating electric field has also
been employed to enhance the self-generated motion due to intrinsic thermophoresis
(Chen, Yang & Jiang 2018). In addition, thermal modulation of microscale transport
had been found advantageous in diverse aspects of lab-on-a-chip applications, e.g. drop
manipulation (Das et al. 2017; Das & Chakraborty 2018; Das, Mandal & Chakraborty
2018), electrothermal flows (Kunti et al. 2018, 2019) and capillary transport (Chaudhury
& Chakraborty 2015; Bandopadhyay & Chakraborty 2018).

Despite the obvious physical distinctions, thermally driven and solutally driven transport
phenomena are commonly attributed to several conceptual similarities. In fact, it has
been established that temperature and solute concentration fields as well as the fluid-flow
patterns around an autophoretic particle in an unconfined fluid domain bear qualitative
similarities, primarily due to analogies in the respective constitutive laws relating the
fluxes with the gradients of the forcing parameter, and often a common framework of
analysis may be adopted (Golestanian, Liverpool & Ajdari 2007) to probe the pertinent
implications. Exclusive geometrical and physical implications of a nearby wall, in addition,
may influence the concerned aspects of particle locomotion to a significant extent.
Inspired by the experimental evidence about the capability of a nearby wall in achieving
precise navigation of a chemically active particle (Das et al. 2015), a host of studies
has been aimed at analysing the motion of a self-diffusiophoretic micromotor near a
solute-impermeable plane wall (Crowdy 2013; Uspal et al. 2015a; Ibrahim & Liverpool
2016; Mozaffari et al. 2016). However, taking cues from previously studied problems on
passive particle thermophoresis near a wall (Chen 1999, 2000a,b), it can be realized that
an isothermal wall is likely to bring in unique artefacts to the thermal modulations in active
phoretic transport which by no means may be extrapolated trivially from other previously
reported observations on diffusiophoretic transport in a wall-bounded flow. This may be
attributed to the fact that the physical similitude of solute-impermeability condition for a
diffusiophoresis problem leads to an equivalent adiabatic paradigm for a thermophoresis
problem, which grossly deviates from an isothermal scenario.
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In addition, contrasts in thermal conductivity between the particle and surrounding
fluid are likely to result in key dynamical evolutions by virtue of altering the incipient
thermo-hydrodynamic characteristics (Chen 1999, 2000a,b). While the implications of
a nearby isothermal wall on the latter are presumably very complicated, the aspect of
thermal conductivity gradient-driven transport of an active micromotor by itself has turned
out to be an unaddressed phenomenon, even in an unbounded-flow domain (Jiang et al.
2010; Bickel, Majee & Würger 2013).

Here, we aim to unveil the physical consequences of a self-thermophoretic
microswimmer adjacent to an isothermal plane wall; an aspect of active particle
hydrodynamics that has hitherto remained unaddressed. The coupling between the thermal
and the hydrodynamic field, mediated by kinematic constraints and thermal boundary
conditions, is portrayed to be the key in dictating the unique dynamical evolution of the
microswimmer trajectory under this purview. Instead of solving the full velocity profile
of the fluid, we make use of the Lorentz reciprocal theorem (Happel & Brenner 1983)
to evaluate the phoretic thrust experienced by the particle and employ the force-free
conditions in obtaining the translational and rotation velocities of the swimmer. The
exact solution of the energy equation is obtained by considering steady-state conditions
and neglecting temperature distortion due to fluid advection. The results indicate that
the thermal conductivity contrast between the particle and the surrounding fluid serves
as a switching mechanism for the micromotor trajectories. With the interplay of the
consequent forcing with the wall-induced thermophoresis, we further bring out multiple
characteristics of near-wall swimming states that stand apart from the widely studied
problem of self-diffusiophoresis in the proximity of an inert wall, and hold the key in
opening up several novel applications featuring thermally activated control of active matter
in a wall-bounded flow.

2. Mathematical formulation

We consider a micron-size Janus particle of thermal conductivity κp in a fluid of thermal
conductivity κf . In typical cases, the particle is partially coated with gold (Au) or
titanium-nitride (TiN), which absorbs light of specific frequency (Jiang et al. 2010; Ilic
et al. 2016). This coating has been assumed to be axisymmetric about the director vector,
d, as shown in the figure 1(a). Upon irradiation of a laser beam, an asymmetric conversion
to thermal energy takes place along the coated and uncoated faces of the particle. This has
been modelled by incorporating a heat flux, q′′ (in W m−2), applied at the metal-coated
half of the particle. This applied heat flux triggers a local temperature gradient around the
particle, and, subsequently, a difference in osmotic pressure is created. Correspondingly,
a slip flow is developed along the particle surface, and, while viewing from the laboratory
frame, the particle is seen to propel itself. In an unbounded domain, the propulsion is
directed along the director vector d. This comprises the basics of an auto-thermophoretic
microswimmer (Jiang et al. 2010; Bickel et al. 2013), albeit without any interactions with
a nearby bounding wall. In the proximity to a constant temperature (Tw) plane wall, this
thermophoretic motion is likely to be altered significantly, which is the focal point of the
subsequent analysis.

For theoretical depiction, we adopt the bispherical coordinate system (ξ, η, φ) as shown
in figure 1(b). This bispherical system is related to a corresponding cylindrical system
(ρ, z, φ) (with origin at the plane wall and the z-axis being directed normal to the wall and
passing through the swimmer centre) as (Happel & Brenner 1983)

ρ̃ = c
sin(η)

cosh(ξ) − cos(η)
and z̃ = c

sinh(ξ)

cosh(ξ) − cos(η)
. (2.1)
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Figure 1. (a) Schematic of an auto-thermophoretic microswimmer near a constant temperature plane wall.
The orange and blue faces of the particle represent the heat-absorbing metallic cap (hot) and uncoated (cold)
areas on the micromotor surface, respectively. The angular orientation of the director vector d is denoted by the
angle θp, measured in the clockwise direction from the positive z-axis. The coverage area of the metallic cap
is represented by the angle ϕcap. The centre of the particle is at a distance of h̃ from the wall. (b) Schematic
description of the bispherical coordinate used in the present study.

Here, c is a positive scale factor, ξ = 0 denotes the plane wall location and ξ = ξ0 (>0)
represents the spherical swimmer surface. The sphere has its centre situated at a height
of z̃ = h̃ = c coth(ξ0), and it has a radius of a = c/ sinh(ξ0). Thus, the smallest distance
between the sphere surface and plane wall is δ̃ = h̃ − a = c coth(ξ0) − a.

2.1. Temperature distribution in and around the microswimmer
We neglect the flow-induced distortions in the temperature field and consider rapid
diffusion of thermal energy, leading to a quasi-steady-state behaviour of the temperature
distribution (Golestanian et al. 2007). Hence, the energy equations in both the particle ( p)

and the surrounding fluid ( f ) phases reduce to

∇2Ti = 0, i = p, f . (2.2)

We leverage the fact that the laser-absorbing metallic cap, in many experimental scenarios,
is only tens of nanometres in thickness (tcap), and that the particle radius (a) lies in the
range of microns (Jiang et al. 2010; Ilic et al. 2016). Moreover, the thermal conductivity
of the cap is much larger than that of either the particle or the fluid. Thus, the condition
κcaptcap � κpa is satisfied, and, following the earlier works (Jiang et al. 2010; Bickel et al.
2013), it may be judicious to assume the ‘thin-cap limit’. The thermal energy emitting from
the laser-absorbing metallic cap causes a jump in the heat flux across the coated portion of
the particle, while along the uncoated colder portion, a simple continuity of the heat flux
is maintained. This is mathematically described by employing the following boundary
condition at the particle surface:

at ξ = ξ0, −κf (∇Tf ) · n + κp(∇Tp) · n = Q(n), (2.3)

where Q(n) is a piecewise function depicting the local rate of heat absorption per unit area
of the particle surface, defined as

Q(n) =
{

0, if cos(π − ϕcap) ≤ d · n ≤ 1,

q′′, otherwise.
(2.4)
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The temperature is held fixed at the nearby flat wall (Tw). Without loss of generality, we
set the wall temperature to zero with respect to a suitably chosen reference temperature,
i.e.

at ξ = 0, Tw = 0. (2.5)

Further, the temperature gradient must vanish at large distances from the particle in the
domain z > 0.

In terms of the eigenfunctions in the bispherical coordinates, the temperature field in
the surrounding fluid medium can be expressed as a solution of the Laplace equation (2.2)
(Jeffery 1912; Subramanian & Balasubramaniam 2001), as given below:

Tf =
√

cosh ξ − cos η

∞∑
n=0

∞∑
m=0

[An,m sinh(n + 1/2)ξ + Bn,m cosh(n + 1/2)ξ ]

× Pm
n (cos η) cos(mφ + γm), (2.6)

with Pm
n denoting the associated Legendre polynomial of degree n and order m; and

An,m, Bn,m and γm are constant coefficients of degree n and order m. We emphasize the
fundamental differences of the temperature distribution with that of the concentration
profile of a closely related self-diffusiophoresis problem (Mozaffari et al. 2016). First,
the boundary condition at ξ = 0 (2.5) gives Bn,m = 0. Thus, the outer region temperature
profile reduces to

Tf =
√

cosh ξ − cos η

∞∑
n=0

∞∑
m=0

An,m sinh((n + 1/2)ξ)Pm
n (cos η) cos(mφ). (2.7)

In stark contrast, the solute flux vanishes at the wall for the said self-diffusiophoresis
problem, leading to the condition An,m = 0. The present solution exploits the bispherical
coordinate system and renders the scalar (temperature or solute concentration) field easier
to solve for a constant value of the scalar or its zero gradient at the wall. While tackling a
wall boundary condition of Neumann type, i.e. the situation with specified, non-zero wall
flux or, equivalently, a reactive wall with solute flux in self-diffusiophoresis, the present
framework needs a few adjustments. In that case, the far-field natural boundary condition
of zero scalar gradient has to be replaced with an essential boundary condition in terms of a
specified scalar value. It is to be noted that this second category of problem is not the exact
mathematical equivalent of the present work because the presence of the wall-adjacent
micromotor breaks the equivalence that is observed in classical heat transfer problems
with either specified wall flux or wall temperature in a semi-infinite domain (Carslaw &
Jaeger 1992).

In addition, contrary to the concentration profile for the corresponding self-
diffusiophoresis problem, here, a complete description of the temperature profile demands
a concurrent solution of the inner phase temperature distribution resulting from the
redistribution of thermal energy inside the particle due to absorption of heat flux (q′′) at the
coated surface. Thus, the physical properties of the particle material also contribute to the
final temperature distribution. In view of the boundedness of the temperature everywhere
inside the particle, the solution of the thermal field turns out to be (Subramanian &
Balasubramaniam 2001)

Tp =
√

cosh ξ − cos η

∞∑
n=0

∞∑
m=0

dn,me−(n+1/2)ξ Pm
n (cos η) cos(mφ + γm), (2.8)
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where dn,m is a constant coefficient of degree n and order m and where the symmetry of
the metallic cap about the x–z plane gives γn,m = 0.

2.2. Hydrodynamics of near-wall self-thermophoresis
The selective absorption of heat along the swimmer surface creates an asymmetric
distribution of temperature around the particle. Since the length scale (l̃) of interaction
between the particle and suspending fluid is much smaller than the microswimmer radius
(l̃ � a), the flow pattern can be obtained following the boundary-layer theory (Anderson
1989; Golestanian et al. 2007; Würger 2010). The genesis of a tangential temperature
gradient creates an osmotic pressure difference, which, in turn, drives a thermo-osmotic
slip flow along the particle surface, given as (Anderson 1989; Kroy, Chakraborty & Cichos
2016)

ũs = M(I − nn) · ∇TS, (2.9)

where TS denotes the particle surface temperature. Also, M denotes the thermophoretic
mobility characterizing the particle–fluid interaction and is defined as M = −l̃2H̄/μT0,

where μ is the fluid viscosity, H̄ is the characteristic value of the excess enthalpy and
T0 is the ambient temperature. In the present demonstrations, we consider a negative
value of the excess enthalpy (H̄ < 0), which results in a fluid flow directed opposite
to the temperature gradient in the surrounding fluid medium (Weinert & Braun 2008;
Jiang et al. 2010). Since the fluid phase is initially immobile here, this thermo-osmotic
flow from a co-moving frame is tantamount to a corresponding phoretic movement
of the particle from a laboratory frame. It is noteworthy that in the case of passive
diffusiophoresis, the mobility varies with solute concentration (Ault, Shin & Stone 2019).
Similarly, the temperature dependence of thermophoretic mobility may become significant
for passive thermophoresis with nanometre-size particles (Braibanti, Vigolo & Piazza
2008). However, the works related to self-thermophoresis of micron-sized particles
give substantial evidence that a theoretical treatment based on temperature-independent
thermophoretic mobility is sufficient in this case (Jiang et al. 2010; Bregulla et al. 2014;
Kroy et al. 2016). The analysis of the present work is in line with this observation in the
latter scenario.

Subsequently, we incorporate a non-dimensionalization scheme, where different
quantities are normalized by the following reference values: length ∼ a, heat flux ∼ q′′,
thermal conductivity ∼ κf , temperature ∼ q′′a/κf and velocity ∼ −(l̃2H̄q′′a/μT0κf ).
Hereafter, we drop the ‘̃ ’ symbol from various dimensional variables, and use the
symbols u, K(= κp/κf ) and T in the analysis to denote dimensionless velocity,
particle-to-fluid thermal conductivity ratio and dimensionless temperature, respectively.

In the creeping-flow limit (Happel & Brenner 1983), the flow field obeys the
incompressibility condition and the Stokes equation as follows:

∇ · u = 0 and − ∇p + ∇2u = 0. (2.10)

We analyse the hydrodynamic problem by observing the particle swimming from the
laboratory reference frame. Thus, the flow velocity obeys the following boundary
condition at the particle surface:

us = V + Ω × rO′ + us, (2.11)

where V , Ω are the particle linear and rotational velocities, respectively, and rO′ is the
radial distance vector from the particle center O′. On the other hand, a no-slip boundary
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condition is realized at the plane wall. The problem gets further simplified in view of
the assumed axisymmetric coverage of the metal cap. This restricts the particle trajectory
in the plane containing the wall normal and the symmetry axis of the swimmer. At the
same time, the particle can rotate along an axis oriented orthogonal to both the plane
wall normal and microswimmer director. Thus, the swimmer kinematics can be fully
captured by focusing on Vx, Vz and Ωy. Additionally, due to its neutrally buoyant nature,
the microswimmer will experience net-zero hydrodynamic force and torque conditions,
i.e.

F =
∫∫

Sp

σ · np dS = 0 and C =
∫∫

Sp

rO′ × (σ · np) dS = 0. (2.12)

Here, Sp denotes the swimmer surface, np is the unit normal to the swimmer surface and
σ is the fluid stress tensor.

Similar to the earlier works on force-free microswimming (Lauga & Powers 2009;
Montenegro-Johnson, Smith & Loghin 2013; Qiu et al. 2014; Datt et al. 2015), we
decompose the hydrodynamic problem into two subproblems: (i) the thrust problem that
depicts fluid flow around a fixed microswimmer experiencing only a thermophoretic slip
at the surface and (ii) the drag problem dealing with the rigid-body motion of a spherical
particle where the hydrodynamic drag is only in action. Thus, the force and torque-free
conditions can be written as

F (Drag) + F (Thrust) = 0 and C(Drag) + C(Thrust) = 0, respectively. (2.13)

The force and torque on a particle that is translating and rotating near a wall can be
obtained by following the earlier works on a passive particle motion (Dean & O’Neill
1963; O’Neill 1964; Pasol et al. 2005) and hence are not repeated here for the sake of
brevity. Using the expressions for force and torque, determined for either unit velocity or
rotation, as the resistance factors (RT , RC and RR), we proceed to evaluate the drag force
and torque for the unknown swimming velocity (V ) and rotation (Ω), as given below

F (Drag) = RT · V + RT
C · Ω, (2.14a)

C(Drag) = RC · V + RR · Ω. (2.14b)

The task that remains is to determine the thrust force and torque on the microswimmer due
to the self-thermophoretic actuation.

2.3. Employing the reciprocal theorem
To obtain the propulsive thrust on the microswimmer, we use the Lorentz reciprocal
theorem applicable between two Stokes flows with similar geometry. It has the following
general form (Happel & Brenner 1983):∫∫

∂S
n · σ ′ · u′′ dS =

∫∫
∂S

n · σ ′′ · u′ dS. (2.15)

Here ‘ ′ ’ and ‘ ′′ ’ superscripted variables correspond to those associated with the thrust
problem and a complementary Stokes problem, respectively; ∂S denotes the fluid confining
boundary. Keeping in view of the no-slip condition for fluid velocity at the plane wall and
decaying flow field at large distances from the microswimmer, we can simply use the
swimmer surface (Sp) in place of ∂S in (2.15).

Since the kinematics of the problem indicate only non-zero components of velocities to
be the translational velocities in the x and z directions, and the rotational velocity in the y
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direction, the calculation of thrust components demands the choice of the complementary
Stokes problems as the following three fundamental problems related to the motion of a
passively driven spherical particle near a wall:

(i) translation of the particle in the +x direction with unit magnitude of the translational
velocity;

(ii) translation of the particle in the +z direction with unit magnitude of the translational
velocity; and

(iii) rotation of the particle in the +y direction with unit magnitude of the rotational
velocity.

A detailed treatment of these problems can be found from earlier works in the literature
O’Neill (1964), Pasol et al. (2005) and Dean & O’Neill (1963), respectively.

Now utilizing the boundary condition on the surface of a fixed swimmer (2.11), the
reciprocal relation (2.15) gives the thrust components on the swimmer as

F(Thrust)
x =

∫∫
Sp

n · σ ′′
A · us dS,

F(Thrust)
z =

∫∫
Sp

n · σ ′′
B · us dS,

C(Thrust)
y =

∫∫
Sp

n · σ ′′
C · us dS.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.16)

Here, σ ′′
A, σ ′′

B and σ ′′
C represent the fluid stress tensors corresponding to the

complementary problems discussed above.
Although evaluated at the particle surface, the stress tensors in the force and torque

expressions of (2.16) implicitly contain information about the flow boundary condition
at the wall, i.e. the no-slip and no-penetration flow conditions. On the other hand, the
surface-flow velocity embodies the effect of the specific thermal boundary condition at
the wall due to the relation in (2.9). The thermal and the hydrodynamic field distributions
are further interconnected through the kinematic constraints imposed by the wall and the
constraints on force and torque (2.12).

3. Results and discussion

In the experimental realizations of the auto-thermophoresis (Jiang et al. 2010; Qian et al.
2013; Chen et al. 2018), materials that have been used so far to fabricate a thermally
asymmetric particle include microspheres made of ceramics, such as fused silica, and
polymers, such as polystyrene, while the continuous fluid medium has been commonly
taken as a mixture of water and glycerol. The typical thermal conductivities of these
materials are given by: 1.3 W mK−1 – fused silica (Touloukian et al. 1970), 0.13 W
mK−1 – polystyrene (Sombatsompop & Wood 1997) and 0.54 W mK−1 – water–glycerol
mixture (Glycerine Producers’ Association 1963). Considering these materials, the
thermal conductivity ratio is K = 0.24 (polystyrene–water) or K = 2.407 (silica–water).
However, plenty of other materials have also been used to produce Janus particles with
different functionalities (Hu et al. 2012) and are yet to be tested for their performance in
auto-thermophoresis. It should be noted that, in the previous theoretical treatments of an
unconfined self-thermophoresis (Jiang et al. 2010; Bickel et al. 2013), the parameter K
has simply been chosen as 1, in view of the same order of magnitudes of the particle and
fluid thermal conductivities. Thus, remaining consistent with the practical values and from
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Figure 2. Spatial variation of the scaled temperature (T̄ = T/(Tmax − Tmin)) in the x–z plane, both inside
the microswimmer and in the surrounding fluid medium, for a fixed wall-swimmer distance of δ = 0.5
and a coverage angle of the metal coating ϕcap = 90◦. The orientation angle (θp) is 60◦ in (a–c), while
it is 120◦ in (d–f ). The thermal conductivity contrast has been varied as 0.1, 1 and 10 from left to right
panels. The thick orange arc in each figure represents the metal-coated area of the surface. (a, d)K = 0.1,

(b, e) K = 1, (c, f ) K = 10.

the theoretical interest of capturing the key physical aspects of the thermal conductivity
variation of the particle or fluid, we vary the thermal conductivity ratio (K) from 0.1 to 10
during the illustration of results.

3.1. Temperature profile
In figure 2, we describe the effects of certain parameters on the resulting temperature
profile due to self-thermophoresis. In the first case (figure 2a–c), the microswimmer
director is leaning towards the wall, i.e. the cold portion is facing away from the isothermal
wall (θp = 60◦). Similarly, in figure 2(d–f ), the inclination angle is 120◦. The presence of
the wall breaks the symmetry of the temperature distribution along the director axis.

The surface temperature of the microswimmer TS is highly dependent on its distance
from the wall, as shown in figures 3(a) and 3(c). In these figures, the variation of the
angle θd denotes distance along the surface, measured clockwise from the director axis d.
Sensing a nearby low-temperature thermal obstacle, the micromotor surface temperature
drops when the swimmer approaches the wall, irrespective of its inclination. Besides, the
locations of the maximum and minimum temperatures on the particle surface vary with
the distance. For both of the inclinations considered, the minimum temperature location
shifts more towards the wall as the swimmer enters a wall-adjacent zone. In the former
configuration, where the heated portion is closer to the wall, the maximum temperature
location is shifted away from the wall as δ decreases. However, in the latter configuration,
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Figure 3. (a,b) Surface temperature (TS) variation along the surface for different wall distances and thermal
conductivity ratios, respectively. Here, the angle θd is at the surface of the microswimmer, measured clockwise
from the director axis d. In (a), we have taken K = 1, while in (b) δ = 1. Other parameters are ϕcap = 90◦ and
θp = 60◦. In (c,d), similar variations are shown for a different inclination of θp = 120◦. In each plot, the central
vertical line provides visual assistance to identify the degree of asymmetry around the director axis, d.

the maximum temperature location has only a negligible shift in the same direction. The
above-mentioned maxima and minima locations of the surface temperature control the
direction of surface slip flow, which, in the present case, is directed from a colder point to
a hotter one on the surface.

Comparing the temperature distributions in figures 2(a–c) or 2(d–f ) we find that, as the
particle material becomes relatively less thermally conductive than that of the surrounding
fluid (i.e. a change of K from 10 to 0.1), the hot-spot on the particle surface becomes
progressively more localized owing to a poorer heat loss to the fluid. Such a physical
situation can be imagined for metal-coated polymer spheres which bear distinct thermal
properties, i.e. perfect conduction and perfect insulation, respectively. This ideal condition
holds true only in the limit of κp � κf or K � 1. Consequently, such cases result in an
enhanced temperature asymmetry around the micromotor. Along similar lines, in the above
figures for K = 0.1 and 1, the metal-coated and uncoated halves show a vivid contrast in
the isotherm contours coming out from the surface of the particle. On the other hand, with
κp much higher than κf , the hot area occupies a greater extent of the particle. However,
in the limit of K � 1, the particle becomes highly conducting and behaves almost as an
isothermal body. This trend is reflected in figure 2(c, f ) where the fluid-medium isotherms
cut the surface almost parallel to it, and the insulating nature of the uncoated half is merely
observed.
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Figure 4. (a) Variation of temperature heterogeneity parameter, HT , with high K for different gaps from the
wall. Here, a low coating coverage, ϕcap = 40◦, has been chosen. (a) Variation of HT with high coverage
angles, ϕcap, for different gaps from the wall. Here, a low conductivity ratio, K = 0.1, has been chosen. In both
panels, θp = 180◦. The wall-swimmer configuration has been shown as an inset to the panel (a).

Strikingly, although the cap angle is low in figure 2, a high particle conductivity
acts behind the trend of diminishing temperature heterogeneity around the particle,
a phenomenon that is expected for the case of a very high metallic coverage, i.e.
ϕcap → 180◦. For a generalized quantitative assessment of this observation, we define a
temperature heterogeneity parameter HT as

HT = TS,max − TS,min

TS,max + TS,min
, (3.1)

representing a scaled difference between the maximum and minimum swimmer surface
temperatures. This quantification is motivated from the deformation parameter frequently
employed in drop deformation studies (Taylor 1966; Poddar et al. 2018, 2019b). To untangle
the behaviour of the said heterogeneity from that due to non-axisymmetry around the
wall normal, we have chosen θp = 180◦ in figure 4. In figure 4(a), the effect of high
thermal conductivity ratio K has been captured for different gaps from the wall. Here,
a low coating coverage, ϕcap = 40◦, has been chosen. On the other hand, figure 4(b)
highlights the variations of HT with high coating coverages, ϕcap, for different gaps from
the wall. This case corresponds to a low conductivity ratio, K = 0.1. A comparison of the
two figures re-affirms the common trend of decreasing heterogeneity for the two cases:
(i) {K � 1, but low ϕcap} and (ii) {K � 1, but high ϕcap}. In addition, figure 4 suggests
that, with decreasing gap between the microswimmer and the wall, the heterogeneous
nature of surface temperature increases due to the tendency of reaching the limit of
TS,min → Twall = 0. However, the impact of increasing K or ϕcap on the temperature
heterogeneity is asymptotically less pronounced at smaller gaps.

The effect of thermal conductivity contrast between the particle and fluid is also
prominently extended in the fluid domain. For example, in the case of a highly conducting
particle, the heated zone in the fluid almost surrounds the full circumference of the particle,
as portrayed in figure 2(c, f ).

The effects of contrasting thermal conductivities on the surface temperature profile have
been demonstrated in figures 3(b) and 3(d) for inclinations 60◦ and 120◦, respectively.
We have chosen typical values of K for which the particle is more conductive than the
fluid (K > 1) and vice versa (K < 1). With the hot surface facing the wall, the K > 1
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Figure 5. In (a), the unbounded swimming velocity magnitude |V ub| is shown in the K − ϕcap plane. In (b,c),
the variations in velocity components (Vz and Vx, respectively) with the thermal conductivity contrast (K) are
shown for both unbounded and near-wall scenarios. The orientation and velocity direction of the particle are
shown schematically in each figure.

condition causes a raise in the surface temperature before reaching θ ≈ 155◦; thereafter,
the temperature decays until θ ≈ 325◦ and again raises beyond this location. Locations of
these turnover points on the surface as well as the behaviour of temperature with changing
K between these points are modified when the cold portion faces the wall.

3.2. Effect of thermal conductivity contrast in an unbounded flow
Before investigating the coupled interplay between the thermal conductivity contrast
and the bounding wall on the microswimmer velocity, we delineate its behaviour in an
unbounded domain. In an unbounded flow, the rotational component of the swimmer
velocity does not exist since the wall-induced asymmetry in the temperature and flow field

are absent in this case. The linear velocity magnitude |V ub| =
√

V2
x + V2

z depends only
on the metallic cap coverage, ϕcap, and the thermal conductivity ratio, K, as portrayed in
figure 5(a). It is observed that the effect of ϕcap on |V ub| is symmetric about the 50 %
coverage (ϕcap = 90◦). On the other hand, the effect of increasing K is to decrease the
velocity magnitude due to reduced temperature gradients.
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The wall-induced distortion of the temperature field weakens asymptotically and,
beyond a certain height, the thermal boundary condition at the wall is likely to become
inconsequential. A simultaneous decay in the hydrodynamic disturbance also takes place,
tending towards a situation equivalent to that of an unbounded scenario. We quantify
this distance with an effective separation distance, δub, at which a velocity component
of the microswimmer becomes 99 % of the unbounded velocity magnitude |V ub|. This
effective distance is a function of the thermal and configurational parameters, i.e. δub =
δub(K, θp, ϕcap). As an example of this functional dependence, we show two reference
configurations of the particle motion in figures 5(a) and 5(b), where either of the linear
velocity component of the microswimmer exists in an unbounded domain. While in the
first instance (figure 5b), the δub for the vertical velocity component reduces from δub =
7.58 for K = 0.1 to δub = 6.89 for K = 10, in the second instance, (figure 5c) the δub for
the horizontal velocity component reduces from δub = 1.61 for K = 0.1 to δub = 0.63 for
K = 10. The difference in the δub for different velocity components indicates a contrasting
nature of the wall effects in different flow directions.

3.3. Combined interplay of bounding wall and thermal conductivity contrast
In both the figures 6(a) and 6(b), the downward translation of the swimmer is intensified
due to the presence of the wall, and, subsequently, it reaches an optimum (maximum
magnitude) at a certain vertical distance (δopt). Away from the wall, this motion is retarded.
When the coated surface faces the wall (θp = 60◦), Vz remains negative until a certain
distance of δcr ≈ 0.3 from the wall; then it shows a trend of positive Vz. Finally, the
swimmer gradually reaches a velocity that it would have attained if it were isolated. In
the second configuration (θp = 120◦), where the uncoated surface is nearer to the wall,
the swimmer continues to translate downwards irrespective of the wall distance. For both
the configurations, the location of δopt is shifted far from the wall, as the particle becomes
increasingly more conductive (increasing K). Such a consequence implies the coupled
interplay between the particle-to-fluid thermal conductivity ratio and the wall distance in
influencing the particle velocity.

The vertical translational velocity Vz can be calculated from the following reduced
version of the general force-free relation (2.13):

Vz = −F(Thrust)
z /f T

z , (3.2)

where f T
z is the resistance factor for translation in the z direction. Thus, the velocity

reversal in the z direction can be explained solely from the behaviour of the vertical
phoretic thrust, considering that the associated resistance factor, f T

z , does not change
its sign. As previously discussed, a variation in the swimmer-wall distance intervenes
with the swimmer surface temperature distribution, and thereby its gradient along the
surface is also affected. Because of this, the slip flow at the particle surface (2.9) is
modified. Simultaneous to the distortions in the temperature field, the hydrodynamic stress
distribution around the particle is also disturbed by the confining boundary. Both of these
mechanisms work behind an altered thrust force experienced by the microswimmer (2.16).

Following the same figures, the thermal conductivity contrast (K) can neither shift
the critical distance for the velocity reversal, nor can it alter the sign of velocity in
both the swimmer inclinations considered. However, for a specific wall to swimmer
distance (δ), the swimmer translates slower with escalating values of K. While uncovering
the associated physical mechanism, we refer to the attenuation of the asymmetry in
temperature around the coated and uncoated faces of the microswimmer with high particle
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Figure 6. Variation of translational and rotational velocity components of the microswimmer with distance
from the wall (δ) and various thermal conductivity ratios (K). The heated cap coverage is identically chosen as
ϕcap = 90◦ for all the cases. In (a,b), θp = 60◦ and 120 ◦, respectively. Due to symmetry reasons, the (c) and
(d) are applicable for both θp = 60◦ or 120 ◦.

conductivity (see figure 2c, f ), causing attenuation in the surface temperature gradient.
This occurrence can be quantitatively visualized from the fact that in figure 3(b,d), with
increasing K, the maximum temperature falls, but the minimum temperature hikes, despite
their corresponding locations on the surface being hardly affected. Hence, a weaker surface
temperature gradient (i.e. Tmax − Tmin) is generated and, eventually, the surface flow is
weakened. Accordingly, a diminishing surface traction strength on the swimmer surface
results. It is to be noted that, in figure 6(b), very close to the wall (δ � 0.05), the variation
in Vz shows a non-monotonic dependence on the thermal conductivity contrast, K. In the
narrow gap region, strong hydrodynamic stresses build up, which are critically coupled
with the flow modulations due to variations in the thermal conductivity. Accordingly, the
thrust force varies non-monotonically with K, as portrayed in figure 7.

In figure 6(c,d), we portray the variations in wall-parallel translational and rotational
velocities with the parameters δ and K. The particle is slowed down as it approaches
the wall, and it moves faster with lessened particle thermal conductivities. The near-wall
rotation remains in the clockwise direction throughout, although the magnitude decays
with strengthened particle thermal conductivity. While exploring other interesting facets
of the velocity components, we have shown the variations in Vx and Ωy in figures 8(a) and
8(b), respectively, for a different coverage angle of ϕcap = 140◦ and inclination, θp = 150◦.
As suggested by figure 8(a), with increasing distances from the wall, the horizontal
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Figure 8. Variation of wall-parallel translational and rotational velocities of the microswimmer with distance
from the wall (δ) and different thermal conductivity ratios (K). Other parameters are chosen as ϕcap = 140◦
and θp = 150◦.

migration velocity of the microswimmer also shows an increasing tendency. However,
the swimmer is subsequently retarded beyond a specific separation height. Further, as
the particle thermal conductivity reduces, the location of this maximum point shifts far
from the wall. We also observe a change in the direction of the particle rotation from
counterclockwise to clockwise at a fixed distance from the wall (δ ≈ 0.11).

For gaining an insight into the physical origin of such behaviours, we first look into the
expressions of Vx and Ωy. Unlike the vertical velocity, the parallel rotation and translation
velocities can only be obtained by solving a coupled system (2.13). This gives Vx and Ωy
in the following forms:

Vx = F(Thrust)
x f R

y − C(Thrust)
y f R

x

f R
x f T

y − f T
x f R

y
and Ωy = C(Thrust)

y f T
x − F(Thrust)

x f T
y

f R
x f T

y − f T
x f R

y
, (3.3a,b)
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Figure 9. Detailed variation of different terms in (3.3b). The parameters are similar to figure 8(b). The yellow
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y × f T
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y .

where different hydrodynamic resistance factors are defined as F(Drag,T)
x = f T

x Vx,

F(Drag,R)
x = f R

x Ωy, C(Drag,T)
y = f T

y Vx and C(Drag,R)
y = f R

y Ωy. It can be inferred from (3.3b)
that the actual sign of the rotational velocity is a complex function of the hydrodynamic
resistance factors as well as the thrust force and torque. From the previous investigations, it
is known that these resistance factors increase in magnitude with a gradual descent of the
particle towards the wall (Goldman, Cox & Brenner 1967; Chaoui & Feuillebois 2003).
Now, since the hydrodynamic resistance term in the denominator remains negative always
(see figure 9), it is evident that the sign of Ωy is set by the relative importance of the
phoretic torque (C(Thrust)

y f T
x ) and the phoretic force (F(Thrust)

x f T
y ), adjusted by appropriate

units. From a physical perspective, these two effects correspond to the counterclockwise
torque due to the propulsive effects and the clockwise torque due to its forward movement
(+Vx), respectively. The counterclockwise torque is a net effect of the differently directed
surface flows based on the locations of peak points in the surface temperature (a
diagrammatic representation of a similar scenario has been provided later in figure 16d).
The mechanism of the clockwise torque can be understood by considering the case when a
lateral force causes a spherical particle to translate without any rotation parallel to a plane
wall. The existence of confinement creates high velocity gradients in the lower half of the
particle that faces the wall. In turn, the shear stress that the fluid exerts on the particle
becomes much stronger in this region than that in the upper half away from the wall.
This asymmetry in stress build-up exerts a torque on the particle. For translation along the
+x direction, this generated toque always acts in the clockwise direction, and the torque
magnitude increases with a raise in Vx.

Inspection of the temperature profiles at different distances from the wall reveals that
the minimum temperature location shifts more towards the wall with a decreasing gap,
while the maximum point remains almost unaffected. Subsequently, greater strength of
the clockwise surface flow and an ensuing counterclockwise torque result. Also, as the
micromotor approaches closer to the wall, it is subjected to the elevated hydrodynamic
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stresses because of near-wall velocity gradients. Such effects result in the relative
dominance of the counterclockwise torque surpassing the opposing clockwise torque.
Thus, at the reduced distances from the wall, we have a negative sign of Ωy. However,
beyond a critical height, the effect of increasing Vx (see figure 8a) becomes dominant and
so does the corresponding clockwise torque.

It is exciting to note that the critical gap sizes (δcr) at which the particle switches its
vertical swimming direction (figure 6a) and angular rotation (figure 8b) are independent
of the conductivity ratio, K. The physical origin of such behaviour can be perceived by
investigating the way the factor K influences the thermophoretic thrust. Any characteristic
shift in thrust force or torque has to be assisted by corresponding modulations in the
thermophoretic slip flow around the particle. For a better understanding, we first appeal
to figures 3(b) and 3(d) where it has been observed that the locations of the peaks of
surface temperature, TS,max and TS,min, remain unaltered with variations in K. These peak
locations are crucial in governing the fluid flow directions at the surface, as indicated by
(2.9). As a consequence, the direction of surface flow will also remain unaltered with
K owing to fixed peak temperature locations. This characteristic feature of surface flow is
responsible for not altering the condition (i.e. the specific value of δ) required for vanishing
phoretic thrust force and torque.

3.4. Existence of fixed points
Here, we report the existence of fixed points in the vertical component of velocity of
the self-thermophoretic microswimmer. It has been found that the critical gap size for
the reversal of vertical motion, δcr, depends both on the metallic coating coverage, ϕcap,
and the swimmer orientation, θp, as depicted in figure 10(a). Conceptually similar fixed
points were reported in the literature dealing with self-diffusiophoretic microswimmers
near confinements (Uspal et al. 2015a; Nasouri & Golestanian 2020).

Figure 10(a) suggests that for θp ≥ 90◦, the fixed points do not appear, while for θp <

90◦, the fixed points appear even for very low extent of metallic coating. In addition,
for low values of θp, e.g. for θp � 10◦, a minimum metallic coverage, ϕcap � 17.5◦, is
required for the fixed points to exist. However, for greater orientation angles, 10◦ < θp <

90◦, the fixed points appear even for a minimal coating extent of ϕcap � 2.5◦. It is to
be noted that the disappearance of fixed points below these minimum coating angles is
due to the mathematical artefact that a minimum cutoff gap is required to be set while
searching for the fixed points employing a numerical algorithm. The minimum cutoff gap
has been presently chosen as δ = 0.01, while the same was chosen as δ = 0.02 in Uspal
et al. (2015b). Similarly, the upper limit of δ during the numerical searching of fixed points
has been chosen as δ = 10. The reader may refer to the work of Ishimoto & Gaffney (2013)
for the practicality behind choosing such a limiting value. This is the reason behind the
vanishing fixed points in the common region near θp → 90◦ and ϕcap � 160◦ (see the
upper right corner of the grey half in figure 10a), indicating the probable fixed points
beyond the highest gap considered here.

The variation of the critical gap size with the coating coverage has been highlighted in
figure 10(b). The figure suggests a non-monotonic dependence of δcr on ϕcap, especially
when the orientation angle, θp, is high. In these cases, the critical gap has a minimum value
at a certain value of coating coverage for the respective orientation. Any shift from these
coverage extents causes an increase in the critical gap magnitude. Figure 10(c) displays
the location of fixed points for varying coating coverages on the Vz vs. δ curves for
a specific swimmer orientation, θp = 50◦. This behaviour was not reported concerning
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Figure 10. (a) Phase map demarcating the limits of metallic coating coverage, ϕcap, and the swimmer
orientation, θp, for the existence of fixed points in the vertical component of velocity, Vz. (b) Critical gap
size, δcr, vs. the coating coverage, ϕcap, for different swimmer orientations, θp. Data points have been obtained
by searching in a grid of 50 equally spaced points (in log scale) for δ and with a linear increment of 2.5◦ for
ϕcap. (c) The vertical velocity, Vz, vs. gap thickness, δ, for different coating coverages and θp = 50◦.

self-diffusiphoresis (Uspal et al. 2015a). The said distinguishing non-monotonicity in
the present result can be attributed to the contrasting wall-boundary conditions and the
consequent variations in flow field as pointed out in the discussion following the later (3.6).
Besides, the angle θp has an effect of raising the maximum gap at which a fixed point can
occur, as highlighted in the inset to figure 10(b).

3.5. Swimming trajectories
The near-wall movement of the microswimmer has been captured in the present study
by considering only the deterministic forces acting on the swimmer and neglecting
any stochastic contribution due to thermal fluctuation to the translational and rotational
diffusion. While deriving the governing differential equations, we have assumed a
quasi-steady-state condition and neglected any rotational diffusion associated due to
thermal fluctuations. The validity of these assumptions can be justified by considering
the fact that the ensuing diffusive transport behaviour due to thermal fluctuations becomes
important only when a > (kBTref /μũdrift)

1/2 (Golestanian et al. 2007), where kB and Tref
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are the Boltzmann constant and reference temperature, respectively. With a practical value
of the drift velocity as ũdrift ∼ 10 µm s−1 in water, the above conditions suggest that
the particle radius (a) has to be greater than a few 100 nm for negligible enhancement
in diffusive transport, consistent with the present analysis with the assumption of
a ≥ 1 µm. Thus the swimming trajectories can be characterized by considering the
following dynamic system:

dx
dt

= Vx,
dz
dt

= Vz,
dθp

dt
= Ωy. (3.4)

In the case of a self-diffusiophoretic micromotor near a wall (Mozaffari et al. 2016), the
near-wall adjustments in the concentration distribution provide a cushioning effect against
the steric collision between the swimmer and the wall. Conversely, in the present situation,
the swimmer often approaches very close to the wall, leading to an inevitable crashing
against the wall, and no further information about its motion can be retrieved beyond this
point. Such a contrast arises due to different physical conditions of the concentration and
temperature fields at the plane wall in the respective cases. In the case of a comparable
self-diffusiophoretic swimmer, the physical circumstance of the impermeability of solutes
at the wall demands a zero-flux boundary condition. Here, on the other hand, the wall
is maintained isothermal by using a constant temperature bath therefore allowing a finite
normal temperature gradient at the wall. The dimensionless heat flux absorbed by the cold
isothermal wall from the heated fluid takes the form

q′′
w = ∂Tf

∂z

∣∣∣∣
z=0

= 1 − cos(η)

sinh(ξ0)

∂Tf

∂ξ

∣∣∣∣
ξ=0

, (3.5)

which upon using (2.7) yields

q′′
w = (1 − cos(η))3/2

2 sinh(ξ0)

∞∑
m=0

∞∑
n=m

(2n + 1)An,mPm
n (cos η) cos(mφ). (3.6)

This allows for corresponding adjustments in the temperature distribution keeping the
whole wall-adjacent region cool, conforming to the boundary condition of a cold wall. As a
consequence, the accumulation of heat in the gap between the particle and wall is nullified.
Such a physical scenario is in stark contrast to the comparable self-diffusiophoretic
problem where solute molecules are forced to accumulate in the gap, leading to a fluid flow
favourable for the near-wall cushioning characteristics. Another wall boundary condition
analysed in relation to self-diffusiophoreis is the one having chemiosmotic slip (Uspal
et al. 2016). An analogous system for a self-thermophoretic swimmer should contain a
varying temperature boundary condition at the wall, allowing for a thermo-osmotic slip
(Lou et al. 2018). This has been left as an intriguing extension of the present work.

The problem of steric collision has been circumvented by employing an
electrostatic-type, short-ranged repulsive force at the plane wall (Spagnolie & Lauga
2012):

F rep = α1 exp (−α2δ)

1 − exp (−α2δ)
êz. (3.7)

The parameters α1, α2 have typical values 200, 100, respectively, so that the swimmer
does not approach closer than ≈0.01 times the swimmer radius. Such a scenario
was previously encountered by others in relation to ‘squirmers’ (Spagnolie & Lauga
2012; Li & Ardekani 2014; Poddar, Bandopadhyay & Chakraborty 2020), as well as
self-diffusiophoretic microswimmers (Ibrahim & Liverpool 2016), and different forms
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of repulsive potentials were employed. It is noteworthy that the squirmer models only
deal with the hydrodynamics of the microswimmer, and the wall-induced distortion of
the scalar field (e.g. temperature or solute) is not captured. Hence, the wall-bounded
motion of an auto-thermophoretic microswimmer cannot be predicted by either of the
self-diffusiophoretic or the squirmer models.

An alternative solution approach based on the singular perturbation theory can be
adopted to alleviate the divergence or extreme slow convergence of the flow field in the
near-contact regime, as described by others (O’neill & Stewartson 1967; Yariv & Brenner
2003). However, it was shown by O’neill & Stewartson (1967) that the presently adopted
exact approach using infinite series gives accurate results even for sphere-wall distances
as small as δ = 2 × 10−4, which is far lower than the approximate minimum distances
considered in this study, i.e. δ ≈ 0.01 (also known as cutoff distance). In the present
case, the infinite series have been truncated to nmax = 70 terms for the lowest distance
considered. This has been chosen to ensure that the various series coefficients in the
temperature distribution ((2.7)) as well as the complementary flow fields (details in Dean
& O’Neill 1963, O’Neill 1964 and Pasol et al. 2005) converge with an error of ≤10−6

between the series coefficients corresponding to nmax and nmax + 1.
Some of the limiting circumstances in the micromotor trajectory have to be treated

cautiously. As ϕcap → 180◦, the temperature asymmetry about the director d vanishes
completely, and motion of the particle is similar to a uniformly heated particle near a wall.
In this condition, asymmetric distribution of the driving influences provides an attractive
force along the ‘−z’ direction, leading to a ‘direct impact’ onto the wall. Virtually, a
similar scenario of swimmer trajectory arises if the micromotor is launched with director
pointing along ‘ − z’ (i.e. θp,0 = 180◦, where θp,0 is the initial launching orientation of
the micromotor), irrespective of the coverage angle, ϕcap. It is to be noted that a fully
covered particle should not, ideally, have a director because the concept of director exists
only for an asymmetric particle. However, for consistency in mathematical analysis, that
condition has been treated here as a limit when the coating coverage angle becomes
increasingly higher, which is mathematically equivalent to ϕcap → 180◦. The condition
θp,0 = 0◦ is relatively involved. In that case, consistent with the common intuition, the
swimmer escapes along an upward straight line as long as the cap coverage angle (ϕcap)
is below a critical value. Beyond this ϕcap, the downward attraction effect due to the
wall (discussed later) becomes prominent, and a downward direct impact occurs. The
‘direct impact’ and ‘upward escape’ swimming states have been denoted by black and
blue triangles, respectively, in the phase diagrams to follow.

3.5.1. Swimming-state transitions due to thermal conductivity contrast
In the following discussion, different swimming trajectories are categorized and described
focusing on the results where a characteristic shift of the trajectories takes place due to the
variations in the particle-to-fluid thermal conductivity ratio.

3.5.2. Case-I: From sliding to escape with small heated cap
In figure 11(a), the swimming trajectories of the micromotor have been illustrated with
the help of a phase diagram on the K − θp,0 plane for a cap coverage angle of ϕcap = 25◦
and initial launching height of h0 = 2. For low values of K, until a launching orientation
θp,0 � 77.5◦ (the increment of θp,0 considered here is 2.5◦), the micromotor only escapes
away from the wall, never to return. However, when the swimmer is launched from an
orientation leaning more towards the wall, the swimmer slides along the wall, keeping
a small gap from it and maintaining a fixed angular orientation. The scenario changes
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as the thermal conductivity ratio K increases beyond a critical value of Kcr ≈ 1.30. (The
critical values of K are found with a fine resolution until an accuracy of first two significant
digits is obtained.) With the initial orientations more towards the wall, the Kcr value
becomes higher, and eventually for θp,0 � 82.5◦, the sliding to escape transition onsets
at Kcr ≈ 7.15.

Figure 11(b) demonstrates two typical trajectories of a micromotor launched from
θp,0 = 90◦ with K values below or above the critical one. In both the cases, the micromotor
shows an impending motion with Ωy < 0 and Vz < 0. Now, similar to our previous
discussions in § 3.1, a micromotor with K = 5 experiences stronger surface temperature
gradient in comparison with its K = 10 counterpart. This condition promotes a subsequent
raise in the horizontal component of micromotor velocity (+Vx) as well as causing a
faster migration in the vertically downward direction (−Vz). Under the competitive driving
forces for rotation (refer to § 3.3), once a critical condition is reached, the micromotor
experiences a net-zero rotation rate, Ωy = 0. Here, the hydrodynamic resistance to the
downward approach is not sufficient to prevent a steric collision, and the repulsive force
(F rep) plays its role by contributing to the upward resistive force, leading to a net-zero
vertical velocity, i.e. Vz = 0. In contrast to this, with K = 10, a micromotor with a lesser
amount of counterclockwise rotation also experiences a reduced hydrodynamic resistance.
Still, it continues to rotate while remaining in the wall-adjacent region. Eventually, the
angular orientation reaches a point where the particle gains an upward velocity component
(Vz > 0), and it is ultimately reflected from the wall. As it moves upward, the rotation
becomes diminishingly small, thereby letting the particle proceed with a fixed orientation
of 48.7◦.

The increasing particle conductivity not only causes a characteristic shift of the
trajectories but also results in modulations in the sliding velocity and the fixed tilt
angle with which the swimmer traverses (see figure 11c). As the particle-to-fluid thermal
conductivity ratio increases towards the critical value, the sliding velocity diminishes, and
the director tilts more towards the wall.

The figures 11(d) and 11(e) depict the variations of the angle of the propulsion direction,
θv , and the director orientation, θp, as the particle moves in the trajectories in figure 11(b)(i)
and figure 11(b)(ii), respectively. The deviations of the near-wall propulsion directions (θv)

from the unbounded case (showing propulsion along θp) become clear from these figures.

3.5.3. Case-II: From stopping to escape with small heated cap
Here, we present the case when the micromotor has a small heated cap, and a transition
from stationary to escaping trajectories takes place for a critical value of the thermal
conductivity ratio Kcr. This critical condition can be realized for either of the following
conditions: (i) the fluid is more conductive than the particle (demonstrated in figure 12a)
or (ii) the particle is more conductive than the fluid (figure 12b). Comparing figures 12(a)
and 12(b), we find that the critical thermal conductivity contrast shifts from Kcr ≈ 0.17
to 3.7, as the heated area increases from ϕcap = 40◦ to 50◦. Figure 12(c)(ii) depicts that,
before the critical condition in the phase diagram is reached (K < 0.17), the micromotor
comes very close to the wall while rotating in the counterclockwise direction under strong
thermophoretic propulsive torque. Soon it reaches a condition where the director (d)

points vertically upward, i.e. θp,end = 0. Such an equilibrium orientation lacks any driving
force for axial migration (i.e. Vx = 0) as well as rotation (i.e. Ωy = 0). At the same time,
the downward phoretic thrust force is balanced by the tremendous hydrodynamic resistive
force and the repulsive potential of the wall F rep. Thus, the motion of the swimmer
is completely arrested, and it reaches a ‘stationary’ state. However, when the K value
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Figure 11. Case-I: (a) phase map of the microswimmer trajectories on the K − θp,0 plane. (b) Comparison
of swimming trajectories for different thermal conductivity contrast with θp,0 = 90◦. In panel (i), K = 10,
and in panel (ii), K = 5. In panel (i), the microswimmer escapes from the wall and attains a fixed orientation
θp = 48.7◦. In panel (ii), it slides along the wall with a fixed velocity of Vslide = 0.018 with a fixed orientation
θp,end = 33.23◦. For both panels (a) and (b), we have chosen ϕcap = 25◦ and h0 = 2. (c) Variation of sliding
velocity (Vslide) and final orientation angle (θp,end) with K < Kcr as per panel (b). Panels (d,e) correspond to
the variations in θp and θv for the trajectories in panels (b)(i) and (b)(ii), respectively. Hereafter, the yellow
arrows on micromotors indicate the instantaneous director orientations in that trajectory. Black arrows in panel
(b) indicate the direction of impending motion, while the corresponding director direction (θp) and trajectory
direction (θv) are shown in panels (d) and (e).

increases beyond Kcr (refer to figure 12c(i)), the counterclockwise rotation is weaker, and
it migrates downward at a slower pace. As a result, well before the orientation reaches the
θp = 0 state, the micromotor attains the critical position for the reversal of −Vz to +Vz, a
phenomenon causing a reflecting trajectory similar to figure 11(b)(i).
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Figure 12. Case-II: (a,b) phase map of the microswimmer trajectories on the K − θp,0 plane for coverage
angles ϕcap = 40◦ and 50◦, respectively. In both panels, h0 = 2. (c) Comparison of swimming trajectories for
different thermal conductivity contrast with θp,0 = 100◦ and ϕcap = 40◦. In panel (i), K = 1, and in panel (ii),
K = 0.1. In panel (i) the microswimmer escapes from the wall and attains a fixed orientation θp = 36.5◦. In
panel (ii), it becomes stationary at position (xstop, δstop) = (3.92, 0.027) and a vertical fixed orientation, i.e.
θp = 0◦. In panels (d) and (e), we have shown the variations of θp and θv with x for the trajectories in panels
(c)(i) and (ii), respectively.
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Figure 13. Case-III: (a) phase map of the microswimmer trajectories on the K − θp,0 plane for coverage angle
ϕcap = 145◦. (b) Comparison of swimming trajectories for different thermal conductivity contrast with θp,0 =
10◦, ϕcap = 145◦ and h0 = 2. In panel (i), K = 1, and in panel (ii), K = 0.1. In panel (i), the microswimmer
escapes from the wall and attains a fixed orientation θp = 7.8◦. In panel (ii), it becomes stationary at position
(xstop, δstop) = (0.42, 0.015) and a vertical fixed orientation, i.e. θp,stop = 0◦.

For a better insight of the trajectories of figure 12(c)(i) and (ii), we have plotted the
variations of the corresponding θp and θv with x in figures 12(d) and 12(e), respectively,
for those trajectories. Since the particle comes to a standstill in the trajectory of
figure 12(c)(ii), the angle θv cannot be defined as the swimmer stops. This point has also
been highlighted in figures 12(e).

3.5.4. Case-III: From stopping to escape with a large heated cap
Here, the cap coverage is high (ϕcap = 145◦), but the nature of transition is almost similar
to Case-II presented above. The only distinguishing factor in the transition is the height
above the wall (δcr) where the sign flip of Vz takes place for K > Kcr. Similar to Case-I,
Kcr is a function of the initial orientation (θp,0). Figure 13(a) shows that, in the domain
0 < θp,0 < 12.5◦, we have Kcr ≈ 0.65, while for 12.5◦ � θp,0 < 17.5◦, we have Kcr ≈ 1.
As illustrated in figure 13(b)(i), the micromotor never comes too close to the wall, and
the critical height is just below the initial launching height (h0). This provides a sense of
repulsive action from the wall at a much greater vertical distance than that in Case-II. It is
to be noted that we have not plotted variations of angles θp and θv in figure 13 because
those hardly provide any new information, having already shown the variations of all
characteristically different trajectories (escape, slide, stop) for the previous two cases.

3.5.5. Influence of initial height, cap coverage and initial orientation
The final swimming feature of the micromotor has been summarized in figure 14(a–c) for
all the possible ranges of the heated cap angle ϕcap and the initial launching angle θp,0.
These figures help elucidate some key differences in the trajectory characteristics with
those presented previously in connection with the self-diffusiophoresis phenomenon near
a solute-impenetrable plane wall (Uspal et al. 2015a; Ibrahim & Liverpool 2016; Mozaffari
et al. 2016). In order to readily compare with such a widely studied problem, the geometry
of the swimmer-wall system and the swimmer orientation have been defined in an exactly
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Figure 14. Phase maps categorizing the swimming behaviours of the auto-thermophoretic microswimmer for
different values of the coverage angle of the metal cap (ϕcap) and initial launching angle (θp). (a), (b) and (c)
correspond to different initial heights as shown. The thermal conductivity ratio has been chosen as K = 1.
Here the phase maps have been constructed on a grid of 5◦ intervals on both the coordinates. (a) δ0 = 1,

(b) δ0 = 4, (c)δ0 = 6

similar manner to those of Mozaffari et al. (2016). Firstly, the thermophoretic force is
of a strikingly distinct nature in imparting a downward motion to the micromotor even
when the director initially faces away from the wall (e.g. in figure 14a). Secondly, in the
corresponding problems addressed, it was found that the micromotor does not achieve a
velocity of Vz < 0 for any extent of the active area if θp,0 < 90◦. In sharp contrast to these
observations, in the present scenario, we observe that the micromotor can have Vz < 0 even
when θp,0 < 90◦. An example of this outcome is provided in figure 17 in the Appendix for
a typical heated cap coverage of ϕcap = 90◦ and equal conductivities of the two media
(K = 1).Further, the phase maps in figure 14(a) demonstrate that, when the micromotor
has a large heated cap, the zone of stopping points on the maps penetrates the region of
θp,0 < 90◦, and even a fully vertical orientation with θp,0 = 0◦ can result in the case of
complete stationary trajectories.

As the capped area becomes more extensive, the distortion of the temperature field
becomes intrinsically different, which can be visualized by comparing the temperature
profiles in figure 15(a,b). This is also reflected in the appearance of two distinct maxima
points on the TS vs. θ curves for high ϕcap instead of just one for low cap angle (please
refer to figure 15c). Consequently, the pattern of surface slip flow is modified as portrayed
schematically in figure 15(a,b). In the former case, the surface slip flow takes place
from the colder region (point Tmin in figure 15a) to the hotter region (point Tmax in
figure 15a), and the particle gains an upward velocity component (Vz > 0). In contrast
to this, for ϕcap = 160◦, the continuity of flow demands a pair of new circulating rolls
due to a reorganization of the surface temperature distribution. As a cumulative effect,
the downward surface traction surpasses the upward one, and, subsequently, the motion
of the micromotor becomes downward (Vz < 0). An involved relationship of Vz on both
ϕcap and θp has been presented in figure 15(d). While this only provides an insight into the
impending downward or upward motion during launching, a sliding to escape or escape
to stopping transition of swimming states takes place due to qualitatively similar reasons
of alterations in particle rotation (Ωy) and vertical motion (Vz) at a critical transition, as
discussed in Case-I of § 3.5.1.

The mechanism by which changing cap angle (ϕcap) influences the swimmer surface
flow is more intricate than the corresponding implication due to thermal conductivity
contrast (K). We have earlier noted that modulations in K hold the capacity of changing
only the relative magnitudes of the peak surface temperatures (Tmax − Tmin), but not the
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Figure 15. Panels (a,b) show the direction of surface flow for low and high coverage angles ϕcap = 60◦ and
160◦, respectively. Here, the background colour denotes the scaled temperature field. (c) Variation of surface
temperature along the surface of the micromotor for different coverage angles (ϕcap). Here, θp = 10◦ has been
chosen for (a–c). (d) Variation of the vertical component of the micromotor velocity (Vz) with ϕcap for different
θp. (e) Variation of surface temperature along the surface of the micromotor for different coverage angles (ϕcap)

with θp = 120◦. Other parameters are chosen as δ = 1 and K = 1.
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Figure 16. Swimmer surface temperature variation (TS) for different distances from the wall (δ). Panels
(a) and (b) correspond to coverage angles of ϕcap = 120◦ and 150◦, respectively. (c,d) The solid-black and
green-dashed arrows indicate the direction of surface flow. We have chosen ϕcap = 120◦ and 150◦, respectively,
in the two panels. The background colours denote the scaled temperature field. The other parameters are
K = 1, δ = 0.1 and θp = 135◦. The green and yellow bubbles denote the minimum and maximum temperature
locations on the plots, respectively.

peak locations on the swimmer surface (refer to figure 3). Conversely, the cap angle (ϕcap)
variation has the potential of shifting the locations of the peak temperatures. Also, it can
create or destroy new peak points (see figure 15e for example), thereby regulating the
surface flow to a great extent.

Secondly, during the swimming states where the micromotor ends up being motionless,
we observe that the director is pointed vertically upward (i.e. θp,end = 0◦) in the final
state (refer to figures 12c(ii) and 13b(ii)). Contrarily, in the previously reported studies
(Mozaffari et al. 2016), the final orientation of the stationary states was found to be
θp,end = 180◦. Also, in the present scenario, the swimmer becomes stationary only after
sliding along the wall until it reaches the θp = 0◦ condition, while remaining at a close
distance from the wall (δstop � 0.1). However, in the self-diffusiophoresis problems, the
micromotor reaches ‘stationary’ states with the final separation height being as high as ∼5
times the particle radius. The difference between the two problem categories also stems
from inherently distinguished wall-induced modulations in the peak temperature or solute
concentration on the surface of the autophoretic particles considered in the respective
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cases. Figure 16(a,b) suggest that the minimum temperature location is shifted towards the
wall and attains almost a θ ≈ 180◦ position for both the high coverage angles. Moreover, in
stark contrast to the study of Mozaffari et al. (2016), the maximum location shifts towards
the north pole with an increase in the coverage angle from ϕcap = 120◦ to 150◦. Following
the directions of arrows and their altered lengths in figure 16(b) to (a), we find that the
contribution of counterclockwise surface traction intensifies. This further causes a net
negative rotation leading to θp,end = 0◦, and the same can be verified from figure 18(b)
in the Appendix. Another difference with their work arises from the decreasing values of
Vx, as the swimmer approaches the wall (see figure 18a). Subsequently, the micromotor
traverses little distance before coming to rest.

When the micromotor is launched from a sufficient height above the planar wall
(h0 ∼ 10), the wall-induced temperature distortions can hardly influence the particle
velocity. Accordingly, the micromotor feels a weak attractive force from the wall. Along
similar lines, a comparison of the phase maps in figure 14(a–c) reveals that the zone of
stopping trajectories in the common region of θp < 90◦ and high ϕcap shrinks as the initial
height gets increased.

4. Conclusions and remarks

We have explored the capability of navigating a thermally asymmetric micromotor by a
nearby isothermal plane wall. The wall-induced temperature distortion in and around the
micromotor results is several distinctive characteristics of motion ranging from sliding
along the wall, reaching a stationary configuration to getting repelled by the wall at a fixed
orientation. Moreover, there exists fixed points for vertical translation at specific swimmer
orientations relative to the wall. The present study reveals a unique non-monotonic
dependence of the associated critical gap thickness on the extent of metallic coating on the
particle surface. However, the thermal conductivity ratio has been found to be incapable
of changing the above fixed point characteristics.

For high thermal conductivity contrast between the particle and the fluid, an increasingly
significant portion of the particle senses the effect of localized heating due to laser
irradiation. This effect, in turn, weakens the temperature gradient and the subsequent
phoretic thrust experienced by the micromotor. Our analysis reveals that for a fixed extent
of metallic coating and the initial orientation of the micromotor, its final trajectory can
be characteristically altered only by changing the particle-to-fluid thermal conductivity
contrast. The critical thermal conductivity contrasts responsible for a shift either from
sliding to escape or from stopping to escape states have also been reported. It has been
found that these critical conditions exist for both the situations of a particle becoming
more conductive than the fluid or vice versa. Moreover, the critical thermal conductivity
contrast depends on the initial tilt of the micromotor, as demonstrated in figures 11–13.

When a large extent of micromotor surface is coated with the metallic cap, the
wall-bound attraction is so strong that migration towards the wall happens, despite the
director initially pointing away from the wall. This observation is highly non-intuitive on
the backdrop of the previous studies related to self-diffusiophoresis near a wall. Moreover,
the zone of sliding states in the phase diagram has shifted from a 115◦ < ϕcap < 150◦
(Mozaffari et al. 2016) condition to 0◦ < ϕcap � 25◦. Also, a window of intermediate ϕcap
values appears: 25◦ < ϕcap < 40◦, which is sandwiched between the sliding and stopping
states. When the micromotor ends up being stationary, it reaches a configuration with the
heated surface facing towards the wall.

Since the adiabatic wall effects on the locomotion of a self-thermophoretic micromotor
may be perceived by drawing analogies with the reported studies on self-diffusiophoretic
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transport, and the corresponding effects of an isothermal wall are addressed in this study,
the present study may be extended to a generic theoretical platform accommodating
arbitrary variations in wall temperature, considering that a generic boundary condition
may be represented by a combination of successive isothermal and adiabatic states.

The fundamental know-how of the temperature distribution in and around a
self-thermophoretic micromotor and its trajectory characteristics in the vicinity of a plane
obstacle with a known thermal condition may be extremely beneficial in designing a
novel microscale thermal sensor. While designing an experimental set-up relevant to the
present study, qualitative intuitions may be obtained from the passive diffusiophoresis
experiments (e.g. Shimokusu et al. 2019) where the wall has an approximately constant
solute concentration boundary condition or from the analysis with a constant chemical
potential boundary condition (Warren 2020).

The ability to cause critical transitions in the locomotion behaviour based on related
thermal and configurational parameters, as explored here, may be exploited to achieve
precise control over the navigation of micromotor-based systems for a variety of
applications where interaction with a confining boundary is inevitable. Further tuning of
these interactions with the aid of thermal noise, topographical alterations (Simmchen et al.
2016) and patterning of the thermal boundary conditions at the wall may be harnessed
in the future to achieve desired transitions in swimming states over reduced length
scales.
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Appendix. Detailed variation of velocity components
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Figure 17. Vertical microswimmer velocity vs. its distance from the wall for different orientation angle (θp).
Here the fixed parameters are ϕcap = 90◦ and K = 1.
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Figure 18. Variation of wall-parallel translational and rotational velocities of the microswimmer with distance
from the wall (δ) for different orientation angles (θp). Other parameters are chosen as ϕcap = 150◦ and K = 1.
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